
ert Syste

Narendra Dev and Bart Anderson

Hewlett-Packard Company
100 Mayfield Avenue

Mountain View, California 94043
ndev@mayfield.hp.com and bea@cup.hp.com

Abstract
This paper describes a tool to diagnose the cause of failure
of a HP computer server. We do this by analyzing the dump
of Processor Internal Memory (PIM) and maximizing the
leverage of expert learning from one hardware failure
situation to another. The tool is a rule-based expert system,
with some nested rules which translate to decision trees.
The rules were implemented using a metalanguage which
was customized for the hardware failure analysis problem
domain. Pimtool has been deployed to 25 users as of
December 1996. We plan to expand usage to over 400 users
by end of 1997. Using Pimtool, we expect to save over 15
minutes in Mean-Time-to-Repair (MTTR) per call. We
have recognized that knowledge management will be a key
issue in the future and are developing tools and strategies to
address it. 1

ntroduction

Problem Description
Many of Hewlett-Packard’s (HP’s) high-end servers are
used in Mission Critical environments. If a server fails due
to a hardware problem, the cost of downtime to our
customers is very significant. We need to be able to
diagnose the cause of the failure rapidly, and restore the
customer’s computing environment so that the problem
does not recur.

The objective of this project is to reduce the time to
diagnose a hardware failure and improve the quality of the
diagnosis. We do this by analyzing the PIM dump and
maximizing the leverage of expert learning from one
hardware failure situation to another.

Pimtool provides recommendations to the Field
Engineers @‘Es) as to which Field Replaceable Unit (FRU)
to replace. This is for situations where there is a
deterministic cause for failure. In other situations which
are less clear, it guides the FE to get help from more
technical experts.

Pimtool has been developed for use by trained HP
engineers. Currently, it is not licensed for use outside HP.

Copyright 0 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Why Use Al?
One of the constraints we placed on the solution was to
avoid hardcoding the troubleshooting logic; it should be
easy to add new logic. We made this a constraint because
we wanted to develop a troubleshooting environment
usable for analyzing crashes on all HP’s computer systems.
This implied that the tool and logic would be separate. The
tool would provide reasoning capability specific to the
hardware failure analysis environment.

We were aware that a rule-based paradigm has been
used successfully to develop a computer crash analyzer
(Register and Rewari 1991). This was developed mainly
for software and operating system crashes. We felt
confident that a similar logic could be used to troubleshoot
hardware failures.

The primary reasoning operator in the metalanguage is
the IF verb. Simple cause-effect relationships are coded as
IF statements. In these situations, the reasoning is like a
rule-based expert system. There are 209 IF statements in
the ruleset developed for troubleshooting the T500 server.
The nested IFS in the rulesets translate to decision tree
logic.

We evaluated whether the case-based reasoning
paradigm was applicable. What we really wanted was a
prescriptive solution since many of these hardware failure
situations are deterministic in nature. The rule-based or
decision tree paradigm was a better fit for these situations.

A model-based reasoning paradigm was not considered
since our primary mode of analysis is expertise based on
historical failure information.

In the past, we tried two different solutions to
troubleshooting hardware failures.

Traditionally, troubleshooting was documented in a
reference manual of several hundred pages and quick
reference extracts of this information (Anderson 1993).
Level-300 experts would decode registers, look up values
in tables and come to conclusions about the cause of the
problem. Unfortunately, the troubleshooting process on
high-end servers is complex and requires a trained expert
who regularly deals with hardware problems. Even so, the
troubleshooting process can be lengthy and error-prone

DEPLOYED APPLICATIONS 853

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

(for example, in decoding registers). Different engineers
often reach different conclusions. Yet another problem
with a paper manual is the difficulty in updating it for
refinements in the troubleshooting algorithm.

To solve some of these problems, a web-based
troubleshooting tool was introduced for mid-range HP
servers. The tool guides level-300 experts (this skill
classification system is discussed further below) through a
troubleshooting process similar to that described in the
hardcopy reference manual. Many hardware failures can be
analyzed by keying in data. Other reference material is
available by clicking on hyperlinks. Although this web-
based tool has proved popular with level-300 experts, it
does have several shortcomings. It is not designed for FEs
and is not available to them. Also, the troubleshooting
process on mid-range servers is considerably less complex
than for high-end servers.

