
Diagnosing . in 

Mark Nahabedian & Howard Shrobe 
MIT Artificial Intelligence Laboratory 

Abstract: 
As part of a collaboration with the White House Of- 
fice of Media Affairs, members of the MIT Artificial 
Intelligence Laboratory designed a system, called 
COMLINK, which distributes a daily stream of docu- 
ments released by the Office of Media Affairs. Ap- 
proximately 4000 direct subscribers receive informa- 
tion from this service but more than 100,000 people 
receive the information through redistribution chan- 
nels. The information is distributed via Email and the 
World Wide Web. In such a large scale distribution 
scheme, there is a constant problem of subscriptions 
becoming invalid because the user’s Email account has 
terminated. This causes a backwash of hundreds of 
“bounced mail” messages per day which must be proc- 
essed by the operators of the COMLINK system. To 
manage this annoying but necessary task, an expert 
system named BMES was developed to diagnose the 
failures of information delivery. 

Background 

In January 1993, the new Clinton administration commit- 
ted itself to the use of electronic media such as Email (and 
later the World Wide Web) for making government infor- 
mation widely available to the public. A collaborative 
effort between the White House Office of Media Affairs, the 
MIT Artificial Intelligence Laboratory and others quickly 
created a workable framework for wide-scale distribution of 
a stream of daily documents originating in the Executive 
Office of the President. The document stream includes 
daily press briefings, speeches by the President and other 
officials, backgrounders, proclamations, etc. In addition, 
the stream of released information includes special docu- 
ments such as the National Performance Review’s reports 
on reinventing government, the proposed health care reform 
legislation, the yearly budgets, etc. 

The Intelligent Information Infrastructure Project at the 
MIT Artificial Intelligence Laboratory created an informa- 
tion distribution server which functions as the focal point 
of the distribution chain. Documents are released from the 
Executive Office of the President through this system; they 

are sent from this system to a variety of archiving and re- 
trieval systems around the country, to most on-line services 
(e.g. Compuserve, America Online), to about 4000 direct 
subscribers to the MIT server, and to a variety of other 
servers which further redistribute the documents. A survey 
of people connected to this distribution chain estimated that 
more than 100,000 people were receiving information 
through this medium. 

Documents released through this service are coded with 
descriptive terms taken from two taxonomies: the first tax- 
onomy categorizes the type of document (e.g. Press Release 
vs. Speech vs. Press Conference); the second taxonomy 
concerns content (e.g. Foreign Affairs, Domestic Affairs, 
Economy, Taxes). Subscribers to the service specify a 
personal profile consisting of combinations of the descrip- 
tive terms which characterize their interests; it is the servers 
job to guarantee that subscribers receive exactly those 
documents which match their profiles in a timely manner. 

Users establish a subscription and modify their profiles by 
filling out electronic forms (using either Email or the 
World Wide Web) and submitting them to the server. The 
ease with which users can manage their profiles is an im- 
portant measure of the quality of service delivered. 

The environment just described is open, large scale, and 
anarchic. The system services thousands of users at hun- 
dreds of sites in dozens of countries. Users may establish, 
modify and terminate subscriptions at any time. User 
Email addresses registered with the server may become in- 
valid at any time; occasionally users cancel their subscrip- 
tions before this happens, but this is comparatively rare. 
Also, configuration problems at subscribers’ sites make 
their Email addresses temporarily unreachable even though 
the addresses are valid. 

Case Studies 1491 

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Kinds of Mail Notification Causes of Deliverv Failure 
Delivery Failure 
Delivery Failure but still Trying 
Message Received 
Message Opened 
Message Deleted 
“Vacation” Nortice 

In either of these cases, “bounced mail” messages are sent 
to the MIT server informing it of the inability to deliver a 
message to the invalid Email address. Most Email systems 
do not consolidate these bounced mail messages; if you 
send two messages to an invalid Email address, you receive 
back two bounced mail messages. The White House in- 
formation stream typically includes as many as a dozen 
documents a day; with a subscription base of 4000 direct 
subscribers this leads to a rather large volume of bounced 
mail traffic each day (more than 100 messages). The failure 
to handle these messages and to update the subscription 
database accordingly, leads to a perception by the adminis- 
trators of the receiving sites that they are being “spammed”’ 
by the sending site; given that the sending site in this case 
is the White House, it is unacceptable to ignore the 
bounced mail traffic. A second class of problem arises when 
a user with a valid Email address attempts to terminate or 
modify a subscription without success; in this case, the 
perception is that the White House is spamming the sub- 
scriber personally, an even more unacceptable situation. 

