From: 1AAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Design of High Performance Help Desk Application and Its

Implementation Results

Charles S. Moon Thomas A. Shore
IBM Corporation IBM Corporation
11400 Burnet Rd. Highway 52 N.

Austin, TX 78758 USA

cmoon@vnet.ibm.com

Abstract

The primary purpose of this paper is to discuss the design
and implementation of an automated help desk application
called "Remote Expert System To Optimize Repair
Efficiency" (RESTORE) currently deployed in the IBM
Corporation at Rochester, Minnesota. It was designed in
1992 mainly to enhance the support of AS/400 business
computer systems. In order to familiarize those readers
with the topics being discussed, an overview of the product
support strategy will be provided as a part of the
introduction.

The RESTORE application is one of the most successful
implementations of Knowledge Based Systems (KBS) and
Case-Based Reasoning (CBR) technology in IBM history.
It is currently deployed and used very successfully in
AS/400 product support, saving tens of millions of dollars
in support cost each year. This complex system was
designed with a blackboard architecture to enable the use of
multiple knowledge sources. These knowledge sources
include several rule-based subsystems and a large
case-based subsystem, all tied together with a blackboard
control module. This innovative design takes advantage of
the strength of KBS and CBR by using the concept of
blackboard architecture that allows these knowledge-based
subsystems to coexist and contribute. This paper will
discuss the design of the overall RESTORE system along
with its successful implementation

Introduction

This application was initially conceived as an expansion of
an older “rule-based” application that was already
successfully deployed. This deployed application was
initially designed and implemented with minor emphasis on
rule maintenance. It was limited by the increasing
maintenance required to keep rules and data current. In
addition, development time to add rules for new knowledge
domains was prohibitive. This new application called
RESTORE (for Remote Expert System to Optimize Repair
Efficiency), was designed to allow quick and relatively
easy expansion of the knowledge base to cover new
domains and provide for continuous improvement.

Rochester, MN 55901 USA Rochester, MN 55901 USA

tomshore@vnet.ibm.com

Gary Brophy Dennis Koski
IBM Corporation IBM Corporation
Highway 52 N. Highway 52 N.

Rochester, MN 55901 USA

gbrophy @vnet.ibm.com dkoski@vnet.ibm.com

This RESTORE application provides a mechanism for
locating similar problems and/or solutions and includes
rules to govern some segmenting of the database and
selection of “problem type” pathways. This application
also provides a semi-guided approach to gathering initial
information for input (which can be unique for each of
many different supported devices) as well as requesting
specific detail information for diagnosing the problem
based on earlier input.

Repair service and support

Repair process overview. Service support for computer
system servicers generally follows a process similar to what
is described here. (Some portions are handled
subconsciously.) If the support person handles many
different types of devices, he must first determine which
type he is dealing with on a given problem. Other incident
specific data must then be obtained such as device model,
hardware level, software level, microcode level, and
general area of failure (processor, DASD, etc., if known).

Other problem specific data must be gathered, such as
failure messages, error codes, incorrect operation, lack of
some function, etc.. This information will generally lead
the experienced support person to seek additional
information based upon his recollection of similar
problems or knowledge of the area of the failure.

The search now begins for a resolution to the problem
using the manufacturer supplied documentation, or
previously solved problems if an appropriate database is
available. The support person would then evaluate all
available data and determine which solution he feels is
most appropriate. If that solution did not correct the
problem, then the solution for the next most similar
problem may be attempted. If the problem remains
unsolved, then the next level of support would generally be
invoked.

Challenges of repair service support. Many challenges
face those who perform repair service support. One of the
primary challenges is locating helpful information related
to the many different devices they support. If access to
helpful information is not a problem, dealing with multiple

Copyright © 1997, American Association for Artificial Intelligence (www.aaai.org). All rights Reserved.

DEPLOYED APPLICATIONS 883

disparate databases is sure to be
miist remember: what inform
which search methods and svr

LA SCa UL 2IEA] ant >3y1

n inhibitor. The servicer

ation is in which adiaovasc,
1itax to use, and how

information is stored in the database to enable effective
searching for data similar to the way in which it was
initially stored. Knowing or remembering where to search
for specific types of data and knowing whai is relevant can
bhe maior ghstacles. Another gignificant challenge

UL gy b‘u.u.v“u-. LAIGUITII g,

especially for new or inexperienced servicers is knowing
what initial data about the device or failure symptoms
should be gathered before the search for the solution even
begins

Use of Al technology

The RESTORE system is designed utilizing three distinct
Al technology components: Knowledge Based System
(KBS), Cased-Based Reasonmg ((,BR), and Blackboard
lue ivouv wuxs bUbLlUu.) ULOL. i

L w7 1
e,_&il The KRS discussed in

rule-based system.

KBS Technology. The rule-based KBS represents the
expert knowledge as data or rules within the computer.
These rules and data can be called upon to solve the
problems when needed. By utilizing the capturcd expertise
(rules), the KBS prooesses information similar to experts of
their domain. In the of the project described in this
paper, the experts are the actual developers and support
personnel of AS/400 hardware systems who have a very
in-depth knowledge of the system level hardware. They
can nmr‘klv dmannce the nroblem and ;mn]v fixes to corr
the problem. The expert rules were denved from their
knowledge of the AS/400 system. The rule-based KBS
technology was chosen for this project for the following
ieasons:

1. Ramd nrnnf of concept and prototyp 1 g

2. Abrhty to handle complex dlagnostrc routines
3. Easy to maintain and update

There are several modules in RESTOR esigne an d

2

)
.3
(@]
-

3
=l
S
'é‘
.Z
e']
5’

mgredlents. (1) algorlthms for 1ndex1ng, searchm g, and
modifying cases, and (2) representation of a case. Cases
are groups of features with associated problem descriptions

aviniighy i

ad
ulal— uuu\c Ca\z.ll \/(1-)\4 uuuiuv CUIU PIVVLUUDI.Y lm}ll\/lll\/lll.b\)

problem resolutions.