Application Requireme

We agreed upon the following minimum functionality for
desired August 1996 completion:

1. Limit the scope of this application to the T500 high-end
server platform. This is one of the most complex
computer systems HP has manufactured. The tool
should be leveragable to other products. Also, the
troubleshooting logic should be extensible to future
products in the same hardware technology family.

2. Usable by a level-200 TSOO-trained Field Engineer (FE).
This means that it is targeted to an FE who has received
basic training across HP’s computer product families,
specialized training on a particular product family and a
few years experience. This individual can handle most
normal customer on-site repairs independently but
usually does more complicated repairs in conjunction
with an expert in HP’s central call center. About 300 FEs
and call center engineers worldwide have been trained
on the TSOO product.

3. Want a “verbose” option for level-300 experts. This
should provide detailed and technical information in
addition to the simple recommendations provided in the
default “non-verbose” mode. For example, the verbose
option decodes important registers and shows the
reasoning by which a conclusion is reached.

4. Run on the host environment. This is Unix(*) on TSOO.
It should also run on the PC portable used by the FEs.
The environment here is Windows 3.1.

5. Not be dependent on a LAN/Netscape connection for the
rulesets. There should be minimal dependencies i.e. the
tool should be largely self-contained.

6. Focus first on the functionality and user interface
messages, not on the user interface medium. Hence an
ASCII-in, ASCII-out user interface was deemed
acceptable. A windows interface was not required.

7. Separate the troubleshooting logic from the rest of the
program so that the troubleshooting expert can modify

the logic without having to recompile the program.
8. Identify processor, memory and cache problems. If time

permits, troubleshoot the
relating to the I/O system.

more difficult problems

9. Provide an interactive option to analyze the first PIM or
all PIMs. When a system crashes, there is usually a
cascade of failures. Selecting the right PIM to analyze is
important to arrive at the correct recommendation.

10. Make the analysis tool independent from the capture
of the PIM data. This would enable us adapt the capture
technology to different HP computer products.

11. Tell the FE in English what to do i.e. replace memory
board in slot xx

System Architecture
The lab team recommended developing a rule-based
metalanguage which would meet the above requirements
within the required timeframe. This would be
programmed in C. The metalanguage was developed on
schedule by July 1996. A minimal set of rules was
developed during August.

As a technology, the metalanguage syntax met the
requirements of the authors and the syntax soon stabilized.
Minor enhancements to the syntax were requested and
were quickly implemented. For example, the ability to
compute and display addresses optionally in decimal and
hex was added.

Pimtool was developed to run on the host Unix(*)
environment. It can run on any HP9000 computer with HP-
UX 9.x or 10.x operating system. However, the Pdcinfo
data acquisition software needs to run on the system which
crashed.

Crash!

L

Figure 1. Pimtool Architecture

Pimtool is designed to run as a two-step process (see
Figure 1). When a T500 system crashes, it saves
troubleshooting information in a section of memory which
is preserved across crashes and cycling power (non-volatile
memory or NVRAM). This troubleshooting information is
called Processor Internal Memory (PIM). When we bring
up the operating system and file system after the hardware
failure, we run a program called Pdcinfo. This program

854 INNOVATIVE APPLICATIONS

acquires the PIM from NVRAM and stores it in the
Unix(*) file system. We can manipulate the PIM in the file
system since it is an ASCII file. When we run Pimtool, the
template file first maps the register values in PIM to
variables. Some of the registers that are of interest are the
Machine Check Type register, Processor Memory Bus
Interface (PMBI) status register, the Memory Access
Controller status register and the PMBI Slave Address log.
This data acquisition template file is programmed in the
same metalanguage as the data analysis rulesets.

In the next stage, the rulesets operate on the variables.
Based on logic coded by the expert, the data is analyzed
and an action recommendation for the FE is displayed on
the terminal.

Pimtool today is a read-only system. The only
interactive capability is in selecting a particular PIM to
analyze. As an enhancement, we are investigating allowing
the user to enter troubleshooting information in addition to
the PIM data. This has been successfully implemented in
the Canasta project (Register and Rewari 1991).