On the surface, it would seem that this problem is amena- 
ble to simple automation. However, the open, anarchic 
character of the Internet makes the problem quite complex: 
there are dozens of different mail servers, each with a unique 
“bounced mail” message format. In addition to the variety 
of Email servers speaking the-Internet’s native SMTP pro- 
tocol [RFC821] there are also a large number of other pro- 
tocol domains bridged to the Internet. These include 
UUCP, Bitnet, X.400 and a large number of proprietary 
Email systems (e.g. CC:mail, Microsoft Mail, etc.); 
bounced mail messages are often reformatted as they cross 
the bridge between protocol domains, sometimes losing 
information (and sometimes preserving information which 
is useless, such as one which directs the recipient to press 
the Fl key for more information). Within these other mail 
domains, the format of a mail address might be different 
from that used in the Internet; bounced mail messages from 

’ Spamming: A colloquial term, now common in 
discussions about the Internet, which refers to 
the practice of filling up somebody’s electronic 
mailbox with unwanted material, often adver- 
tisements, complaints or flames. Origin un- 
known. 

1492 IAAI-96 

User Not Found 
Host Not Found 
Mailer Configuration Problems 
Temporary Mailer Resource Problem 
DNS Configuration Problem 
User Mailbox Full 

these domains often include their foreign format email ad- 
dress, rather than the Internet format address in our data- 
base. 

A second set of complications arises from the variability of 
user’s Email addresses. Many people have several Email 
addresses some of which are forwarded to another. Bounced 
mail messages in such cases often refer to the “forwarded to 
address” which isn’t in our subscription database. Further- 
more, people often subscribe using one address, switch to a 
second one as their primary address (forwarding the first one 
to the new address) and then more or less forget about the 
first address; attempts to modify the subscription using the 
new, primary address are then unsuccessful, because the 
system is unaware of the new address. Similarly, if the 
new address becomes invalid, then a bounced mail message 
will be sent to the server referring to the new address, 
which is unknown to the server. 

In some mail systems (e.g. UNIX) users may direct their 
mail streams to shell scripts or other programs for process- 
ing. “Vacation programs” are a common example of this, 
they send back to the sender a message saying that the re- 
cipient is away and unlikely to respond soon. This is a 
courtesy when sent in response to a personal correspon- 
dence but when sent back to a bulk distributor like the 
White House server it shows up as part of the bounced mail 
stream . In addition, nothing prevents users from writing 
new mail handling programs, including incorrect ones; 
when such programs fail, the sender of the message (as 
opposed to the author of the buggy program) is usually 
sent a bounced mail message (in principle the postmaster at 
the receiving site should be sent this message, but princi- 
ples and reality don’t always correspond in this world). 

A final complication, shown in Figure 1, arises because of 
the presence of redistributors. Redistributors are people or 
programs which receive the original message stream and 
then relay it to a set of subscribers known to the redis- 
tributor but not to the primary White House distribution 
server. Virtually any subscriber may independently decide 
to act as a redistributor of the document stream (for exam- 
ple, by establishing a mailing list). If an Email address on 
a redistributor’s list becomes invalid, the redistributor 
should be notified; however, often the original source of the 
message (us) is notified instead. To get the behavior we 



Incorrect, but often Used 
Route for Bounced Mail 

Correct RoI~+~ fnr 
Bounced MaA 

Redis tributor: 