A casebase is similar to a database, and cases are similar
to records in a database. Cases are generally represented
by one or more case specific features, which again, are

Qimilasr ¢t~ Fin}dn ~AfF vannrda in o Aatahaga Aasvrnavar aanlila

Dliiiilal LU 11T O UL 1CLULUD 11l a Uatavadsve., 11Uwovel, ULILRG
the database, one advantage of CBR technology is that the
case searched and retrieved from the case base need not
exactly match the search criteria. The search engine will

884 INNOVATIVE APPLICATIONS

retrieve the best matchin g cases according to the
sroae_AA

<)

lackhaand Technoloesy. Bla ckhnard_haced nrohleam
IACKO0ara 1 eCnnoiogy. 51aCKo0art-0asea prooiem

solving is a powerful mcans of flexibly combining

individually developed software systems and modules into

a single integrated application. The blackboard approach is

based on the 1dea that a collaboration of several experts are
2 1A

ial in solvi
expert. This concept alsor e \ S/
computer system failure dragnostrc process where the
expertise and collaboration of several hardware and
software specialists may be required to diagnose a problem.

in some cases, this ﬁXpCTUbC has been Capluurea ain
represented ag ruleg in]{nn"xﬂpd e-hased svstems. In other

CPLIUSTUAILAS Qs 1uals 1 K& Dastiz Syositills, 141 Ouled

cases, their expertise is documented as problem/fix tables
for each model of AS/400 systems and are updated with
new models as they are announced. This technology was
ideal for this implementation because of its ability to

inteorate modularized and 1ndpnpnrh:nf l(nnurlprlap <o eg

integrate modul and in know sources,

and allow them to all contrrbute to solve the problem.
Basically, the advantages of a blackboard architecture

include separation of knowledge processing into

independent modules with each moduie being free to use

the annronriata tachnnloovy to arriva at the hact cahtion
wiC appropriae WeCinCi0gy 10 aifive dl ulC OCst 50LUCH

with the most efficiency. This is the important component
that tied together all the subsystem components of the
RESTORE system.

@

esign of RESTORE

=

S fha name suggests fhn D'DQ’T'(\D'I? annlicati
i1 44 D LUNLE appiitadtll

knowledge-based system, that contains analysis and repair
expertise from past experience and uses this information to
optimize the future repair efficiency. In the CBR
subsystem the expertise will be in the combined form of

Adava 1fa nd fiald ronair oy neo
uuvuluyuluut, Juauuj.autuxulé, ana 1eiG Ivpail vz\y\Ar\Al\.uo

structured as historical cases. Using proper rules and case
retrieval methods, the system can not only identify the
historical cases that exactly match the current case, but also
identify the ones that are similar. Based on the

ngar_daofinad qangitivity tha rotriaval machaniem can
USTI-UCILICU STHSIUVILY, ulC ICUICVdl HiCllialiiisii Call

present solutions to the current problems that are known
fixes. RESTORE is a hybrid system that combines the
flexibility of a rule base and the maintainability of a

casebase. The remainder of this paper will discuss the

tachnnlaoy Aagion and tha imnlamentation racnlie
WCHNUI0EY, GCSIEN allU ulC HIPICICiwatiUll 1Couns

primarily focused on the case base module in RESTORE.
Figure 1 illustrates the overall service support process

used by the AS/400 hardware support center. It shows how

problems can flow to the support center personnel who in

tha RTQTNRE annlic nd nthe
turn use the ROO LURL al.lyuuauuu ana omer \,url_rux ate

databases to solve the reported problem. It also shows how
the various portions of the RESTORE application are used

to locate different types of information to solve the

m~amnlal

PIU UJ.UllJ.

Restore Overview
(Remote Expert System to Optimize Repair Efficiency)

customer/ @‘ \ ‘.R ‘."
— L S
¥ .
s Communication: c?r_n_w:njfiaﬂons

NI F 1 Links consentaters

- n ‘—E l Datakases
- —— Code Fixes
N7 =S il 5 L____JcallRecords
Ed

i [_History [+

Figure 1. AS/400 Support and RESTORE Overview

RESTORE Functional Architecture

LETRTTRRE

]
4 :g;

Automatic _ | Session Manual
Manager

\
7)

<
| RETAIN I

Help desk

]

M:Im

] el E
N

Experience
Manager

e

1[5

K v \ \i SRC I
Classified X
l Incident l | zﬁf: I‘-——_b Expariencal e
| Tracker | L 4!] Base \l— |
L
v /
Open Incident
Incident Case History
Base | Generator| = Base
1 A
| Closed Case T

Figure 2. RESTORE Functional Architecture Diagram
Design details

Figure 2 illustrates the functional architecture of
RESTORE. The Session Manager includes the black
control module. It also contains additional functions to
access AS/400 RETAIN database where all the field repair
call information is stored. The Experience Manager
contains the CBR module with all necessary components
for that knowledge base.
several rile

;
= o

o TN d o e

The Data J.Vld,lldgCI LUllLdlIlb
<

describe these module

Aared
vatu

Blackboard Control Module. The blackboard

7C ‘h NDTOMATYT 1. .. i1

itecture in RESTORE has ihree md]()r L()Hlp()ﬂcﬂ[s
Centralized o]nhal “znrlzcncmp Or memory ¢ called a

— m

jiE1es

blackboard Wthh saves the solutions generated by the
knowledge sources.
2. Collection of Knowledge Sources (KS) made up of

AI‘IA \r\

AD/4 Glaf,nOS[lC spemansrs that ge nerate

independent solutions on this blackboard u

CBR, and problem/fix tables.

