
anagi
KARMA:

Specification to Imphxnentation

Jacqueline Sobieski
Fannie Mae

3 900 Wisconsin Avenue
Washington, DC 200 16

(202) 752-4994
Fax: (202) 752-4205

sxujas@fnma.com

Srinivas Krowidy
Brightware, Inc.

2200 Columbia Pike, #9 19
Arlington, VA 22204

(4 15) 899-9070 (x-508)
Fax: (202) 752-4205

krowidy@brightware.com

Colleen McClintock and Margaret Thorpe
Tangram, Inc.

1155 Connecticut Avenue, #500
Washington, DC 20036

(202) 467-8539
colleen@tangram-inc.com and margaret@tangram-inc.com

Abstract
Fannie Mae is a congressionally chartered, shareholder-
owned company and the nation’s largest source of
conventional home mortgage funds. Fannie Mae purchases
and securitizes loans and is considered the leader in the
secondary mortgage market. Because of its strong leadership
role, Fannie Mae’s policies for loan eligibility set the
standard in the mortgage industry and applying these
policies consistently and effectively is critical to Fannie
Mae’s mission and profitability.

Fannie Mae’s policies for selling and servicing mortgage
loans span the business functions of the secondary mortgage
market and therefore are contained in many different
software applications. Managing policy across multiple
business applications became increasingly complex.

To meet these demands, Fannie Mae developed KARMA
(Knowledge Acquisition and Rule Management Assistant)
and the Business Rule Server to allow policy changes to be
implemented quickly throughout its software application
environment and to provide business users with direct
ownership and management of Fannie Mae’s policies in a
way that seamlessly integrates policy into the software
applications. KARMA is designed to support the
management of these policies independent of the
applications in which they are embedded. KARMA
generates executable business rules which become part of

1536 IAA-96

the Business Rule Server. As a result, policy is managed
centrally and no longer embedded in multiple applications.
KARMA and the Business Rule Server have been running
in production supporting the Cash Delivery application
since July, 1995.

Background
Fannie Mae is a congressionally chartered, shareholder-
owned company that was created in 1938 to provide
liquidity to the U.S. housing market. It is the largest
supplier of home mortgage funds, the nation’s largest
corporation in terms of assets, and the second largest
borrower in the capital markets, next to the U.S. Treasury.
Fannie Mae’s corporate mission is to provide financial
products and services that increase the availability of
affordable housing for low-, moderate-, and middle-income
Americans. It accomplishes this mission by channeling
funds between primary market lenders that originate
mortgages (commercial banks, savings institutions and
mortgage companies) and capital market investors that
purchase securities backed by those mortgages, thus
helping create the secondary mortgage market.

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

In order to maintain the credit quality of their portfolio
and the broad acceptance of their Mortgage-Backed
Securities (MBS) by capital market investors, Fannie Mae
must ensure that the loans that they purchase are of the
highest quality. Fannie Mae accomplishes this through the
establishment of underwriting guidelines and eligibility
criteria, which must be adhered to by those lenders wishing
to sell loans to Fannie Mae. Fannie Mae’s business
policies and procedural requirements are published in the
Fannie Mae Selling and Servicing Guides, which are
distributed to Fannie Mae customers in both electronic and
paper form. For the purposes of this paper, business policy
is defined as “business principles and guidelines,
considered to be expedient, prudent or advantageous that
are designed to influence and determine the decisions and
actions of the business”. The following is an example of a
business policy from the Fannie Mae Selling Guide
(FannieMae 1993):

We will now accept second homes as the security for Two-
Step adjustable-rate mortgages and for fixed-rate balloon
mortgages -- as long as such mortgages are not subject to an
interest rate buydown plan. The maximum allowable loan-
to-value ratio for these mortgages will be 80% for purchase
money transactions and 70% for limited cash-out
transactions.

The Representation Problem
Within Fannie Mae, the English language is the primary
means of specifying and communicating these business
policies. Natural language, with its heavy dependence on
domain knowledge, its ambiguity and its imprecision,
works well for verbal and written communications between
people with similar levels of knowledge (people within the
same company, the same industry, etc.). However, when
these policies become very complex, or when they are
being communicated and interpreted with the goal of
encoding them in computer systems, they must be
translated into some sort of formal specification which can
be checked for completeness and logical consistency prior
to implementation. The existence of this type of
specification increases the speed, efficiency and accuracy
with which systems can be built and maintained. Without a
formal specification, it becomes difficult to ensure that the
business requirements are being accurately implemented in
the software. In addition, as was the case at Fannie Mae,
systems maintenance becomes an unwieldy process, unable
to keep up with the rapidly changing business environment.