-w should reformat 
Should follow 

Known to 
White House 
sys tern 

Known to 
Redistributor 

Figure I: Redistributors Complicate Delivery Notification 

desire, the redistributor should arrange for the headers of the 
redistributed message to identify it as the destination for 
problem reports; however, some redistributors fail to con- 
figure their mailer appropriately to achieve this behavior. 
This can also be caused by bugs in either the redistributor’s 
software or in the Email server at the ultimate destination 
(e.g. failure to correctly interpret the headers) or both. 
COMLINK tries to distinguish redistributors from normal 
users by having different types of database entries for each; 
redistributor entries include an Email address for the admin- 
istrator of the redistribution list. However, we rely on 
people to subscribe to COMLINK correctly and often peo- 
ple don’t. 

The problem of managing a large Email based distribution 
system in this environment has been recognized for some 
time [RFC 12 1 11; however, to date the problem has been 
handled using one of two approaches: 

Don’t worry, be happy: In this approach, bounced mail 
messages are ignored. The sender builds up a rather large 
file of bounced mail messages which is periodically de- 
leted. The destination sites receive many messages which 
are bounced, but this happens automatically. All told, a lot 
of resources are wasted, but nobody really cares because it’s 
largely invisible. To be fair, most maintainers do from 
time to time examine a sampling of the bounced mail traf- 
fic and attempt to address the problems. 

Big bag of tools to aid the administrator: A number of 
ad hoc tools are built to aid the system administrator in 
making sense of the bounced mail traffic [RFCl21 I]. 

These help the conscientious list administrator to solve 
difficult problems, but much of the work remains manual. 

Given the high visibility of the White House distribution 
system and its role as an early experiment in using the In- 
ternet to improve government services, neither of these 
approaches was acceptable. Instead we decided to imple- 
ment an expert system to aid in the handling of bounced 
mail and to help in managing other problems such as a 
user’s inability to terminate or modify a subscription. 

Structure of the System 

The Bounced Mail Expert System (BMES) is a component 
of a larger system, called COMLINK, which is a substrate 
for building information distribution and group collabora- 
tion systems using Email, the World Wide Web and other 
Internet based transport protocols. At the core of COM- 
LINK is an object oriented database which includes the fol- 
lowing information: 

Subscribers: Email address, personal name and subscrip- 
tions, date subscription started and date (if any) subscription 
turned off, whether this user is a redistributor. 
Network Hosts: Subscribers at this host, upward and 
downward links in the domain name hierarchy, mail server 

tY Pen 
Documents: descriptive terms, release dates, subject, etc. 
Oueued Tasks: Time to execute the task, task type and ar- 
guments 

Case Studies 1493 



BMES draws upon this information to help diagnose deliv- 
ery failures. 

BMES is a rule based diagnostic system driven by a file of 
bounced mail messages. Each message is a symptom of a 
failure in the delivery system. The user of BMES is the 
“postmaster” maintaining the White House COMLINK 
system. BMES’s task is to discover, if possible, the tea- 
son why a mail message was bounced and if diagnosis is 
not possible to present meaningful information to the user 
and help in gathering more information. If diagnosis is 
successful, then the system rectifies the problem, usually 
by suspending a user’s subscription. 

For each message processed the system follows a standard 
pattern of processing: 
Classification of the mailer which sent the message 
Abstraction of the message to hide the syntactic differences 
between bounced mail messages. 
Diagnosis of the cause of the delivery failure, including: 
Heuristic generation of hypotheses 
Interaction with administrators at remote sites. 

The first task is Classification during which BMES 
matches features of the message against required features in 
the taxonomy of mailer types. In practice, the classifica- 
tion is done by a rather ad hoc set of rules which search for 
specific features in the headers and the first part of the body 
of the message. These features include characteristic sub- 
strings within particular headers or in specific locations 
within the body (usually the first several lines) of the mes- 
sage. These rules were determined based on the authors’ 
observations of the bounce mail messages. 