3. Blackboard control module which reviews the
knowledge sources and recommends the most
appropriate solution for a given problem.

Thi nl madnla nlave an imnortant L aging
This control module plays an important role in managing

the knowledge sources in RESTORE. It keeps track of the
knowledge source modules and their messages, including
the output messages containing solutions. It also knows
how to resolve the conflicts in case of inconsistent

onliztinng ne Anmteadiatineg anlidinama mlannd ~
SULULLILVILILD UL LUILILL uu.,uug SULULIVIL pPialCu (011 LllC
blackboard by the KS modules

Sunnort using Rlackboard
Subport using

Fleld History

Post and

N End User Interface
Retrieve

CERAN CRTEDN

@I 1R
< M

Solution

[Expert /

“Case > Case |—P
Expert Base | Expert |

Figure 3. Automated Support Using Blackboard Diagram

Figure 3 illustrates the blackboard architecture in

RESTORE. All knowledge sources are identified as
experts: Data Expert, Exce ption Expert, Case Expert,

cils PG

tion Exper
Forecast Expert, and Soluhon Expert. These knowledge

sources post and retrieve information using the blackboard.
The control module manages the information in and out of

the knowiedge sources
KBS Module. RESTORE was de "‘oped as a follow-on

1ncorp0rate much of the ex1st1n g functionality of these
other tools, to minimize the development effort, ease the

i DTOTADTT

transition to RES 1URE, and also facilitate the a(.cep[ance
n

One of the key features of RESTORE is that it performs
muitipie searches through a variety of different knowledge

conircae and givec the neer a concice sciimmarvy of ite
RAVAR SR AN PRRCARAS S 51"\/0 Lilv Uouvl a4 wUiliviow OullllleJ Vi 1w

findings. The rule-based KBS in RESTORE contains four
major modules: Data Expert, Exception Expert, Solution
Expert, and Forecast Expert. Some of these sources were
designed as drrect replacements of the prevrous rule-based

A~ ~ 73
U arsu\.u w lllL Blaww Wl‘l:ll
e

The Data expert was enhanced to incorporate new
rule-based logic for interpreting, analyzing, and inferring
knowledge from the existing information entered. For

A QIANN

mstanu::, in the domain of AS/400 Iﬂpdlr service and

sunnort. the followinge information could be entered by a

UPPULL wal AULUWIL S LLIUVIILGUVEE VUL UL Calltice Uy a

user of RESTORE: AS/400 system type = 9406, model =
F80, and reference code = 9337D001.
Based on the AS/400 domain, the following additional
information can be inferred:
Aran of cycfem = Dick ‘T“mp = 0327

flva =310, 2 F337

Each time a user of RESTORE enters new information, the
current set of information is analyzed through the KBS rule
processing, and any additional knowledge is added to the
current domain. This reduces the amount of obvious or

redundant information that must be entered by the user, and
redundant 1iniormaiion tlat mMust oC Cnitred oy tic uscr, and

narrows the search domain, producing more concise and
accurate search results.

The additional KBS experts also provide several
independent and highly specialized tasks. A couple of

thaga taglkq inclhiide a Innlkiin into tha AQ/ANND OIinlline
LICST Las Ks 1HC1UGC 4 10UKUDP L0 Wl AS/auy wil=illbe

Maintenance Documenation, and a search for relevant and
the most current AS/400 Software patch information. Each
of these functions will analyze the set of information that
has currently been provided either by the user or inferred

Ty annthar TDQ mandnla
vy OJIUUJUL FAN S] J..U.U\Jbll\d

The key information used includes the AS/400 system
CPU type and model, operating system release level, and
valid system error codes and message identifiers.

RESTORE also has access to a machine Serial number

QR ot~ ahoon tn allney Afthic additinnal

CriOSSs 1iati d 1aoasc 1o audw Jllubll Ul Ul auuiuiviiat
information to be gathered. Based on the available
1nformat10n the search will be either initiated or skipped, if
not enough information has been provided.

The Documentation lookup will locate information from

tha valavant gaptinng nf tha AMMaintananca Nasmmymantatinn
Ui réifvailit SECidns 01 i Mainitnaince Locumdeniation.

The Software Patch lookup, which can consist of multiple
software releases, will locate relevant patch numbers, any
supersedes or replacements, and an optional Cumulative
patch that consists of multiple patches for a given software
release.

Exception Expert: The predecessor Expert System stored

antian nlang that wara Aicrnvarad and nat nart af tha
atuivu praild uidtr wiic aiscoverea, ana not pait U1 ui

original AS/400 maintenance documentation. Use of the
data represented as “exceptions” had been so extensive that

886 INNOVATIVE APPLICATIONS

RESTORE needed to continuc to reference it in its original

form due to the time requrreﬂ to convert the ldIgC dHlOUH[

to another form. Ideally
10 anoindr Iorm, iGgeany, i

contarner within the blackboard module which allows the
user to select all or portions of the solutions identified by
the various modules and export them to be used by other

tools or sent to another person for implementation of the

solution.

