
Charles S. Moon 
IBM Corporation 

11400 Burnet Rd. 
Austin, TX 78758 USA 

cmoon@vnet.ibm.com 

Thomas A. Shore 
IBM Corporation 

Highway 52 N. 
Rochester, MN 55901 USA 

tomshore@vnet.ibm.com 

Abstract 

The primary purpose of this paper is to discuss the design 
and implementation of an automated help desk application 
called “Remote Expert System To Optimize Repair 
Efficiency” (RESTORE) currently deployed in the IBM 
Corporation at Rochester, Minnesota. It was designed in 
1992 mainly to enhance the support of AS/400 business 
computer systems. In order to familiarize those readers 
with the topics being discussed, an overview of the product 
support strategy will be provided as a part of the 
introduction. 

The RESTORE application is one of the most successful 
implementations of Knowledge Based Systems (KBS) and 
Case-Based Reasoning (CBR) technology in IBM history. 
It is currently deployed and used very successfully in 
AS/400 product support, saving tens of millions of dollars 
in support cost each year. This complex system was 
designed with a blackboard architecture to enable the use of 
multiple knowledge sources. These knowledge sources 
include several rule-based subsystems and a large 
case-based subsystem, all tied together with a blackboard 
control module. This innovative design takes advantage of 
the strength of KBS and CBR by using the concept of 
blackboard architecture that allows these knowledge-based 
subsystems to coexist and contribute. This paper will 
discuss the design of the overall RESTORE system along 
with its successful implementation 

Intro&Ktiona 

This application was initially conceived as an expansion of 
an older “rule-based” application that was already 
successfully deployed. This deployed application was 
initially designed and implemented with minor emphasis on 
rule maintenance. It was limited by the increasing 
maintenance required to keep rules and data current. In 
addition, development time to add rules for new knowledge 
domains was prohibitive. This new application called 
RESTORE (for Remote Expert System to Optimize Repair 
Efficiency), was designed to allow quick and relatively 
easy expansion of the knowledge base to cover new 
domains and provide for continuous improvement. 

Gary Brophy ennis Koski 

IBM Corporation IBM Corporation 

Highway 52 N. Highway 52 N. 
Rochester, MN 55901 USA Rochester, MN 55901 USA 

gbrophy@vnet.ibm.com dkoski@vnet.ibm.cnm 

This RESTORE application provides a mechanism for 
locating similar problems and/or solutions and includes 
rules to govern some segmenting of the database and 
selection of “problem type” pathways. This application 
also provides a semi-guided approach to gathering initial 
information for input (which can be unique for each of 
many different supported devices) as well as requesting 
specific detail information for diagnosing the problem 
based on earlier input. 

Repair service and support 

Repair process overview. Service support for computer 
system servicers generally follows a process similar to what 
is described here. (Some portions are handled 
subconsciously.) If the support person handles many 
different types of devices, he must first determine which 
type he is dealing with on a given problem. Other incident 
specific data must then be obtained such as device model, 
hardware level, software level, microcode level, and 
general area of failure (processor, DASD, etc., if known). 

Other problem specific data must be gathered, such as 
failure messages, error codes, incorrect operation. lack of 
some function, etc.. This information will generally lead 
the experienced support person to seek additional 
information based upon his recollection of similar 
problems or knowledge of the area of the failure. 

The search now begins for a resolution to the problem 
using the manufacturer supplied documentation, or 
previously solved problems if an appropriate database is 
available. The support person would then evaluate all 
available data and determine which solution he feels is 
most appropriate. If that solution did not correct the 
problem, then the solution for the next most similar 
problem may be attempted. If the problem remains 
unsolved, then the next level of support would generally be 
invoked. 

Challlienges of repair service support. Many challenges 
face those who perform repair service support. One of the 
primary challenges is locating helpful information related 
to the many different devices they support. If access to 
helpful information is not a problem, dealing with multiple 

Copyright 0 1997, American Association for Artificial Intelligence (www.aaai.org). All rights Reserved. 

DEPLOYED APPLICATIONS 883 

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



disparate databases is sure to be an inhibitor. The servicer 
must remember: what information is in which database, 
which search methods and syntax to use, and how 
information is stored in the database to enable effective 
searching for data similar to the way in which it was 
initially stored. Knowing or remembering where to search 
for specific types of data and howing what is relevant can 
be major obstacles. Another significant challenge, 
especially for new or inexperienced servicers is knowing 
what initial data about the device or failure symptoms 
should be gathered before the search for the solution even 
begins 

Use of AI technology 
The RESTORE system is designed utilizing three distinct 
AI technology components: Knowledge Based System 
(KBS), Cased-Based Reasoning (CBR), and Blackboard. 
The following sections describe these technologies in more 
detail. The KBS discussed in this paper refers specifically 
to a rule-based system. 