Like many corporations, Fannie Mae’s computer
systems execute on a variety of different hardware
platforms and operating systems. They have been
developed in a number of different programming languages
and access different DBMSs. They have been developed
using different methodologies, and the standards and
procedures by which they are maintained often differ

according to environment. Many of the legacy systems
running at Fannie Mae today evolved over time based on
changing business demands. These systems were not
necessarily designed from the ground up to do the kind of
processing that they are doing today. In many cases,
individual systems have sprung up to accommodate narrow
slices of business functions, rather than broader, integrated
applications designed to handle an entire business function.
As a result, the same business policies are often
implemented in multiple applications, and coded in
different programming languages, with no traceability back
to a common set of requirements. This creates a real
maintenance problem, as it is difficult to keep the various
pieces of code current and synchronized with the business
requirements, and almost impossible to keep them
synchronized with each other.

Project Objectives
The mission of the Business Rule Services project was to
develop the tools and techniques necessary to address the
problems inherent in the representation of business policy
at Fannie Mae. Specifically, we set out to accomplish the
following:

I.

II.

III.

IV

V.

Define a simple, English-like specification language
for specifying business policies.
Create a single, shared repository where specified
business policies can be stored, updated and
accessed.
Give business users the ability to control and
manage the specification and implementation of
business policies.
Eliminate the need for human interpretation and
translation of specified business policies into
executable code for implementation in computer
systems.
Reuse Fannie Mae business policies reusable across
multiple applications, and ensure that they are
implemented consistently.

These objectives were accomplished through the
development of the following set of related application
components:

I.

II.

Business Rule specification language - a grammar-
based representation for the specification of business
policies
Knowledge Acquisition & Rule Management
Assistant (KARMA) - a policy management
application consisting of the following:
8 a GUI through which policy specifications can

be defined and queried,

Case Studies 1537

III.

IV.

e a set of databases containing the policy
specifications, their underlying models and all
related metadata,

e a code generation component, which generates
executable code directly from the policy
specifications.

Business Rule Server - a knowledge base which
provides software applications, acting as clients,
with executable policy knowledge. KARMA
generates the ART-IM rules which are executed in
the Business Rule Server.
Data Translator - a tool that enables sharing of data
across software applications through the mapping of
application data models to the data model upon
which the business rules are based, the business
object model.

Project Significance
Several AI applications have been successfully deployed in
the mortgage industry over the past few years. The CLUES
system (Talebzadeh et al. 1994) focused on automating the
underwriting process. In CLUES, business policy is
embedded within the knowledge base rules. GECCO
(Bynum et al. 1995), is an automated compliance checker
which checks loans against investor guidelines. This
compliance checking is done at different stages in the
mortgage loan processing pipeline. GECCO enabled
different applications to use the same business policy by
embedding the GECCO knowledge base in different
applications. Our project differs from the above efforts in
the following ways:

e High-Level Knowledge Representation

Business policy is modeled as business rules in an
English-like specification language that can be
understood by business users. KARMA’s business
rule language is general enough to represent business
rules in any policy related domain.

l Knowledge Acquisition Tool

A knowledge acquisition tool, KARMA, was
developed to define and manage these business rules,
giving business users direct access to business policy
implemented in the computer systems.

e Automatic Code Generation

Executable business rules are automatically generated
by KARMA from the business rule specification
language.

0 Knowledge Server

Business Rules execute in a Business Rule Server
which different applications, acting as clients to the
Business Rule Server, can access.

1538 IAAI-96

e Data Mapping

A data translation capability was developed from
which data model translation code is generated from a
high-level specification language to enable client
applications to access the Business Rule Server
regardless of their differing data models.

Overview of Application Components
These components, as illustrated in Figure 1, work together
to provide an effective means of specifying and
implementing Fannie Mae business policies. Business
policies are conceived of and validated by the responsible
business persons. They are then specified in the form of
textual business rules using the KARMA Rule Editor.
KARMA stores the logical representation of the business
rule in the Business Rule database. Both the textual and the
logical representation are based on an underlying data
model which must first be defined through the KARMA
Data Dictionary Editor, and stored in the Data Dictionary
database. KARMA uses object-oriented and database
technology to facilitate defining and managing business
rules and uses AI technology to perform consistency
checking on business rules and to generate executable
business rules which become part of the Business Rule
Server. The Business Rule Server is an ART-IM
knowledge base which processes requests from client
applications to execute the business rules. Since the client
applications requiring access to the Business Rule Server
may have different data models, the Data Translator
translates the client application data into the data model
used by the Business Rule Server. The following sections
describe each application component in more detail.