3
>
D
=
QO
=4
3
=
Q
=
]
=
ﬂ
(@]
=

developers of the most common problems reported through
the RESTORE application. This module has not yet been

completed.

CBR Module. The core knowledge source in RESTORE
io tha (Ca Tyvnart and wwnge Aagignad niging tha (Maca_hagad
10 Uiv vas ALAPUIL AllU Wad ULOSIERIVU HOLUE UV LddsvTuasvu

reasoning technology

Basic Concept: The RESTORE design incorporates the
common basic steps of CBR. This section describes how
these steps are used in the design of the CBR module.

* Create a casebase shell to hold future cases. This is the
most critical step in building a CBR system. The
efficiency of the search engine will be governed by th
data structure of the cases and their features.

* Add unique cases to the case base using unique

jeatures. Feature S are attrrbutes of cases. Add1 nga
y t

{

and the matc and mrsmatch wergh s These feature
weights specify how much a match or mismatch on a
particular feature will affect the overall score. In some

_____ _f;__; o P

cases, a set of case prLlllL wclgms may be used to
pmnhac17p the imnortance of a snecific feature match or

AAAAA QOLIAT WiT LLIPUILAlLT U1 a SPULILIL iCatul U ddiail

mrsmatch. Every case must be verified for its
uniqueness before adding it to the case base.

° Create an index using a data structure that will
opiimize ihe search efficiency. Alihough, ii is possible

to use the case base ag-is to search for pncmhlp matr‘hec,

LR34

it is not very efficient since not all the searches are
looking for exact matches. In order to optimize the
efﬁciency by the search engine the case base must be

AAAAAA 1) VALT LS 1DaUCU. 140 IUCUUIUG BuotU W

P
1ndex w111 depend on the scanning method used by the
search engine.

* Load the index into memory prior to search. The time
and size of the memory required to load the index will

denend on the method need to nack the index. There ig

VLUPUIIU DIl Ulv IHCUIVU Wotl W Pata Wiv JOUCA, 110U 15

no direct correlation in the size of the packed index and
the performance of the search engine.

* Specify global match parameters such as maximum
number of cases to retrieve and the preciseness of the
match required. These global casebase parameters
allow the search engine to retrieve only the top ranked
matches with the score higher than the threshold value.
These parameters are very critical when this case-based
system is used in remote/automated mode.

e Preprocess incident parameter to optimize search.
Without some form of text preprocessing, the search
engine would be overwhelmed with "noise” text that
may accompany the text based features. Some
preprocessing is obvious, such as, convert to upper case,
remove word separators, remove ignored words, etc.

* Define local match parameters such as match,
mismatch, and absence score. Once an incident is
ready to be presented to the search engine, the final local
weight parameters must be defined. One important
weight most often ignored is the absence weight. If the
incident case contains a feature that is not represented in
a stored case, the final match score should reflect a
deduction of the absence weight.

* Perform search. The search engine scans every stored
case, compares it to the incident case on the closeness
and scores each case accordingly, based on matches,
mismatches, and absence. Then, it will rank all the cases
on the final match score, and retrieve the top ranking
cases above a specified threshold.

* Receive pre-ranked matched cases. These pre-ranked
cases must be identified and stored into memory since
there may be multiple searches on multiple case bases.

* Redefine local parameters and repeat search. The
entire search and rank process must be dynamic. If the
highest ranked match is not satisfactory, a modification
for the incident case feature is needed before repeating
the search. If all else fails and the search engine does
not return a matched case, then a new case must be
added to the case base.

Basic Requirements: The CBR module in RESTORE was
specifically designed to optimize the search of a product
maintenance database. With proper data structure and
index scheme, it was possible to implement this module
with only the following key functions:
1. Create compressed index of the casebase to optimize
the search
2. Preprocess cases (parse and create search objects,
properties and descriptions)
3. Highly optimized search engine
4. Identification of best match
5. Casebase update
The above functions only allow the user to build and
retrieve matched case histories manually. Since RESTORE
will be eventually operating automatically and remotely,
many other functions are needed in order to automatically
provide accurate property information on current incidents,

track all open incidents and close the ones with verified
successiul resolution, and finally, provide a case-base
maintenance facility.

RESTORE CBR Process

Packed Search - Pre-
Index Engine process
A
Matching
B Cases |® Incident Case

User Manual Automatic Data
Input Manager

Support Required

No
Add new case Yes
A
Case Counter++ Present { Solution
Maintain Solution Manager

Figure 4. RESTORE CBR Process Diagram

Figure 4 illustrates the process of the CBR module. All the
key functions identified in this section are important parts
of this process. The “Present Q & A” and “Present
Solution” functions are also key parts of this process. They
manage the input and output of the case-related information
from the CBR module.

Some of these functions rely on "product specific” rules.
Many of these functions are being constructed as separate
modules to allow for easier separation of the product
specific rules from the generic "logical direction" rules.
This will allow for adaptation to other problem domains
with minimal program changes to the base application.

The domain specific knowledge can be added primarily in
the form of cases in the case database and external sources
for other helpful information such as on-line
documentation.