Having the programmer create a data capture template
file for the T500 PIM dump was very helpful to the ruleset
author since the author was new to ruleset programming.
As we move Pimtool to other products with different PIM
layouts, we will have to redo the template file.

In the future, our goal is to have programmers work with
content-matter experts, setting up a structure and template
for the rule files which can be completed by the content-
matter experts. Pimtool encourages such collaboration
permitting engineers to concentrate on what they do best.

Knowledge is represented in the metalanguage of the
rulesets (Curry and Gordon 1996). As mentioned earlier,
this equates conceptually to rule-based expert systems or
decision trees. Here is a sample of the metalanguage
commands:

The DECLARE command is used to create an array.
For example:

DECLARE error-type [l]

The SET command assigns a value to a variable. It is
used to set flag values. It is assumed to be a hex value or a
string. For example:

SET index[O] = 0
SET slot[O] = (pmbi_saddlog[Ol BITNUM 14-

17)
SET map[O] = (bc_slots[(index[l]+ 111
CHARNUM 5-8)

The two search operators are FIND and GET. FIND
searches for the next occurrence of the string. For
example:

FIND "Unexpected"

FINDNC works the same as FIND but is not case-
sensitive.

GET reads the fields specified by number from the
current line in the PIM. For example:

GET 3,l = error-type
GET ALL UNTIL ENDTOMB = bc_slots

Rules are implemented using the IF-THEN structure.
There are 209 IF statements in the T500 ruleset. Here is an
example using the IF statement to check the last three
digits in the Upper Bus Converter port. Based on the value,
we make a diagnosis whether power on the bus converter
IQ bus had been lost.

IF ((bc_slots[index[l] + 2)] ENDS d242
THEN

PRINTX ("PIM Tool: UBC port, module 0, in
slot", bc_slots[index[lll," previously lost
power.\n")
ENDIF

A number of syntax constructs within the test condition
of an IF statement assist PIM analysis. For example:

IF ((pmbi_status[O] ENDS 0704)
OR ((index[Ol MOD 4) = 0)
OR (iva[O] STARTS 0)

The WHILE structure is the looping structure and is
used to evaluate statements several times. For example:

WHILE (index101 < 9)

DO
.

ENDWHILE

The PRINT statement is the primary way to
communicate with the user. All error messages and user
communication need to be embedded in print statements.

PRINT ("This is not an HPMC!\n")

PRINTX works just like PRINT but these messages
print out only in verbose mode. NEXTLINE tells the
program to skip the rest of the line and any blank lines and
start the next FIND on the first line that contains values.
ENDPROG tells the main program to end.

Here is a section of a Pimtool ruleset, to give the reader
a flavor of the syntax.

#rule to identify when all MACs detect 6540
IF (estat_6540[01 = total_mem_card[O])
THEN

PRINT ('\n')
PRINT ("MEM Flg: All of the MACs logged

estat = 6540! Run LOGTool using the

DEPLOYEDAPPLICATIONS 855

';detail' option with MEMRPT for analysis

by CE Assist personnel.\n")
ENDIF

#-_---- Double-Bit ECC Rules --___----

IF ((pmbi_status[Ol ENDS Oa04) OR
(pmbi_status[O] ENDS 0a06))
THEN

PRINTX ('\n")
This rule works for Double ECC faults
when the BLKID & slot number are decoded by
PDC

IF (blkid[O] != 0)
THEN

PRINTX ("PIM Tool: PDC decoded the BLKID

as II, blkid[O], "; the bank as ",bank[Ol,
1, ; the PMB slot as ", memslot[O], ". ***

PDC Versions 2.64/2.73/2.8x/3.82 decode the
BLKID incorrectly when main memory consists
of different bank sizes and when MPD is NOT
enabled. ***\n")

ENDIF .

Examples of Hardware Failure Analysis
Below is actual output text generated by Pimtool based on
analysis of three separate PIMs. The first example is of a
hardware failure probably caused by software (verbose
mode).

**** Pimtool: decoding tombstone #l
**** Pimtool: tombstone occurred on
01/14/96 at 00:47:36
**** Pimtool: PDC Version 2.80
**** Pimtool: using rule file tdefault

Tombstone for Processor [14/l].

Chassis Code: 16fO.
All codes starting with 1 apply to early
selftest for CPU and FPU.