The system currently distinguishes 23 different types of 
mailers; these need not necessarily correspond to distinct 
pieces of mailer software, rather they correspond to the va- 
riety of distinct formats of bounced mail messages which 
we’ve observed. Some mailers have a rather broad range of 
configurability including the format of the bounced mail 
message to generate. We have no special knowledge of 
how the remote sites are being managed and so if two dis- 
tinct hosts generate bounced mail messages which look 
different, we treat these as having been generated by distinct 
mailers even if this isn’t necessarily the case. 
New mailer types pop up occasionally, but this now hap- 
pens rarely. 

The second stage of processing is to Abstract the message, 
hiding the syntactic variability between the different for- 
mats of bounced mail messages but preserving their seman- 
tic commonality. For example, bounced mail messages 
typically contain a “transcript” which includes email ad- 

dresses to which it was impossible to make a delivery, and 
an indicator of the cause of delivery failure. Similarly, 
most bounced mail messages contain a copy of the original 
message that couldn’t be delivered. The original message 
includes a set of “received” headers [RFC822], each of 
which corresponds to a mail server in the chain of delivery; 
the header identifies the host which handled the message, 
the time of handing, and in some cases the user to whom 
the message was intended to be delivered. (Note that this is 
different than the destination in the “to” header [RFC822] 
of the message, which is typically a generic address such as 
“Clinton-distribution”) . 

Abstraction is effected using the object oriented program- 
ming techniques of CLOS [CLOS]. Once the classification 
stage has identified the mailer type, BMES constructs a 
@LOS object whose class corresponds to the type of the 
mailer. This object mediates the abstraction phase. We 
established a class hierarchy corresponding to the mailer 
types and an object-oriented protocol* that all mail mes- 
sages must obey; the protocol consists of about a dozen 
methods. Each method in the protocol reflects an aspect of 
the common semantic content that any bounced mail mes- 
sage must contain. There is one method in the protocol 
which finds the transcript in the bounce message and a sec- 
ond one which maps over its failure descriptions, calling 
an action routine with the email address and a canonicalized 
version of the failure code. There are also protocol methods 
to locate the message text and then to map over the 
“received” headers [RFC822] contained in it. We use the 
class hierarchy to capture commonalities of message struc- 
turing. For example, the location within the bounced mail 
message and the encoding of the transcript and original 
message are idiosyncratic to each mailer, however several 
different mailers share the idea of partitioning the message 
body using the MIME standards [RFC 13411 for structuring 
mail messages; however they may differ as to what fields 
they include. Therefore different classes implement the 
protocol methods differently, but where there is commonal- 
ity this is captured by CLOS inheritance. All mailers 
which use MIME encoding, for example, are represented as 
subclasses of the common MimeStructured message class 

* Here we use the term “protocol” in the same 
sense as in the “Meta-Object Protocol” [MOP] or 
the Joshua Protocol of Inference [Joshua], not in 
the sense of an Internet protocol such as SMTP 
[RFC822]. Fortunately, the object-model used 
here doesn’t use the “message passing” meta- 
phor or we would also have confusion between 
mail messages and messages being sent to ob- 
jects. 

1494 IAAI-96 



The power of this approach is that it abstracts away the 
syntactic variability exhibited by the variety of bounced 
mail message formats, while highlighting their semantic 
commonality. Higher levels of the system can expect any 
mail message to contain standardized information and to 
behave in standard ways, without to be concerned with the 
underlying syntactic variability. 

The next stage of processing is Diaenosis which involves 
deciding whether the failure is permanent and whether the 
recipient is actually known to the COMLINK system. If 
the address in the mail message is found explicitly in the 
COMLINK database, if the failure is due to the user’s ac- 
count being closed out (as opposed to a transient error) and 
if the user has an active subscription, then BMES cancels 
the subscription. 

deliver a failure message only after this elapsed time. Be- 
cause of this long latency, bounced mail messages can con- 
tinue to arrive for several days after a user’s subscription 
has been canceled. If a bounced mail message refers to an 
Email address whose subscription has already been canceled, 
then the user of BMES is not bothered since the problem 
has already been handled; the message is presumed to have 
arisen during the period between the time when the Email 
address became invalid and when COMLINK was informed 
of this. This requires COMLINK to maintain an entry for 
users whose subscriptions have been canceled for a period 
of time after the cancellation; when BMES cancels a sub- 
scription, COMLINK creates a queued task entry in its da- 
tabase with a firing time of one month in the future. 
When this queued task runs it completely removes the 
user’s account from COMLINK’s database. However, dur- 