Integration of technologies

The priority in implementing the RESTORE application
was to focus the development effort on the core technology
- the CBR module. Around this core CBR technology, the
remainder of the application would be implemented with
standard off-the-shelf technologies for the deployment
platform of choice. We chose to alter the blackboard
portion of the original design to be a “driver’” of the overall
session flow rather than a “reactor” to the data presented.
Because the RESTORE application was dealing with a
somewhat limited domain (servicing a specific family of
IBM computers), this would improve the efficiency of the
searches. This “Session Manager” as was designed,
contained high-level program flow and served to analyze

DEPLOYED APPLICATIONS 887

all data that was presented. This was accomplished

through use of both rules and a special set of “cases” in the

case base used only by this session manager. Together,

these functioned to determine which sources of knowledge

were appropriate to search using that data appropriate for

the specific knowledge source, and in some logical order.

A DB2 relational database was chosen to store the case

data and solutions. The database tables were designed in

order to allow efficiency in:

* Creating and updating the specialized CBR indexes

° Identifying and transforming new incidents or queries
into new cases

* Allow standard SQL queries into the case and incident
data to track problem trends, etc.

Uniqueness of design

One unique feature of this system is the design of its
high-performance CBR kernels including the search
engine. This new design emphasizes the search
performance and its accuracy in a CBR implementation for
a help desk application. The resulting performance is
discussed in later sections of this paper.

Another unique feature of this system is its use of the
blackboard technology in its design. This design allowed
the RESTORE application to take advantage of the strength
of this technology in the following way:

1. Modularize the development of independent
knowledge sources

2. Integrate the new knowledge sources with the existing
ones

3. Allow the system maintainers to simplify the
management of the updates

The last advantage is particularly important because the
product support strategy requires the maintenance team to
update many independent knowledge sources for all models
of products as they are released. In this domain, there are
currently four system types, more than ten models and
more than ten software release levels.

Implementation

An iterative step approach was used to implement this
project, partially because a large amount of information
had already been gathered and represented in a simple
rule-based knowledge base. It was already deployed to the
target audience. We chose to incorporate that information
as-is into this project to speed building the knowledge and
provide a base level of user familiarity. As new functions
were completed, they were given to a subgroup of the
target audience for ‘live’ testing. This provided early
feedback and helped build a core of users who could act as
advocates for the new tools.

888 INNOVATIVE APPLICATIONS

Application development

As the RESTORE development team and project were
pulled together, the first task was choosing where and how
to develop the application, taking into account the
following:
* Skills of the development team
- Considerable VM, REXX and Pipelines expertise
- C/C++ experience
e Application requirements
- Optimal Search engine performance
- Rapid development/prototype for User interface
routines
- Support and access multiple and independent
knowledge sources
* Database requirements
- Relational database - DB2, SQL access
* Deployment requirements/restrictions
- Worldwide deployment
- Support multiple types/level of user workstation
(i.e. Dumb terminals)
* Development Tools/Environment
- Access control/checkout
- Build/integration

Development process

Project Plan: The ideas for this project began in late 1991
as a method for improving the effectiveness and coverage
provided by the existing knowledge base. After evaluating
different knowledge processing methods and commercial
tools (coupled with our desire to utilize the existing base of
knowledge), we decided to develop a new application to
allow us to merge several types of knowledge processing.

These ideas quickly grew to become a full-fledged KBS
project and grew in proposed function and scope. The
basic concepts and high level design were put together over
the closing months of 1991. This began as a pet project
that we developed in addition to our assigned duties.
Throughout the first half of 1992, we developed the ideas
and fleshed out the concepts while building a project plan
and business case. Much of this time was spent raising
awareness of the concepts and defining benefits to the
people who would be most affected.

The business case was first presented to management in
June 1992. Within three months a development team was
assembled and the design completed. By early January
1993, a limited function prototype was undergoing
usability and ‘proof of concept’ tests with the targeted
users. The first full function version was placed in
production in March 1993. Worldwide roll-out began in
June 1993,

The resource required for this initial version amounted
to approximately 4 person-years effort. This includes the
low-level designs, coding, test and support of the initial
roll-out. Since our development and deployment utilized

ng and ~AMm T Inicatian

LUC C)uauus \,Ul}]UlaL\a LJLUL\/ODIJIS alyg buuuuuuu,auuua
infrastructure, no costs other than the development
personnel were planned or realized.

Justification of this cost: Cost justification for
development of this tool was based primarily on the theory
thal w1th the proper 1ntormat10n reachly avallable to the

u
reduced and the rate at which those problems are fixed on
the first call should improve. Additional benefits were
expected by reducing the unnecessary replacement of parts.

Some intangible savings, though not quantifiable were
also expected. Customer satisfaction with service was

avnected to rice due to handlino nroblems anicker. and
CXPpECLEC 10 118C QUC 10 Nandiing proviems quicker, and

improving the rate at which they were solved on the first
call. In addition, feedback of specific field failure data
captured through this application would enable product
development teams to recognize and correct problems

annnor thoan vwag higtarinrally nacgikia

SQUUILICL uladil wad IIIDLUIl\'a-ll)’ PUQOIUI\/

Ramafi nd Validatian Ualidatinn wac nerformed nging
SCICINS anG VanaGaadn. va:nGdaull was POricrinict usillig

real calls to the support center and was intended to measure
two points. First and foremost was validation of the time
savings per problem. A secondary point was the parts
savings based on use of the knowledge provided by this

tand
tO01.