HPMC ANALYSIS SUMMARY
Version - 140CT96

CAUSE: Processor [14/l] forced this HPMC at
the start of a PMB transaction to a PMB
memory module when no Responder asserted
the 'SLAVE_ACK' signal!

STRATEGY: The no SLAVE_ACK signal is NOT
asserted for the following:
- when the address in PMBI SADDlog is not

recognized by any PMB module;
- when there is a parity error (in the

address or the BLK_ID & Trans_Type);
- when the PMB module is NOT (ready or

installed or configured)!

Mem Scan: Begin scanning all of the memory
controllers (MACs) for errors.

Mem Err: Memory controller, MAC, in slot 4
previously detected a DRAM error!

Mem Err: Memory controller, MAC, in slot 11
previously detected a DRAM error!

FE Action: The address value in PMBI
SADDlog may exceed Main Memory! This may be
caused by software. No hardware replacement
is suggested.

**** Pimtool RULES: Analysis is complete.

The second example is of an ambiguous situation with a
bus check error. Here the FE is directed to call the HP call
center for help. (Header text is omitted.)

HPMC ANALYSIS SUMMARY

Version - 140CT96
CAUSE: Bus Check from a fatal error

detected on motherboard for [12/O]!

FE Action: Processor [12/O] detecting a Bus
Check with 'no estat code' is improbable!
Call FE Assist for help!

Mem Scan: Begin scanning all of the memory
controllers (MACs) for errors.

Mem OK: Memory card in slot 8 did NOT log
any errors!

**** Pimtool RULES: Analysis is complete.

*********t*********************************

The third situation is of a double-bit memory error. The
FE is directed to replace the memory board in certain
situations. (Header text is omitted.)

HPMC ANALYSIS SUMMARY
Version - 140CT96
CAUSE: Processor [13/l] found a Double-bit
ECC error reading main memory!

FE Notice: Do nothing if Memory Page
Deallocation (MPD) is enabled, however:

FE Action: Replace the memory card in slot
8 ONLY if MPD cannot be enabled!

Mem Scan: Begin scanning all of the memory
controllers (MACs) for errors.

856 INNOVATIVEAPPLICATIONS

Mem Err: MAC controller in slot 8

previously detected a hard or fatal error!

Mem Err: Suggest replacing the motherboard

for Processor in slot (hex d)!

Bus Converters:

0 fff8fffO 50b00040 10000004 OOdd4043

(upper)
OOOlf048 fff7d008 OffbOf83 (lower)

0 fd79fd7d cOf048c3 fed115c6 lad53de3

(upper)
00000000 00000000 00000000 (lower)

I/O Map: UBC port, mod 0, in PMB slot 0,

includes all I/O addresses from (hex

fffOOOO0 to fff80000); its PATH is O/.

I/O Map: UBC port, mod 2, in PMB slot 0,

includes all I/O addresses from (hex

fd7dOOOO to fd790000); its PATH is 2/.

**** Pimtool RULES: Analysis is complete.

uses of AI Technology

Selection of Alternatives
We initiated a dual effort to meet the requirements. A
small lab team was assembled to design the technology
which would meet these requirements. The lab team
recommended developing the rule-based metalanguage
programmed in C which would meet the above
requirements within the required time frame.

We also talked to an outside vendor to investigate an
off-the-shelf solution to meet the requirements. The vendor
proposed a rule-based development environment which
would meet the requirements, with a better windows-based
user interface. The data model in the vendor’s solution was
very sophisticated and seemed to be an overkill for our
need. Also, we had decided that an ASCII-in, ASCII-out
user interface was acceptable so the Windows user
interface was not a major advantage. Since we were
looking for a tool which long-term can be deployed across
our HP computer product line, the cost of deployment to
our 5,000 HP FEs becomes a significant cost. Since the
off-the-shelf solution was not significantly better than the
internal proposal, a decision was made to develop the
application using the HP lab team.

We built the tool specific to the hardware failure analysis
domain and customized to the needs of the authors. We
were successful in developing a knowledge representation
language which meets the needs of the hardware failure

analysis domain. The authors were comfortable using this
language to capture their expertise. The syntax provided a
number of commands and options which made analyzing
crashes easier.