Let the name in the reported address be ?name-1 
Let, the host in the reported address be ?host-1 
For each child ?child-host of ?host-1 
If ?name- 1 @?child-host is the email address of an active subscriber ?sub- 1 
Then suggest that ?sub-1 is a possible cause of the delivery failure 

Rule I: Probable-User-is-Child-Host 

ing the intervening period, BMES can 

However, sometimes the bounced mail message reports an 
invalid address which is not present in the COMLINK data- 
base. At this point, the Heuristic Generation Dhase is en- 
tered. A small collection of heuristic candidate generation 
rules is used to suggest candidate addresses which are in the 
database and which might have led to mail being sent to the 
address reported in the message. For example the message 
might report a problem with “foo@ai.mit.edu”; in this case 
if “foo@w.ai.mit.edu” or “foo@mit.edu” are in the data- 
base, they would be good candidates for possible causes of 
the failure. A rule called Possible-User-at-Child-Host sug- 
gests the first. A second rule called Possible-User-at- 
Parent-Host suggest the second. An English paraphrase of 
the first rule is shown in Rule 1. 

Such candidate generation rules work by traversing COM- 
LINK’s map of the portions of the Internet domain name 
space for which it has subscribers. There are rules which 
suggest the superior domain (e.g. “mit.edu” is the superior 
of “ai.mit.edu”), any inferior domains (e.g. “w.ai.mit.edu” 
is an inferior of “ai.mit.edu”), and any sibling domains 
(e.g. “lcs.mit.edu” is a sibling to “ai.mit.edu”) which the 
system knows about. 

Most mailers attempt to deliver a message for several days 
when possibly transient problems are encountered; they 

tell that it knows 
about this account and that it knows that it has already can- 
celed the account’s subscription. 

Most messages are handled by the simple processing de- 
scribed above; however, there is usually a residual of harder 
problems left over. One cause of the residual problems is 
that many of the mailers provide minimally useful informa- 
tion in their bounced mail messages. In other cases, there 
is information provided but the bounced mail message re- 
fers to an Email address which isn’t in the COMLINK data- 
base and none of the heuristics above lead to a known ad- 
dress either. 

In almost all cases, this situation arises when the failing 
address is reached through an “indirection”: Either the ad- 
dress is on the mailing list of a redistributor, or it is the 
target of a forwarding entry for some other Email address, 
or there is an MX3 record [RFC974] involved. In these 
cases completely automatic processing isn’t possible; there 
isn’t enough information available to BMES to form a full 
diagnosis of the problem. Some of the required informa- 

3 MX records are part of the Internet Domain Name 
System; the MX record for a host specifies which 
machine should actually receive mail addressed 
to the original host. 

Case Studies 1495 



tion is at a remote site and can be obtained only by com- 
municating with an appropriate person at the remote site. 
It is a further complication that we don’t actually know 
what remote site does have the information we need. 

BMES can help make an educated guess: If it can find the 
original message included in the bounced mail message and 
if there are received-from headers in the original mes- 
sage, then the server mentioned in the header might have 
relevant information. In particular, any user at this server 
who is marked as a redistributor in the COMLINK database 
is a particularly useful candidate. Redistributor entries con- 
tain an Email address for the administrator of the redistri- 
bution list; BMES formats the first draft of a standard 
Email message to the maintainer asking if the failing ad- 
dress is known to the administrator of the list and, if not, 
requesting help in figuring out what else might be going 
wrong (the user is then offered the option of further editing 
the text of this message). 

Another heuristic is to look for Email addresses similar to 
the failing one at each of the sites mentioned by the 
“received-from” headers and to then send to the postmaster 
at each of these sites a message explaining the problem and 
asking for help. 