After actual problem calls to the support center were
handled, a follow-up evaluation was performed by a
different support person, using only the information
contained in the call record. During this follow-up

avalyiatinn thia Innwladaon tanl wwrag 11gad ne tha firet ennires
“vaiuaiiuil, l.lLlD DUUWILUEL LUUL Wdadd UdUAL dd Wl 1110l sUulive

for information. Actual time required to locate the proper
solution was measured in both cases. Parts replacements
were also tracked.

A range of savings was identified based on the
conservative and potential values of several variables, such
as usage rates, effectiveness based on partial population of
the knowledge domain, etc.. This vahdatlon was
performed when only a few hundred cases were present in
the casebase. Solving problems for which information
existed in the casebase was urama“ca"y improved. The
iired to locate the nrrmpr information was reduced

gl

in qu to locate the ration ced
and consistency in locatlng the proper information was
greatly improved. Since the plan was to add all new
solutions (those not found in the casebase when searching
for a soiution), the overall effectiveness would naturaily

time re

improve as the casebase becomes more nnnnlamrl With
1mprove as e cal 0eComes more pe

the relatively few cases at the time of this evaluatlon, the
effectiveness was expected to be quite low. In reality
however, since the first cases that were added were those
for which many calls to the support center are received, the

affartivanace wac hicher than avnectad
CLICL U VUIIUSS ydd ULV uian bapliiva,

The results of this trial showed time savings for the
support center person of eight to nine minutes per problem
call. This represents a significant portion of the overall
time spent on each call. In addition, the instance of parts

acomaoant w achy 18 ¢t~ INOL. Nunerall thaen
Lleuu.\Au\,ul. was l\/Uu\abU U)’ 10 WJ LU /0, wvildadli, LHILOL

results represented worldwide savings of between 33 and
40 million dollars (US) in the first year alone. This is the
total benefit, including that from the original knowledge
base data. This was projected to grow in subsequent years

Thaand AN inecre thn bnamladagn lhonan /A cnveraan)

on increasi r\n x Araa
DUAL UL 1HIvIeasi ‘5 lll\z I\UUWI\JUB\/ vasyv \UUllldlll COVEY as\z}
a

Rochesler /" Ceniral \ Rochests i RETAIN i

Development W — -
Suppori g
Center
l—l /——\ N} =
Local

RETAIN _KBS , \

Country \

A Support (& '
Center [peram | L_Country X
Ce Support {8 C
Cuslomer Center
X
B | RErAml KBS > Customer
A. Self contalned country local
f — / T \.\‘.‘. KBS is maintained via
Country #1 | | Country #N central KBS link
1/ - oy Support [B. Several country support
Support [| Center 1y centers tied to a central
/v Center § RETAIN & KBS. KBS is
[~ g \ maintained as in"A"
-~
C. s t)¢ liant

Figure 5. Worldwide Knowledge Base Distribution
Network

Application deployment

This application was deployed worldwide and is regularly
used by over 2000 service and support personnel. As
mentioned earlier, RESTORE is a follow-on project that
had the tollowmg requlrements

1 DA n o
i. riu 1UCd

S
System.

s
5
1
¢l
>
+
>
n
3

=

Tmetinne AfFtha aneliaw
Unciions o1 me eariier

2. Deploy worldwide as effectively as the predecessor.
Figure 5 shows a high level view of the knowledge base
distribution network utllxzed dlstrlbute the application

Expert
T

exccutable programs, data ﬁles SQL data for 9tored S,
and SQL data for incidents (usage information). The
programs and data ﬁles are automatically distributed

o B e
wWOrigw luc Vld uH.CI NNECICqA Vivi § IVILC mac llll S ne
st ered cases are developed at a master location, and

(i) Updates: All data and program updates are made to
the master distribution account in Rochester MN, and the
service machines automatically update the other
world-wide service locations. This process is used for ail

RECTNRE nragramae onntral fil
NLD L URND PIUgLalilny, LULILUL 1

practice it takes less than three minutes for all the

S 9s =Y manl\:“nn tn Tan samAntad Anman 4l e odase

WUI IUWLUC LGS WU UT upualcu, UULT Uit Hadicl

bulk of these three minutes is due to network delays,
primarily between the US and Europe or Japan.

(Zi) Project plan: The deployment plan consisted
pnmanly of three parts. '[he first was training and use by

58
2
a :
S
)
2
=%
<
=
8
Q
st
s
3
=
(¢
]
=N
D
1
J
D
%
=}
w
<
N
&
—-
©
o
n
]
2
122}
a
-
=
- 8

LAL=DASLL 3)S ass. i1

in solvmg problems 1nvolv1ng a machine fmlure code Thls
was a very narrow and finite domain. Our challenge here
was to modify their thinking to encompass a much broader
scope and muitiple problem domains to enable them to

realize the benefite thic annlication conld nrovide Thig
reailze Wie Deneits s appaication CowiG provige, 1is

consisted of specific training and demonstrations showing
how the flow of this application mirrored the flow they
generally followed in solving a problem.