Insights Gained
The AI technology we used seems fairly straightforward.
Most of the insights relate to the deployment of the
technology and the management of the knowledge.

Security of the rulesets is a concern since the rulesets
are ASCII files and can be easily modified or corrupted.
We are monitoring this security concern and will add
encryption of rulesets or some other security
implementation if these concerns become high priority.

We have started recognizing the need to implement style
guidelines, so that the rulesets are more easily
maintainable. We are evolving the rulesets to a more
object oriented style, using reusable modules.

One constraint we faced is that only one person at a time
can work on the rulesets. We may want to consider
separating the rulesets from the error messages. That way
one author can be working on improving the usability of
the error messages while the other is writing more rules.

plication Use an ayoff

Application Deployment
Pimtool has been deployed since August 1996 to 10 users.
We added 15 users in December 1996, for a total of 25
users. Pimtool today has been deployed to a subset of
level-300 experts and the FE-assist engineers. They
number about 75 worldwide. Our target is to deploy to this
audience by May 1997. They are the opinion leaders in the
field. The rulesets have been enhanced significantly during
this time. Deployment to the level-200 PEs trained on
T500 is planned for the next phase in 3Q97. They are about
400 worldwide.

Our goal for this application is to cut the average T500
troubleshooting time for hardware failures by 15 minutes.
The cost of downtime to the customer’s business, for
mission critical systems, is of the order of $lOOO/minute.
So a 15 minute reduction of troubleshooting time can result
in a 15K$ per event savings to the customer. Early
feedback is that a 15-minute reduction is an achievable
goal.

Today, Pimtool can successfully trap over 50% of the
hardware failures encountered and make a
recommendation with a degree of confidence comparable
to recommendations from experts. It is also successful in
directing the FE to get expert help in the remaining cases.

Pimtool will make the troubleshooting process
consistent and repeatable. Once we have a consistent and

DEPLOYEDAPPLICATIONS 857

repeatable process, we can use standard TQC principles to
improve the process.

By building a closed-loop process for incorporating field
feedback, we will be able to get objective design feedback
back to the lab much more quickly. During the
development of new computer systems, Pimtool will make
it easier for the lab to identify hardware problems.
Impact on Proactive Support Process. We are
considering using Pimtool in conjunction with a proactive
monitoring tool. When a customer’s hardware fails,
monitoring software dials our central call center. In
addition to the failure notification, we would receive the
Pimtool analysis and Pimtool recommendation at the same
time.
Impact on FRU Repair Process. We are investigating
the possibility of making it a standard field practice to
include the Pimtool recommendation with the defective
FRU when the FE returns it for repair. This should help
our FRU repair organization minimize the number of No
Trouble Found (NTF) repair situations.

Software Distribution Process
We are distributing Pimtool through three channels:
1. FTP pull distribution of the software and rulesets. This

exists now. Engineers can update their rulesets by using
anonymous FTP or a Intranet web page.

2. CD-ROM push distribution to T500 trained FEs. We
plan to cut this CD-ROM after there is a high confidence
in the rulesets from our level-300 experts and the FE-
Assist engineers. We will do this until the software is
widely available using the push distribution strategy
described next.

3. Push distribution by integrating the software with the
diagnostics software, distributed through the HP-UX
UNIX(*) operating system release process. It takes six
months to get software through this process and
realistically, it takes an additional year before customers
migrate to the new HP-UX release in volume.

Application Development and Deployment

Development and Deployment Effort
It took three months to develop the metalanguage and
template file. It took five months to evolve the T500
ruleset to the point today where the field feels comfortable
with the ruleset recommendations. Below are the resource
estimates to develop and deploy Pimtool.

Functional area Engineering Months
Lab 6
Author 4
Documentation/usability 3
Program managment 2
TOTAL 15

15 engineering months at HP billing rate of 11.5K$ per
month costs 172.5K$.

Application Development
The lab started with the requirements (described earlier)
and created an External Reference specification
documenting the functionality of the metalanguage. The
lab also created an Internal Maintenance specification
which described the programming logic in pseudocode.
The lab did walk-throughs on this programming logic. The
C programming from this pseudocode was fairly
straightforward.