There are some techniques which we employ manually to- 
day which are subject to automation. One is used when 
there are a small number of users at the site which bounced 
the mail but when it still isn’t possible to make a definitive 
identification of the invalid address (either because the 
bounced message doesn’t contain an address or it contains 
one which doesn’t match any entry in our database). In this 
case, we generate one message for each user in our database 
known at the site; this message explains that we are having 
delivery problems and asks for the user’s help if possible. 
There are two useful outcomes: 1) One of the users knows 
what’s going on and helps us fix it 2) One of these mes- 
sages bounces, but since the bounced message has the spe- 
cific user’s address in it (which our normal messages lack 
since they are sent to the whole subscription list) we are 
now able to determine which address is invalid. This tech- 
nique is analogous to techniques used in model-based trou- 
ble shooting where a new and maximally informative test 
is generated. 

Application Payoff 

This application is not a commercial venture and so pay- 
back in monetary terms is not a relevant metric for evalua- 
tion. BMES was created as a support tool within a col- 
laboration between a research group at MIT and a line or- 

ganization at the White House Office of Media Affairs. 
Each partner in this collaboration had their own goals: The 
participants from the Executive Office of the President 
wanted to make information routinely and reliably available 
to the public and to demonstrate the viability of the In- 
ternet as a model for the future National Information Infra- 
structure. The research group at MIT wanted to explore 
issues in computer supported collaborative work and in 
intelligent management of information. For both groups, 
management of the bounced mail problem is a necessary 
supportive task but one which cannot be allowed to con- 
sume valuable resources; in particular, neither group has 
substantial manpower to devote to the task. Therefore the 
relevant metric for evaluating the payback of the invest- 
ment is in terms of the reduction of manpower contribu- 
tions from the two groups. This in turn directly translates 
into the effectiveness of the system at handling bounced 
mail messages. 

% Messages Handlec 

00% i -.. 

Figure 2: Effectiveness of BMES vs. Time 

We have been collecting data on the effectiveness of BMES 
since early in its lifetime. Figure 2 shows this data for the 
bulk of calendar year 1995. During this period, 63,091 
bounced mail messages were received. BMES was capable 
of automatically processing 48,031 of these message or 
76% of the total. As can be seen from Chart 1, there is a 
great deal of temporal variability in the system’s perform- 
ance. It simply seems to be the case that some weeks we 
run into problems with sites whose mail servers provide 
less information; these weeks have lower overall perform- 

1496 IAAI-96 



ante. However, it is also noticeable that there is a long 
term trend of improvement in the system’s performance. 
This is probably due to a combination two factors: 1) Over 
time, we have confronted most of the mailer types that 
exist and have built up useful heuristics for dealing with 
them. 2) Over time, there has probably been a stabilization 
of technology in the community and a switch to more 
robust and informative mailer software. 

Over the whole lifetime of the project, the time per day put 
into bounced mail handling has declined from nearly 3 
hours per day in calendar year 1993 to about l/2 hour per 
day now. We would certainly like to drive this number 
down further, but the transformation so far has been a 
qualitative one: The three hours per day required at the start 
was simply not viable; today the task is annoying but well 
within scope. 

File-name Chars Lines Defs 
New-db-interface 2,180 69 10 
User-rules 10,662 292 21 
Zwei-msg 2,798 79 12 
Understanding-bounced-mail 4 1,067 1,106 104 
Zmail-commands 25,450 655 20 
Mailer-vanilla-Unix 10,308 256 11 
Mailer-smailer 3,820 101 2 
Mailer-CompuServe 4,090 95 2 
Mailer-mime 6,212 148 9 
Mailer-mmdf 7,482 176 14 
Mailer-pmdf 4,789 125 4 
Mailer-mime-pmdf 5,810 163 6 
Mailer-uucp 3,603 89 1 
Mailer-uucp-warning 2,814 70 1 
Mailer-ibm 3,352 86 3 
Mailer-vines 3,130 79 2 
Mailer-microsoft 4,894 124 4 
Mailer-minos 2,724 71 3 
Mailer-local-delivery-agent 5,242 127 6 
Mailer-undeliverable 3,139 77 3 
Mailer-cc 2,514 63 3 
Mailer-a01 3,497 93 6 
Mailer-lispm 4,825 122 4 
Mailer-mercury 3,266 84 3 
Mailer-ctstateu 3,324 80 2 
Mailer-smtp 4,049 104 4 
Mailer-ksgbbs 3,405 86 4 
Bounced-mail-complaint-reply 1,882 51 5 
Check-recipient 2,541 61 3 
Simple-redirection 5,491 140 5 
Relay-zmail-command 25,987 702 65 
Total 214.347 5.574 342 