Business Rule Specification Language
The term “business rule” has become very popular over the
last several years, particularly in the database and
application development tool sectors of the software
industry. It means different things to different people, but
can be broadly defined as “an explicit statement stipulating
a condition that must exist in a business information
environment for information extracted from that
environment to be consistent with business policy”
(Appleton 1988). Business rules are usually described as
discrete and atomic, implying that they represent the
smallest units of business policy - that they cannot be
broken down any further without losing their meaning. In
the absence of a more precise industry definition, the term
has been used to refer to everything from entity-relationship
and attribute-domain constraints (which are traditional
components of data models), to inference rules. There are
a few researchers proposing business rule formalisms and
categorization schemes, but it appears that more work will
need to be done in this area before a common classification
scheme will be complete and theoretically sound enough to
gain general acceptance.

The term “business rule”, as it is used within the context
of this paper, actually refers to a very specific type of fact
constraint - a declarative sentence that places restrictions

CLIENT
APPLICATIONS

Figure 1. Application Component Overview

on the relationships between people, places and things.
These business rules do not include the simple data
integrity constraints that are represented in traditional data
models, instead they consist of the more complex and
dynamic conditional business restrictions that are typically
coded in computer programs. We created a specification
language with a restricted vocabulary and relatively simple
structures to precisely describe these business rules. In this
artificial language, business rules consist of left-hand side
and right-hand side clauses. Business rules may have one
or more clauses ANDed together on the left-hand side but
may only have a single clause on the right-hand side. This
right-hand side clause restricts the value of a single
attribute when the left-hand side conditions are satisfied.
Therefore, business rules are represented as:

IF <clause>
AND <clause>
THEN <clause>

Where these clauses are of the following forms:

<Attribute> <Operator> <Attribute>
<Attribute> <Operator> <Value>
<Attribute> <Operator> <Attribute List>
<Attribute> <Operator> <Value List>
<Object> <Operator>

For example, in the business rule:

Case Studies 1539

IF Lien Type is Second Mortgage
THEN Occupancy Status must be Principal

Residence

The clause “Lien Type is Second Mortgage” is an
<Attribute> <Operator> <Value> clause (Lien Type,
is, Second Mortgage). The clause “Occupancy Status must
be Principal Residence” is also an <Attribute>

<Operator> <Value> clause.
The structure of the business rule lends itself naturally to

knowledge representation as a production rule in a data-
driven rule-based system and in fact, that is how the
executable version of the business rules are represented.
The Business Rule Server section describes this in more
detail.

KARMA
KARMA is a policy management application developed to
support the collection, analysis and implementation of
business rules at Fannie Mae. KARMA has three main
components: the Data Dictionary Editor, Rule Editor, and
the Rule Browser. The objects and attributes available to
create business rules are defined using the KARMA Data
Dictionary Editor. Using the KARMA Rule Editor,
business policy is formally specified in business rules using
the English-like syntax described above. Rules defined in
KARMA can be queried and browsed through the KARMA
Rule Browser.

KARMA Data Dictionary Editor. The business object
model is defined using the KARMA Data Dictionary
Editor, shown in Figure 2. The user first defines an object,
giving the object a name, and providing the business
definition for the object. Any number of attributes can be
defined for an object. For each attribute the user selects a
data type, and provides the name and definition for the
attribute. For enumerated data types, the user must define
the set of enumerated values. The business object model
defined using the Data Dictionary Editor is stored in a
relational database, the Data Dictionary database. The
objects, attributes and values stored in the Data Dictionary
database are then available to be used in defining rules in
the KARMA Rule Editor.

Existing Primary Financing

urance Policy Type

urance Premium Amount
urance Premium Payment Method

Figure 2. KARMA Data Dictionary Editor

KARMA Rule Editor. The KARMA Rule Editor, shown
in Figure 3, allows users to define new rules and modify
existing rules or rule properties. Once defined, rules are
stored in the local MS-ACCESS Business Rule database or
in the shared SYBASE Business Rule database. This
allows users to keep a local copy of the Business Rules and
Data Dictionary databases to work with during knowledge
acquisition until they are ready to update the master
Business Rules and Data Dictionary databases.