We have not yet ported Pimtool to the PC Windows or
DOS platform. We want to maximize our learning on the
UNIX(*) platform before we invest in this port. We
recognize that once we are implemented on two platforms,
the logistics of keeping the versions in sync will put
additional burden on the development team. This porting
effort will be completed in the time frame coincident with
the rollout to level-200 FEs in 3Q97.

Formal Development Methods Used
The following formal methods were used with Pimtool:

Functional specification: We defined the required
functionality of Pimtool in a functional specification. This
is a useful means of communication between the field
support engineers, subject matter experts and lab
engineers.

External Reference Spec: This was the lab response to
the functional specification. Since it met the requirements,
there was very little discussion around this document

Beta testing: We invested in an extended beta test of
Pimtool to ensure that the tool makes high-confidence
recommendations. We asked experts in the field to use the
tool and compare the results with what they would have
recommended by experience.

Application Deployment
Deploying Pimtool has been a significant learning exercise.
Deploying the tool directly to the level-200 TSOO-trained
Field Engineer (FE) ignores the reality that this individual
is backed up by a support chain which extends through the
remote call center, the worldwide expert center and the
labs (see Figure 2).

A key factor in the acceptance of Pimtool is whether the
field has confidence in its recommendations. As we
started deploying the tool in September 1996, a number of
level-300 experts in the field recommended a change in
Pimtool’s approach. They suggested that troubleshooting
recommendations be written in simple and unequivocal
language for the Field Engineers. If a hardware problem
lacked a clear solution, the experts felt that Field Engineers
should call an expert rather than struggle with the problem
themselves. Since AI is a new technology, the
consequences of overly ambitious recommendations from
Pimtool could be fatal to the success of the project.

858 INNOVATIVE APPLICATIONS

REMOTE
ONSITE

Crash on
customer

system

Figure 2. HP Support Chain for Pimtool

Since buy-in from level-300 experts was crucial to the
success of the project, we decided to segment the
deployment of Pimtool into two phases. In phase 1, we
would concentrate our deployment efforts on the level-300
experts and the FE-assist engineers in the remote call
center and use a hands-on troubleshooting class to provide
them with theory and practice in troubleshooting. This was
a manageable set of engineers numbering no more that 75
worldwide. We focused our efforts in designing a training
curriculum for troubleshooting HP servers, for which
Pimtool is one of the key tools. This class was deployed in
December 1996, with 10 engineers trained. It is now being
held once monthly with lo-15 engineers trained in each
session. Our goal is to train the 75 engineers worldwide by
May 1997. They in turn will train other remote engineers
when they return to their home offices.

Simultaneously, we have been reworking the rules to make
them more conservative, based on the feedback from the
field experts. The feedback from the experts towards these
changes is positive. We expect to re-release Pimtool to the
level-300 experts and the FE-Assist engineers in January
1997 and re-release the tool to level-200 FEs by 3Q97.

Diffkulties
Getting sponsorship for the project has been a challenge.
The project was initiated as a proof-of-concept prototype
on a shoestring budget. This was done with the assistance
of a college student who did the programming. When a
new project manager joined the division field support
team, he visualized the long-range potential of Pimtool,
embraced it as a strategic tool and included it in the
product division’s diagnostic architecture. HP’s field
management will sponsor Pimtool as some of the benefits
described earlier are realized.

Data acquisition from the target machine to the expert
system machine is a significant short-term problem until
customers upgrade to the next UNIX(*) release which
integrates Pdcinfo and Pimtool. The Pdcinfo PIM data
acquisition software has not yet been integrated with the
UNIX(*) operating system. It is unrealistic to expect
customers to have external Internet FIP access to
download the Pdcinfo program on their computers. So the

FE is expected to have a tape or CD-ROM with this
software at the customer site, to download the PIM from
NVRAM memory to the UNIX(*) file system. Once the
PIM is in the customer’s UNIX(*) file system, they can
usually e-mail the PIM to HP’s central call center where
the FE-Assist engineer can run Pimtool. This process is
cumbersome and has been a major disincentive for
widespread Pimtool usage. As mentioned earlier, we are
planning in the next few months to cut a CD-ROM for the
FEs so that they can have a copy of the Pdcinfo program at
the customer site.