Table 1: Code Distribution in BMES 

Implementation 

Both COMLINK and BMES are implemented within the 
Symbolics Genera environment, which runs both on Sym- 
bolics hardware and on Digital Equipment Corporation Al- 
pha AXP workstations (using the Open Genera emulator 
software from Symbolics). BMES is integrated with Gen- 
era’s ZMai14 mail client which is built on an extensible 
substrate for complex mail handling applications. Much of 
the system relies on this substrate for low level processing 
such as mail file and header parsing, pattern matching and 
string searching. BMES itself is implemented in Joshua 
[Joshua] and makes extensive use of its Protocol of Infer- 
ence to reason about the contents of the mail messages. 
BMES itself is invoked as a Zmail command which is ap- 
plied to the mail file containing the bounced mail mes- 
sages. When mail messages need to be sent to postmasters 
or users at remote sites, this is facilitated by use of ZMail’s 
programmatic interface. Table 1 shows the component files 
in the system, including number of characters and lines of 
source text and number of definitions (rules, lisp functions, 
methods etc.). 

eployment and Maintenance istory 

Work on BMES was begun in the spring of 1993 as an 
adjunct to a predecessor system to COMLINK (called FO- 
RUM) which represented the first collaboration between the 
MIT AI Lab and the White House Office of Media Affairs. 
The bulk of BMES was completed by the summer of 1993. 
As COMLINK’s development proceeded, a second version 
of BMES was developed by modifying the first version to 
take advantage of the extra information maintained by 
COMLINK. For a few months, COMLINK and FORUM 
were run in paralIel while users were encouraged to switch 
their accounts over. During this period, both versions of 
BMES were run to manage problems from the two streams. 
The final cutover to COMLINK was completed in early 
1995. Since that time, new features have been added to 
BMES as necessary. 

It is interesting to note that BMES was literally developed 
and deployed simultaneously; it was an experience in evolu- 
tionary design of a complex software system. As soon as 
there was useful functionality, it was deployed and then 
enhanced during its ongoing operation. 

4 There are several other products named Zmail 
which are not related to the one included in the 
MIT Lisp Machine softare systems and its com- 
mercial offshoots such as Symbolics’ Genera. 

Case Studies 1497 



BMES is an unusual application: It is a component of the 
COMLINK system which supports thousands of users but 
there is only one user of BMES itself. That user is also 
the developer and maintainer. Currently, the bounced mail 
processing is done at MIT; however, we anticipate com- 
plete hand-off of the COMLINK system in the near future 
at which time, personnel in the Executive Office of the 
President will assume responsibility. As with much else 
about this application a crisp definition of deployment is 
not easy. A large population has received information from 
the White House for several years now and the management 
of Email delivery problems has been substantially auto- 
mated as part of that task. It is true that the system is still 
operated by its developers, but that was the anticipated 
situation at the outset. Routine sustainable operation has 
been achieved and that has enabled other aspects of the proj- 
ect to proceed without undue drain on scarce personnel re- 
sources. 

Future Work 

Though BMES greatly reduces the effort required to process 
the mail backwash from a bulk electronic mail distribution, 
there is room for improvement. The addition of some form 
of reverse mapping of MX records would help to identify an 
address on the distribution list based on and address as ds 
termined from a bounce message. The domain name system 
does not provide such a mapping, so one would have to be 
constructed by iterating over all mail sites in the distribu- 
tion database and doing a domain MX lookup for each one. 
Because of changes to the distribution database and to the 
DNS, this reverse mapping would need to be updated regu- 
larly. 