KBS Technology. The rule-based KBS represents the 
expert knowledge as data or rules within the computer. 
These rules and data can be called upon to solve the 
problems when needed. By utilizing the captured expertise 
(rules), the KBS processes information similar to experts of 
their domain. In the case of the project described in this 
paper, the experts are the actual developers and support 
personnel of AS/400 hardware systems who have a very 
in-depth knowledge of the system level hardware. They 
can quickly diagnose the problem and apply fixes to correct 
the problem. The expert rules were derived from their 
knowledge of the AS/400 system. The rule-based KBS 
technology was chosen for this project for the following 
reasons: 
1. Rapid proof of concept and prototyping 
2. Ability to handle complex diagnostic routines 
3. Easy to maintain and update 
There are several modules in RESTORE designed and 
implemented using KBS technology. All of these modules 
contribute to solving a common problem. 

CBR Technology. All CBR systems include two key 
ingredients: (1) algorithms for indexing, searching, and 
modifying cases, and (2) representation of a case. Cases 
are groups of features with associated problem descriptions 
that make each case unique and previously implemented 
problem resolutions. 

A casebase is similar to a database, and cases are similar 
to records in a database. Cases are generally represented 
by one or more case specific features, which again, are 
similar to fields of records in a database. However, unlike 
the database, one advantage of CBR technology is that the 
case searched and retrieved from the case base need not 
exactly match the search criteria. The search engine will 

retrieve the best matching 
user-defined preciseness. 

cases according to the 

lackboard Technology. Blackboard-based problem 
solving is a powerful means of flexibly combining 
individually developed software sys terns and modules in to 
a single integrated application. The blackboard approach is 
based on the idea that a collaboration of several experts are 
more beneficial in solving a complex problem than a single 
expert. This concept also reflects the typical AS/400 
computer system failure diagnostic process, where the 
expertise and collaboration of several hardware and 
software specialists may be required to diagnose a problem. 
In some cases, this expertise has been captured and 
represented as rules in knowledge-based systems. In other 
cases, their expertise is documented as problem/fix tables 
for each model of AS/400 systems and are updated with 
new models as they are announced. This technology was 
ideal for this implementation because of its ability to 
integrate modularized and independent knowledge sources, 
and allow them to all contribute to solve the problem. 

Basically, the advantages of a blackboard architecture 
include separation of knowledge processing into 
independent modules with each module being free to use 
the appropriate technology to arrive at the best solution 
with the most efficiency. This is the important component 
that tied together all the subsystem components of the 
RESTORE system. 

REST0 Functional Overview 

As the name suggests, the RESTORE application is a 
knowledge-based system that contains analysis and repair 
expertise from past experience and uses this information to 
optimize the future repair efficiency. In the CBR 
subsystem, the expertise will be in the combined form of 
development, manufacturing, and field repair experiences 
structured as historical cases. Using proper rules and case 
retrieval methods, the system can not only identify the 
historical cases that exactly match the current case, but also 
identify the ones that are similar. Based on the 
user-defined sensitivity, the retrieval mechanism can 
present solutions to the current problems that are known 
fixes. RESTORE is a hybrid system that combines the 
flexibility of a rule base and the maintainability of a 
casebase. The remainder of this paper will discuss the 
technology, design and the implementation results 
primarily focused on the case base module in RESTORE. 

Figure 1 illustrates the overall service support process 
used by the AS/400 hardware support center. It shows how 
problems can flow to the support center personnel who in 
turn use the RESTORE application and other corporate 
databases to solve the reported problem. It also shows how 
the various portions of the RESTORE application are used 

884 INNOVATIVE APPLICATIONS 



to locate different types of information to solve the 
problem. 

Restore Overview 
(RemoteExpert System to optimize Repalr Efficiency) 

Servicer 
--_ 

customer 
. . 

-. 

concenbators 

Figure 1. AS/400 Support and RESTORE Overview 

RESTORE Functional Architecture 

’ PTP 
I.-l 

Figure 2. RESTORE Functional Architecture Diagram 

Design details 
Figure 2 illustrates the functional architecture of 
RESTORE. The Session Manager includes the blackboard 
control module. It also contains additional functions to 
access AS/400 RETAIN database where all the field repair 
call information is stored. The Experience Manager 
contains the CBR module with all necessary components 
for that knowledge base. The Data Manager contains 
several rule-based KBS modules. The following sections 
describe these modules in more detail. 

Blackboard Control Module. The blackboard 
architecture in RESTORE has three ma.jor components. 
1. Centralized global workspace or memory called a 

blackboard which saves the solutions generated by the 
knowledge sources. 