Figure 3. KARMA Rule Editor

The rule clauses are defined or modified through the
KARMA Clause Editor, shown in Figure 4. The Clause
Editor steps the user through the process of defining a rule
clause by displaying only valid selections in the
hierarchical list box control. A clause is defined to have the
fOllOWing ShllChKC <Operand> <Operator> <Operand
List>. Valid selections are determined by the data type
of the first operand selected. For each data type, a list of
valid operators is defined in the Data Dictionary database.
The valid operators for a data type are then made available
in the KARMA Clause Editor when the first operand of a

1540 I&U-96

clause is selected. Once an operator is selected, the second
operand or operand list of the clause is restricted by this
operator. Multiple clauses can be defined for any given
business rule.

Figure 4. KARMA Clause Editor

KARMA Rule Browser. The KARMA Rule Browser,
shown in Figure 5, displays all the rules defined in
KARMA. Users can scroll through the rules defined in the
Business Rule database. The rule text for the selected rule
is displayed in the lower section of the Rule Browser.
From the Rule Browser users can invoke the Rule Query
capability which allows the user to specify criteria for
which matching rules will be displayed in the Rule
Browser. Rules displayed in the Rule Browser can also be
sorted and printed.

Figure 5. KARMA Rule Browser

Consistency Checking in KARMA. In order to fully
support the business users in defining high-quality business
rules, KARMA must ensure not only that the rule has a
valid syntax but that it is consistent with other rules in the
Business Rule database. These requirements are met
through the GUI, which restricts users to creating rules
using valid syntax, and the consistency checking

component, which keeps users from defining rules which
are inconsistent with rules that have already been defined.

KARMA’s consistency checking implementation
assumes that no nested conditions exist in the rules and that
the consequents have only one literal and the antecedents
have multiple literals with an “AND” connector. A
unification based algorithm is used to perform consistency
checking. The consistency checking capability identifies
the following relationships among business rules: inferred
rules, redundant rules, conflicting rules, and subsumed
rules (Polat & Guvenir 1993).

For the verification of the rules, the comparison of the
clauses is the primary operation. Let c->lhs be the left-
hand side operand in the clause c, c->OP be the operator
in the clause c and C-rhs be the list of right-hand side
operands in the clause c. Comparing two clauses c1 and c3
yields the following results with the respective substitution
lists:

1.

2.

3.

Cl = C2 if

if

Cl = -C2 if

if

Cl C C2 if

if

if

4. Cl# c2

{ Cl->lhs = C2->lhs; Cl->op =
c2->op; Cl->rhs = C2->rhs 1
SUB-LIST = {1 or
{ Cl->lhs = C2->lhs; Cl->op =
c2->op; Cl->rhs f C2->rhs 1
SUB LIST = UNIFY(Cl->rhs =
c2-- >rhs)

{ Cl->lhs = C2->lhs; Cl->op =
-(C2->op); Cl->rhs = C2->rhs }
SUB-LIST = {} or
{ Cl->lhs = C2->lhs; Cl->op =
-(C2->op); Cl->rhs f C2->rhs 1
SUB LIST = UNIFY(Cl->rhs =
c2-- >rhs)

{ Cl->lhs = c2->lhs, Cl->op c
c2->op; Cl->rhs E C2->rhs }
SUB LIST = UNIFY{Cl->rhs E
C2-yrhs } or
{ Cl->lhs = C2->lhs, Cl->op =
c2->op; Cl->rhs c C2->rhs }
SUB-LIST = UNIFY{Cl->rhs c
C2->rhs } or
{ Cl->lhs = C2->lhs, Cl->op z
c2->op; Cl->rhs = C2->rhs }
SUB-LIST = {}

In each case, if SUB-LIST # { }, then that list must consist
of a consistent set of substitutions for each variable. Based
on these relationships between clauses, any two rules Ri
and Rj are compared as follows:

1. IF the right-hand side clause of Ri = right-hand side
clause of Rj with a consistent substitution list for
unifying all the clauses on their left-hand sides
THEN Ri and Rj are redundant.

2. HF the right-hand side clause Of Ri = -right-hand side
clause of Rj with a consistent substitution list for

Case Studies 1541

unifying all the clauses on their left-hand sides
THEN Ri and Rj are conflicting.

IF the right-hand side clause of Ri = right-hand side
clause of R. with a consistent substitution list for
subsuming -k i’s left-hand side clauses with those of Rj
THEN Ri subsumes Rj.

IF the right-hand side clause of Rj = right-hand side
clause of Ri with a consistent substitution list for
subsuming Rs’s left-hand side clauses with those of Ri
THEN Rj SU h sumes Ri.