As it is currently implemented, BMES is difficult to extend 
as new mailer types are discovered and as existing ones 
change. This difficulty is because the work of identifying 
mailer type is distributed over a number of ad-hoc parsers. 
As one adds a parser to recognize a new mailer type, one 
must be careful that this parser does not also recognize the 
messages of previously implemented mailer types. Perhaps 
reimplementing the parsers using a rule based parser genera- 
tor would simplify the definition of mailer types. 

The ideal solution to the problem of handling bounced mail 
would be the universal adoption of standards which specify 
how mail delivery status information is reported. If deliv- 
ery failure notifications explicitly stated the reason for fail- 
ure, and the failing address, as well as any addresses from 
which it might have been derived, then BMES could be 
replaced by a much simpler tool. Only one simple parser 
would be needed to extract the information from the bounce 

message. The system would require fewer, simpler rules for 
identifying the problem subscription. Recognizing the 
problem of numerous bounce mail formats, the Network 
Working Group of the Internet Engineering Task Force has 
recently proposed a set of standards [RFC 189 1, RFC 1892, 
RFC1893, RFCl894] which specify how mailers should 
report delivery status. As sites upgrade their mailers to 
ones that adhere to these standards, there will be fewer and 
fewer bounce messages that will require a system like 
BMES to interpret. 

References 

[CLOS] “Common Lisp Object System Specification”, 
Daniel G. Bobrow, Linda G. DeMichiel, Richard P. 
Gabriel, Sonya E. Keene, Gregor Kiczales, and David A. 
Moon 
Sigplan Notices, 23(Special Issue), September 1988. 

[RFC821] “SIMPLE MAIL TRANSFER PROTOCOL”, 
Jonathan B. Postel, August 1982, Internet RFC 821. 

[RFC822] “STANDARD FOR THE FORMAT OF ARPA 
INTERNET TEXT MESSAGES”, David H. Cracker, 
August 13, 1982, Internet RFC 822 

[RFC974] “Mail Routing and the Domain System”, C. 
Partridge, January 1, 1986, Internet RFC 974. 

[RFCl21 I] “Problems with the Maintenance of Large 
Mailing Lists”, A.Westine and J. Postel, March 1991, In- 
ternet RFC 1211. 

[RFC 134 1 ] “MIME (Multipurpose Internet Mail Exten- 
sions): Mechanisms for Specifying and Describing the 
Format of Internet Message Bodies”, N. Borenstein, N. 
Freed, June 1992, Internet RFC 134 1. 

[RFCl891] “SMTP Service Extension for Delivery Status 
Notifications”, K. Moore, January 1996. 

[RFC1892] “The Multipart/Report Content Type for the 
Reporting of Mail System Administrative Messages”, G. 
Vaudreuil, January 1996. 

[RFC1893] “Enhanced Mail System Status Codes”, G. 
Vaudreuil, January 1996. 

[RFC1894] “An Extensible Message Format for Delivery 
Status Notifications”, ] K. Moore, January 1996. 

1498 MI-96 



[COMLINK] “The Open Meeting: A Web-Based System 
for Conferencing and Collaboration,” Hurwitz, Roger & 
John C. Mallery, Proceedings of The Fourth International 
Conference on The World-Wide Web, Boston: MIT, De- 
cember 12, 1995. 

[GENERA] Genera Reference Manual, Symbolics Inc. 

[MOP] The Art of the Metaobject Protocol, Gregor 
Kiczales, Jim des Rivieres, and Daniel G. Bobrow, MIT 
Press, 1991. 

[Joshua] “Joshua:Uniform Access to Heterogeneous 
Knowledge Structures (or Why Joshing is better than Con- 
niving or Planning), S. Rowley, H. Shrobe, R. Cassels, 
W. Hamscher, AAAI National Conference on Artificial 
Intelligence, 1987, Pages48-52. 

[ZMAIL] Editing and Mail Manual, Symbolics Inc. 

Case Studies 1499 