Lessons Learned
The following are lessons we learned during the
development process.
1. The rule file has become much larger and more complex

than we had anticipated. In part, this was because the
authors felt comfortable in the Pimtool environment and
were able to write rules to cover many more situations
than originally planned. Because the rule file now
contains more that 1400 lines of code, we feel the need
to pay closer attention to programming style
(meaningful variable names, in-line comments,
modularization, etc.).

2. Style issues with rulesets start becoming significant as
the number of rules increase and we start bringing more
authors on board. We have developed a draft style guide
and will work on improving the style guide and
conforming to it.

3. Failure information comes in bursts; so selecting the
right piece of information to analyze is critical. We
configured a burst to consist of a five-minute interval.
As a default, Pimtool analyzes the first PIM in a five-
minute burst interval. This design seems to be working
well.

Maintenance of Tool and Knowledge

Maintenance of Tool
Pimtool will be maintained by the Diagnostics and Support
tools lab of HP. This includes the metalanguage, the
template files and the shell scripts. The Exter’ial
Specification and Internal Maintenance Specification are
being kept up-to-date to reflect enhancements.

Maintenance of Knowledge
We have developed an authoring responsibility model for
rulesets (see Figure 3). Responsibility for authoring
rulesets for new products has been assigned to the product
divisions. Responsibility for authoring changes to rulesets
to incorporate feedback from the field resides jointly with
the division and the field. Execution of this model is still in

DEPLOYED APPLIC-ATIONS a59

its infancy. We have just started understanding the issues
with Pimtool knowledge management.

I Ruleset
enhancements REVIEW

TEAM

Rulesets
for
existing
products

Rules&s
for new
i products I

l -,
I f I

+i$Gion 1 -1 P u b l i s h

Figure 3. Pimtool Knowledge Management

We made the decision to extend Pimtool to the next HP
server platform (called HP90OO/K series). An author has
been assigned and specification of the template file for K-
series has started.

Knowledge Updates
Currently the rulesets are updated about every three or four
weeks or when new versions of the firmware are released.
They can also be updated on an interrupt basis if necessary.
For example, if we discover a class problem or a major
new failure signature, we would update the ruleset
promptly.

Conclusion and Future Plans
We have been successful in developing an expert system to
analyze hardware failures and make recommendations
comparable to recommendations from experts today.
Pimtool has been deployed successfully to 25 users as of
December 1996. We plan to expand usage to over 400
users by end of 1997.

Our future plans are described below:
1. Expand our troubleshooting ruleset authoring to

additional HP server products.
2. Standardize our style guide for authoring.
3. Build more validity checking into the authoring

environment so that authors can write rulesets with
minimal errors.

4. Create an authoring environment in which multiple
authors can work on one ruleset.

5. Integrate hardware and software failure analysis. This
become more critical as HP’s servers become more
complex with multiple processors and cluster
management software.

Acknowledgments
We would like to recognize the contributions of the
Pimtool team members. John Curry was the designer of
Pimtool and still does enhancements to the tool. Elizabeth
Gordon (a college student who worked at HP last summer)
was the programmer and also wrote the T500 template file.
David Wold is the ruleset author for T.500. Lee Dobyns is
the field support project manager. Vince Povio is the
training engineer. Jim Thomas is a level-300 expert in the
field who guided us through our deployment strategy.
Phillip Klahr of Inference Corporation and Anil Rewari of
Verity, Inc. read the paper and provided many helpful
suggestions.

Authors

Narendra Dev is the program manager for Pimtool. Bart
Anderson is the documentation, usability and ‘testing
engineer.

References
1. Register, Michael S. and Rewari, Ariil. Canasta: The
Crash Analysis Troubleshooting Assistant. In Proceedings
of the IAAI-91 Conference, 195-212. Menlo Park, Calif.
AAAI Press.

‘2.‘Anderson, Bart ed. 1993. HP9OOO/T500 Corporate
Business Servers: CE Handbook, Field Engineering
Support (FES), Hewlett Packard, Cupertino, Calif.

3. Curry, John and Gordon, Elizabeth. 1996. PIM
Analyzer External Reference Specifications, Rev 4.6, .
Diagnostics and Support Tools Lab (DSTL), Hewlett
Packard, Cupertino, Calif.

(*) UNIX is a trademark of AT&T

860 INNOVATIVE APPLICATIONS