The left-hand side of a rule Ri subsumes that of Rj in the
following cases:
@ All the clauses in the left side of Ri have equivalent

clauses in R. and Ri has at least one more clause than
Rj on its ledside.

0 At least one clause from the left-hand side of Ri
subsumes those of R. and the rest of the clauses from
the left-hand side of JR i have equivalent clauses in the
left-hand side of Rj.

Consistency checking in KARMA is implemented based
on the above ideas. The results from the consistency
checking have proven to be very valuable in the knowledge
base verification. The output from KARMA consistency
checking is shown in Figure 6.

, ,,/,,, iiI:,I II , ,

AND Residency St t it Non-permanent Resident Alian
THEN Occupancy Sta must be Principat Reridanca

Figure 6. KARMA Consistency Checking

At the top of the Consistency Checking window, the
summary results are displayed. The two rules for the
selected result are displayed below the summary list.

Code Generation in KARMA. KARMA generates
executable ART-IM rules for the Business Rule Server
from the business rule representation stored in the Business
Rule database. All code which is dependent upon the

1542 IAAI-96

business rules is generated by KARMA. This means that
there is no manual maintenance necessary for any
application using the Business Rule Server when business
policy changes.

In terms of rule generation, the business rule
representation stored in the Business Rule database is the
source and the knowledge base rule representation is the
target; therefore, rules are generated in the form expected
by the knowledge base from the database representation. In
the knowledge base, rules are not represented as clauses.
Rather, rules are represented as patterns on the left-hand
side of the rule and actions on the right-hand side of the
rule. In the case of executable business rules for the
Business Rule Server, the right-hand side action is to create
a violation message representing a policy violation.

The left-hand side patterns are simply conditions which
are evaluated against the loan data. If all the conditions of
the left-hand side are met, the rule fires and the violation
message is created. For the rule:

IF Lien Type is Second Mortgage
THEN Occupancy Status must be Principal

Residence

a violation of policy occurs when the Lien Type is Second
Mortgage, and Occupancy Status is not Principal
Residence. Notice that the THEN (right-hand side) clause
of the business rule specification representation must be
negated in the knowledge base representation when testing
for a violation.

The ART-IM representation of the above rule is:

(defrule charter:occupancy-status-7-l
(declare (salience 100))
(schema ?mortgage-loan

(instance-of mortgage-loan)
(lien-type ?lien-type &: (= ?Lien-Type

secondary-mortgage))

(schema ?property
(instance-of property)
(occupancy-status ?occupancy-status

&:(NOT (= ?Occupancy-Status
principal-residence)))

>
(ienerate-violation-message occupancy-

status-7-l)

Rules are generated through the use of an intermediate
representation (IR). A variant of BNF formalism is used to
specify this IR. The variant is achieved by imposing
certain restrictions to reduce the complexity of BNF. The
use of an intermediate representation provides the
flexibility to generate rules in any target language (not just
ART-IM rules). Since ART-IM rules are generated
through the IR, the knowledge base can be dealt with on a
syntactic level allowing the business rules to be abstractly

developed based on their knowledge composition rather
that their detailed textual structure.

The IR is composed of three types of constructs:

Lexical Nodes

Lexical Nodes are atomic (they cannot be
decomposed). They describe the syntactic elements on
a character-by-character basis.

Repetition Nodes

Repetition Nodes are list nodes which specify one or
more occurrences of a node of any type.

Construction Nodes

Construction Nodes are nodes which are composed of
a fixed number of other nodes which may be lexical
nodes, repetition nodes, or construction nodes.

The IR is defined using a grammar containing these three
types of nodes, as shown in Figure 7. The IR contains the
components needed to build the target business rules along
with their associated unparsing schemes. Generation of the
rules from the intermediate representation to the knowledge
base representation is achieved by unparsing the
intermediate representation. For example, at the highest
level a business rule is specified in the IR as:

<eligibility rule>: "(" <ruleheader> "\n"
<left side> - ;;\n=>\n" <right-side> ")"

So, an eligibility rule is composed of a <ruleheader>, a
<left side>, anda <right side>. Thisisaconstruction - -
node composed of three constructs. The character strings
defmed within quotes are terminal symbols, the other
constructs are non-terminal symbols. During code
generation, the strings are emitted before visiting each non-
terminal node.

These constructs are defined at the next lowest level as:

<ruleheader> : "(defrule" <name>
"/n(salience w <salience>
") /n"
<left side>: - <pattern list> -

<right side>:
message” ”) ”

"(generate-violation-

The <ruleheader> is a construction node with two
components, <name> and <salience>. The <right side>

is a lexical node. The <left-side> is a repetition node
composed of several patterns.