The second was training a subset of the users to create

Y7 naQo Annlata tha ~rngaha e wwaQ
IIVVV \«GOUO Qllu FUPHLQLV ul\/ uao\/uaa\/ ULU. .uuucu PJ.GJI yvao

to enable all users to perform the initial building of new
cases for any solutions they found that were not already in
the casebase. Then a select few (basically, the leaders of
the sub teams) would review the cases for technical

oconracy and acoenra adharanca tn o 1 f1iro
acluracCy ana assure agnerence 1o our Case struciuie

guidelines. This was soon modified to a scheme where all
users are expected to identify new solutions to be added to
the casebase, but a core of two or three people actually
build the case. The sub-team leaders are still responsible to

anenra tochnical accniracy hit tha faw cace huildere aro tn
CLSUIC welailiCal alluialy, Oul uill 1CW Cast ouliGlls ait o

ensure the case guidelines are followed.

The third major part was training and use at the remote
support centers around the world. A User’s Guide was
assembled and distributed to the leaders of these remote

ro A damongtratinn and nracantatinn nf tha
“"ppf‘r{ centers. A demonstration and presentaiion o1 ine

features and flow of the application was made at a meeting
of these support center leaders. They in turn would then
work with their respective teams to ensure proper
understanding and operation of the application.

(iii) Other costs: One cost that is sometimes overlooked

ig tho ~rnot afmaintananca aftha antnial Aata Ar narosladaon
10 Wiv LUODL UVl liidluividialive Ul uiv aviudal uaila vl MlUWl\aUé\/

contained in the tools. We chose to have the technical data
maintenance performed by the more knowledgeable
support people who would also be the users of the tool.

Platform. RESTORE is currently deployed on the VM
piatform, and updates are automaticaily handied over the
VM RSCS network. This decision wag based on the

¥V aVa SO0 ULV Ui, 11115 ULALiSiUi yvads vascu Ull uic

reliability and availability of the existing data and
knowledge distribution methods, as well as the VM code
development skills that were available at the time.

The main consideration for choosing the deployment

nlatform wag the need for worldwide distribution and

PRAciUiin Yy ads wiv LW AU VY ULIUVYIULU Glsuavuulil aul

access. The RESTORE application would be used by
AS/400 service personnel throughout the world. VM was

890 INNOVATIVE APPLICATIONS

pm orams

Training. RESTORE w velo ed as an AS/400
Product Supp()r[Center Representatlve (PSC Reps)
assistance tool. These PSC Reps have limited knowledge
of VM, but are highly spec1ahzed in their area of AS/40()
expertise. Team le
involved in th ,
this simplified the tramln g process
The RESTORE developers and the Support Center Team

Leaders performed all the trammg of the PSC Reps

Maintenance

Stored-case data. If a user runs RESTORE, and a useful
action plan is not found, the user can enter the action that
fixed the problem, and flag the incident as 'case-required.’
A service machine automaticaily detects these incidents,

a caga_hnildare t irall
and notifies the case-builders. The case-builders typically

take 10 to 15 minutes to research and build a case, and to
forward it for approval. Currently, about 8 to 12 new cases
per week are being added.

On-line documentation. This data is refreshed with each
major AS/400 Operating Sysiem reiease, yplcduy a couple
times a year. Dueto th thi

manual process.

Software patch information. Due to the complexity of
the operating system, the number of supported releases, and
the number of supported devices and IBM Program

igs low freguency
18 low Ifrequency,

Products new patch information is generated every day.
Currently, this inf rm'ninn is automatically nroces ed and

Exception mformatnon documentation. The maintenance
associated with this (predecessor) type of data is very
minimal. About twice a year one support center rep

nde Alata An s Antn ~F
DJ:J\/JIUD a ua_y lblllU Vll.ls a.uy UUQUI\/L\J Ud.‘l.a nuy ll w“w UG.LCL Ul

this type is entered as stored cases instead.
Impiementation Results

Total cost of implementation. The total cost associated
with this project amounted to about 1.2 million dollars

(TIQRY Thic inchidec the degion coding tagting training
Loy, 1adls HIGIUGES ull GOSiEN, COULNE, WCSulg, wailiig,

and maintenance support for three years. This also
includes user training and setup and maintenance of four
installations worldwide with their associated maintenance
including code level and database synchronization Since

we chnce to nlace the tnowladoa/da nta
we Ci105C 10 D1dle Ui <NIOWICGEL/ data maintenance

responsibility with the users, the time invested in such
maintenance is a relatively low incremental amount above
what they were spending to document problems and
solutions in notes and other non-knowledge based means.

Functional Results. Overall, the choice of using C and
REXX for coding has worked out very well. This has
enabled very quick redesigns that became necessary as
cases were developed. It is very important that the users of
* the tool were highly involved in the early design decisions.
This, coupled with the planned "Beta’ deployment and the
significant usability rework of the final product, meant that
no significant functional changes have been required. The
primary changes were made between the Beta and final
stage. Other than that, several short-cut methods have been
implemented to reduce keystrokes.

Knowledge Bases. The transition from the predecessor
Expert System to RESTORE dictated that the new toot had
to provide all of the existing knowledge, and more. This
incremental requirement clearly defined our starting point,
and where improvement was needed. All of the data
refreshes with a high frequency of change have been
automated. As a result, our users have come to expect
extremely current data, and the Support Center efficiency is
very high.

There are currently over 2000 active stored cases in
RESTORE, and new cases are being written at a rate of 10
to 12 per week. These cases have an average of 4 to 6
properties each, and we have found our initial performance
projections to be accurate.

Performance: In a live help desk environment, the speed
of response can have a high impact on customer
satisfaction, as well as morale and productivity. Certain
design modifications were made to reduce keystrokes,
provide shortcuts, and to speed up the data searches.