The IR is implemented as a set of C++ classes
representing the IR nodes. All IR classes are subclasses of
the lexical, repetition, and construction node classes.
During rule generation, the database representation is used
to construct the IR classes. Once the IR classes are
constructed, rules are generated by unparsing the IR nodes
(Krowidy & Wee 1988).

I= Construction Node

Repetition Node

(> Lexical Node

Figure 7. Intermediate Representation for Business Rules

Case Studies 1543

Business Rule Server
The Business Rule Server is a client/server application
capable of servicing multiple client applications
simultaneously. The Business Rule Server makes Fannie
Mae business policy available to applications as a service.
Applications no longer need to contain these policies but
instead can request access to them as a service from the
Business Rule Server. Any application requiring the use of
Fannie Mae business policy for compliance checking can
send the loan data to the server with a request for loan
validation. The server checks the loan for compliance with
Fannie Mae policy and returns policy violations to the
application. The complete compliance checking takes less
than 0.5 seconds including network time.

The Business Rule Server consists of control structures
written in ART-IM and C, an RPC based API developed
using ONC RPC, executable business rules generated by
KARMA, and data translation code generated by the Data
Translator (explained in the next section). In order to
request the loan validation service from the server, the
client application first obtains the loan data to be passed to
the server. Since the Business Rule Server only contains
Fannie Mae business policy rules, data integrity checking
and other system related editing must be performed by the
client application before making a request to the Business
Rule Server.

The API to the Business Rule Server is provided as a C
library to the client application. Loan data is loaded into
the data structures using the provided accessor functions
and the server is invoked with an API call. Once the server
receives the request and data, it translates the client
application’s source data into the data model defined in the
KARMA Data Dictionary database (upon which the
business rules are based). This translation is accomplished
using the Data Translator. Translated data is mapped into
the knowledge base along with the validate loan request.
Inside the knowledge base all business rules are evaluated.
Violated business rules produce violation messages which
are returned to the client in a data structure. The client
application can then retrieve violation messages using the
provided accessor functions and process those violations.

Data Translator
The Data Translator was developed to enable applications
with dissimilar data models to share data with the Business
Rule Server, without modifying their data models. The
Data Translator allows the Business Rule Server to be
independent of data sources. There are many valid reasons
why an application may not be able to modify their data
model to match the data model upon which a particular set
of business rules is based. Using the Data Translator, any
application regardless of how its data is represented can
request the services of the Business Rule Server. To
facilitate a uniform access to the rule server, a translation

1544 IAAI-96

layer was introduced between the client and the server and
a data translation language was developed. This language
is used by the client application team to specify the
mapping of the data from their data model to the business
rules data model. From these specifications, the Data
Translator generates the required translation code. The data
translation specification language currently supports the
following features: object- based data models, conditional
statements, assignment statements, multiple instances of
objects, date arithmetic and local variables for complex
mappings.

Data Translation Language (DTL) is defined using a
context-free grammar. A complete set of DTL
specifications consist of a source data model, a target data
model and one or more translation rules to map the data
from the source data model to the target data model. A
sample data translation rule is specified as:

RefinanceRule
{IF

(ANY S-SpecialFeature:SpecialFeatureCode ==
"refinance")

THENT-Mortgage Loan:Refinance Option = - -
"Yes"} ;

The name of this rule is “RefinanceRule”. The prefix
S- corresponds to the objects from the source model and T-
corresponds to the objects from the target model. This rule
specifies that if there is an instance of the object
SpecialFeature whose attribute SpecialFeatureCode has a
value of “refinance”, then the attribute “Refinance-Option”
of the target object MortgageLoan is assigned a value of
“Yes”. These translation rules can include very complex
logic. The code generation module of the Data Translator
uses the same techniques as the generation of the
executable business rules.

aintenanee

Development
Initially, the Business Rule Server and Rule Editor
components of KARMA were prototyped in KBMS, an
expert system shell by Trinzic Corporation (which has
since been acquired by Platinum Technology). The
English-like rule language of KBMS was well suited for
business policy rules. At the end of 1993, an in-depth
analysis of expert system shells on the market was
performed. ART-IM by Inference Corporation (now
Brightware) was selected for its powerful pattern matching
capabilities and its embeddability. The Business Rule
Server was prototyped as an ART-IM knowledge base
imbedded in a C application during the first quarter of
1994. Following the prototype, Fannie Mae’s Cash

Delivery application was selected as the first client
application of the Business Rule Server because it was
undergoing a major rewrite.