One interesting point is the reliability of moving large
files over the IBM Remote Spooling Communications
Subsystem (RSCS) network. Some of the patch data files
are over 100 MB long. A file this large can take up to four
hours to transmit across the network, due to scheduling
constraints beyond our control.

The tradeoff we have reached is to pack this data to 20
percent of its original size, and add about 0.6 seconds to
the real-time data search process. Our users have agreed
that this is a worthwhile compromise.

The RESTORE users are concerned with the following
performance factors:

1. Minimize the number of screens. Screen refreshes can
take 5 to 10 seconds for remote users at some
worldwide locations.

2. Minimize screen-to-screen delays. Part of this is due
to interactive network delays, as mentioned above. At
the master site, most screens refresh within 2 seconds,
and two take about 5 seconds to refresh.

3. Minimize keystrokes if possible.

RESTORE design focused on these three performance
areas. Aside from interactive network delays, which is a
continual challenge to improve, we have been very
successful. During the longest screen-to-screen delays, we

have added progress-indicator blips, which show the brief
description of the task being performed. This has almost
universally improved the perceived performance of
RESTORE.

(i) Case search engine: The case search design has
been very effective. Several minor changes have been
implemented, and they could best be characterized as
application-specific. The scoring algorithms for properties
with multiple value answers were expanded and
generalized in order to produce the results expected by the
case builders. The scoring algorithm for one particular
property, the textual problem description, was fine-tuned
several times in order to produce expected scoring results.

(ii) Performance of the design prototype: The case
search was designed to be an extremely high-efficiency
process, and our evaluations have not changed. Some of
the data-preparation work, prerequisite to the search,
needed to be modified in order to improve the apparent
performance of the case-search.

In light of the application environment, this issue was
very important from the start. A target was established of
0.5 seconds to score the initial set of cases, projected to
include upto 10,000 cases.

It was possible to easily stay within the target of 0.5
seconds for the ranking of the initial set of case data. Thus,
the case-based design will not need further enhancements
to satisfy our performance requirements.

(iii) Performance of the final implementation: The
case-search is so efficient that performance has never been
an issue. The case-search interface screen takes 3 to 5
seconds to be built initially, and even the most
sophisticated case search takes less than 0.3 seconds.

RESTORE was initially designed to run as a blackboard,
performing data searches in parallel as needed. As it
turned out, true parallel processing is available with some
VM operating systems, but implementing it would have
impacted, and not improved performance. A user typically
spends an elapsed time of 3 to 5 minutes running one
RESTORE consultation, from start to finish. This includes
the time required to gather the pertinent data and enter it
into the tool. The tasks that could be performed in parallel
currently take 5 to 7 seconds, total, when they are run
sequentially.

ILessons learned

Fairly early in the process of building and distributing
actual case data, it was determined that some aspects of the
RESTORE CBR function needed to be redesigned. These
were predominantly related to usability and requests for
enhancements. However, the only aspect of the case-search
design that was changed was adding additional multiple
answer scoring algorithms.

During the development process, the designs were
thoroughly discussed, documented, and reviewed. Due to

DEPLOYED APPLICATIONS 891

the variety of input that was received, it was concluded that
certain areas of the original design needed to be
implemented with the intent to easily modify them later.
This added initial resources for the implementation, but
dramatically reduced the time required to make design
enhancements as a part of maintenance.

Summary

The RESTORE application was designed to solve a
product support and help desk problem for the AS/400
business computer systems. It was designed using Al
technologies, such as KBS, CBR and Blackboard to solve a
very complex problem that is not easily solved otherwise.
Although not all of the initial design components were
implemented fully, this system has already demonstrated
the benefits of using these technologies.

One of the unique features of this system is its high
performance CBR subsystem. This CBR module design
applies to a specific application domain such as the help
desk application for AS/400 systems. Furthermore, the
rule-based and case-based hybrid implementation greatly
increases the effectiveness of RESTORE to operate
remotely and automatically.

Another unique feature of this system is the blackboard
architecture used in its design. This design allowed
RESTORE to take full advantage this technology by
modularizing the development of independent knowledge
sources and integrating these new knowledge sources with
the existing ones. It also allows the system maintainers to
simplify the management of the updates. This is
particularly important because the product support requires
the maintenance team to update many independent

892 INNOVATIVE APPLICATIONS

knowledge sources for every model of product as they are
released. ‘

Implementation began with a skeleton simulating the
various functions and user user interface. This allowed for
as much user interaction and user input to the design of
both the user interface and functions as possible. New
functions were added as soon they were operational to give
the user the ability to provide early feedback. This
approach has allowed the ability to revise items based on
user input and actually provide some functions ahead of
schedule. However, this shifted the focus to some domain
specific functions and delayed the building of cases.
Significant case building has been ongoing for the past 2
years.

References

Charles Moon, Tom Shore, and Gary Brophy, “Design of
High Performance Case Base Module for a Help
Desk Application and Its Implementation
Results”, IBM Technical Report, 1997.

Daniel Corkill, “Blackboard Systems”, AI Expert
6(9):40-47. September, 1991.

Chuck Williams and Bruce Clayton, “Case Base Retrieval”,
White paper, Inference corporation, 1994.
(http://m5.inference.com/products/cbrwp.html)

Christopher K. Riesbeck and Roger C. Schank, “Inside
Case-Based Reasoning”, Lawrence Erlbaum
Associates, 1989.

David S. Prerau, “Developing and Managing Expert
Systems”, Addison-Wesley, 1990