The Cash Delivery application receives loans which
Fannie Mae will purchase and hold in their portfolio.
During the process of receiving the loans, known as the
delivery process, loans are checked for compliance with
Fannie Mae policy and contractual obligations. The
business rules related to this process are applied by the
Business Rule Server. The Cash Delivery application acts
as a client application to the Business Rule Server, sending
loans to the Business Rule Server for validation.

Knowledge Acquisition for the Cash Delivery
application, during which all of the Fannie Mae business
rules pertaining to cash delivery were acquired, took
approximately six months with two full-time knowledge
engineers and significant support of the business experts.
During this Knowledge Acquisition phase, development on
the Business Rule Server commenced. The Business Rule
Server was developed using ART-IM and C under Solaris.
The RPC capability was developed using ONC RPC.
Development time for the Business Rule Server was
approximately 15 months with two developers.

In July of 1994, a three month prototype of KARMA
was completed using ART*Enterprise (A*E). Although
A*E was valuable for rapid prototyping, the resource
requirements and performance problems encountered with
the early version used for the prototype prohibited using it
for developing KARMA. Furthermore, the A*E rule
language was inappropriate for the application, since
KARMA is an event driven rather than a data driven
system. Since KARMA is a procedural object-oriented
application, Microsoft C++ under Windows NT was
selected as the development environment for the production
version. The Data Translator was also developed in Visual
C++ under Windows NT using MKS Lex and YACC.
KARMA and the Data Translator were developed by one
full-time developer and one part-time developer over an 18
month period.

Deployment
Prior to production implementation, the Business Rule
Server was tested by a dedicated testing team. The team
consisted of three business users and one technical
representative from the Business Rules team.
Approximately 2600 test cases were created to test the
400+ business rules in the Business Rule Server. These test
cases were carefully hand-crafted to test each business rule
and the interdependencies among the business rules.
Preparing the test cases took three business analysts two
months to complete. Following the preparation of the test
cases, three testing cycles were performed in which all
cases were executed and all resulting problems were fixed.
Testing was conducted over a three month period. During

testing, the business analysts began developing a process
for managing business rules through KARMA. KARMA
introduced a powerful new capability that required new
procedures to create a streamlined policy management
process that could allow changes that previously had taken
months to be implemented in days.

Following this testing, the Business Rule Server was
moved to a production environment along with the Cash
Delivery application to run in parallel with the old cash
delivery application. This parallel production run lasted for
approximately four months during which extensive analysis
was performed to determine the impact of the Business
Rule Server on cash loan purchasing. For example, would
the Business Rule Server apply policy more strictly than the
old cash delivery system ? If so, were these good risk
decisions or was the policy implemented too restrictively?
Business users were presented an abundance of information
about the loans that Fannie Mae was purchasing and
specific reasons for those it chose to reject. KARMA and
the Business Rule Server have had an important impact by
providing business users with timely information combined
with the ability to quickly react and adjust constraints to
optimize business decision making.

The Cash Delivery application and Business Rule Server
have been running in production since July of 1995.
KARMA is being used to maintain all business policy
related to cash purchasing.

Maintenance
KARMA was designed to enable quick decision-making
related to policy. One of its key benefits is the ease with
which the business rules can be maintained in the
production Business Rule Server. All domain specific code
for the Business Rule Server and the client API library is
generated by KARMA and the Data Translator. In legacy
systems, the turnaround time for implementing new policy
frequently takes several months because so many different
systems are impacted by a single business change.
KARMA has accelerated the process to a maximum of
several days for the Cash Delivery application. Business
rules can actually be modified and re-generated in minutes;
however, the production migration process can take several
days. During the parallel production run, eight different
rule changes were required and all were implemented in
production in under three days. This benefit will be
realized over and over again as new client applications use
the Business Rule Server. Policy changes will be made in
one place and become available to all impacted client
applications simultaneously.

KARMA, the Data Translator, and the control structures
of the Business Rule Server are maintained by the
development team. Currently we are enhancing KARMA
by adding more rule management capabilities and
extending the rule language to provide additional language

Case Studies 1545

features. We are also preparing to support more client
applications. As we acquire rules for these new domains,
we are fmding that many rules already existing in the
Business Rule Server will be reused by these client
applications.

Application Use and Payoff
The Business Rule Server is currently being used by a
single Fannie Mae application, the Cash Delivery
application. Use of the Business Rule Server has had an
immediate and significant impact by improving the quality
of information available to resolve policy issues for loans
submitted to Fannie Mae for its Cash Portfolio business.
The Business Rule Server has been processing an average
of 1000 mortgage loans per day since it was implemented
in production. Although the majority of the loans do not
generate messages indicating policy violations, a significant
portion of the loans do. These loans require special
handling to review and resolve these policy violations in
order to determine if Fannie Mae will purchase these loans.
This review process is tedious and labor-intensive. The
quality of the information supplied by the Business Rule
Server has significantly aided this review process and is
already resulting in reduced operational costs. In the
future, use of the information provided by the Business
Rule Server is expected to result in additional revenue for
Fannie Mae.

In supporting Fannie Mae’s Cash Delivery application,
the Business Rule Server and KARMA have already
provided Fannie Mae with important benefits, but the real
payoff will result when other applications begin using these
tools. Several strategic applications at Fannie Mae that
require the use of policy information are currently
preparing to use KARMA and the Business Rule Server.
Without KARMA and the Business Rule Server, each
application would have to develop and code to do their own
policy checking. This code would be embedded in each
application and therefore inaccessible to other applications.
Policies in all these applications would need to be updated
and maintained redundantly. The result would be high
maintenance costs, the potential for inconsistent
implementations of the same policies, and slower response
to changes in the mortgage industry.

The Business Rule Server and KARMA not only
eliminate these redundancies, but also provide new
development projects with reduced development costs.
New projects will require 70-80% less funding to develop
the policy component of their application. Most of the
costs associated with using KARMA and the Business Rule
Server will be dedicated to knowledge acquisition to
acquire new rules for the application (if they are not already
available in the Business Rule Server). With KARMA and
the Business Rule Server, business users can devote their

resources to crafting the business policies rather than
planning around lengthy implementations.

Lastly, KARMA is providing a powerful long-term
benefit by making policy information in the form of
business rules clear and unambiguous, easily modifiable
and, most importantly, accessible to the business users.
Business users can see exactly what business rules are
currently implemented by querying KARMA from their
desktops. They can also perform “what if’ analysis to
determine the impact of proposed policy changes as well as
trend analysis to review the performance and impact of
policies on loans that Fannie Mae has already purchased.
The benefits to business users will accelerate as more
business rules are acquired and defined in KARMA and
new opportunities for using this knowledge emerge.

In summary, Fannie Mae is already finding its
competitive position enhanced by using the Business Rule
Server and KARMA. Fannie Mae can now respond
quickly and efficiently to the changing economic conditions
that are so prevalent in the mortgage industry today. Their
policies can be easily modified and implemented to keep
pace with new product developments and to proactively
seek additional investment opportunities.

Acknowledgments
In addition to the authors, many individuals contributed to
the successful development and deployment of KARMA
and the Business Rule Server. The authors want to extend a
special gratitude to Andrew Weiss for his continued
support and guidance since the inception of this project.
They also want to thank Peter Kopperman for directing this
project and Bill Tucker, Brian Pannell and Paula Marlowe
for their efforts in testing KARMA and the Business Rule
Server. Finally, the authors want to express their thanks to
Cathy Doman, Raza Hashim, Greg Close and Pete Silvestre
for their ideas and development efforts and Carol Borchardt
for providing the domain knowledge.

References
Appleton, D.S. 1988. Second Generation Languages.
Database Programming & Design February 1988148-54.

Bynum, S.; Noble, R.; Todd, C.; and Bloom, B. 1995. The
GE Compliance Checker: A Generic Tool for Assessing
Mortgage Loan Resale Requirements. In Proceedings of the
Seventh Innovative Applications of Artificial Intelligence
Conference, 29-40. Menlo Park, Calif: American
Association for Artificial Intelligence.

Fannie Mae Selling Guide. 1993. Fannie Mae,
Washington, DC.

1546 IAAI-96

Krowidy, S., and Wee, W.G. 1988. Retargetable rule
generation for expert systems. In Proceedings of the third
international symposium on methodologies for intelligent
systems, colloquia program 37-46.

Polat, F., and Guvenir, H.A. 1993. UVT: A Unification-
Based Tool for Knowledge Base Verification. IEEE Expert
June 1993169-75.

Talebzadeh, H.; Mandutianu, S.; Winner, C.F.; and Crane,
L. 1994. Countrywide Loan Underwriting Expert System.
In Proceedings of the Sixth Innovative Applications of
Artificial Intelligence Conference, 14 1- 152. Menlo Park,
Calif: American Association for Artificial Intelligence.

Case Studies 1547