2. Collection of Knowledge Sources (KS) made up of 
AS/400 diagnostic specialists that generate 
independent solutions on this blackboard using KBS, 
CBR, and problem/fix tables. 

3. Blackboard control module which reviews the 
knowledge sources and recommends the most 
appropriate solution for a given problem. 

This control module plays an important role in managing 
the knowledge sources in RESTORE. It keeps track of the 
knowledge source modules and their messages, including 
the output messages containing solutions. It also knows 
how to resolve the conflicts in case of inconsistent 
solutions or contradicting solutions placed on the 
blackboard by the KS modules. 

, 
Automated Remote Support using Blackboard 

Q Local 
Syslem 

I/o 

Field l-iistory 3> 

Mfg.Hk%ry ‘, 

End User lntetface 

Figure 3. Automated Support Using Blackboard Diagram 

Figure 3 illustrates the blackboard architecture in 
RESTORE. All knowledge sources are identified as 
experts: Data Expert, Exception Expert, Case Expert, 
Forecast Expert, and Solution Expert. These knowledge 
sources post and retrieve information using the blackboard. 
The control module manages the information in and out of 
the knowledge sources. 

KBS Module. RESTORE was developed as a follow-on 
to an existing AS/400 rule-based KBS and several other 
information-access tools. RESTORE was designed to 
incorporate much of the existing functionality of these 
other tools, to minimize the development effort, ease the 
transition to RESTORE, and also facilitate the acceptance 
of this new tool. 

DEPLOYED APPLICATIONS 885 



One of the key features of RESTORE is that it performs 
multiple searches through a variety of different knowledge 
sources, and gives the user a concise summary of its 
findings. The rule-based KBS in RESTORE contains four 
major modules: Data Expert, Exception Expert, Solution 
Expert, and Forecast Expert. Some of these sources were 
designed as direct replacements of the previous rule-based 
KBS. In addition, some were designed to integrate with 
existing diagnostic tools used by the service personnel. 

Data Expert: 
The Data expert was enhanced to incorporate new 
rule-based logic for interpreting, analyzing, and inferring 
knowledge from the existing information entered. For 
instance, in the domain of AS/400 repair service and 
support, the following information could be entered by a 
user of RESTORE: AS/400 system type = 9406, model = 
F80, and reference code = 9337DOOl. 

Based on the AS/400 domain, the following additional 
information can be inferred: 

Area of system = Disk, Type = 9337 
Each time a user of RESTORE enters new information, the 
current set of information is analyzed through the KBS rule 
processing, and any additional knowledge is added to the 
current domain. This reduces the amount of obvious or 
redundant information that must be entered by the user, and 
narrows the search domain, producing more concise and 
accurate search results. 

The additional KBS experts also provide several 
independent and highly specialized tasks. A couple of 
these tasks include a lookup into the AS/400 On-line 
Maintenance Documenation, and a search for relevant and 
the most current AS/400 Software patch information. Each 
of these functions will analyze the set of information that 
has currently been provided either by the user or inferred 
by another KBS module. 

The key information used includes the AS/400 system 
CPU type and model, operating system release level, and 
valid system error codes and message identifiers. 
RESTORE also has access to a machine Serial number 
cross match database to allow much of this additional 
information to be gathered. Based on the available 
information, the search will be either initiated or skipped, if 
not enough information has been provided. 

The Documentation lookup will locate information from 
the relevant sections of the Maintenance Documentation. 
The Software Patch lookup, which can consist of multiple 
software releases, will locate relevant patch numbers, any 
supersedes or replacements, and an optional Cumulative 
patch that consists of multiple patches for a given software 

release. 

Exception Expert: The predecessor Expert System stored 
action plans that were discovered, and not part of the 
original AS/400 maintenance documentation. Use of the 
data represented as “exceptions” had been so extensive that 

886 INNOVATIVE APPLICATIONS 

RESTORE needed to continue to reference it in its original 
form due to the time required to convert the large amount 
of data to another form. Ideally, this information should be 

eventually converted to stored cases. 

Solution Expert: The solution expert is really a logical 
container within the blackboard module which allows the 
user to select all or portions of the solutions identified by 
the various modules and export them to be used by other 
tools or sent to another person for implementation of the 

solution. 

Forecast Expert: The forecast expert was intended to be a 
data mining application that would alert the user to 
potential situations such as a high number of problems on a 
specific device (by serial number) or alert the product 
developers of the most common problems reported through 
the RESTORE application. This module has not yet been 

completed. 

CBW Module. The core knowledge source in RESTORE 
is the Case Expert and was designed using the Case-based 
reasoning technology. 

Basic Concept: The RESTORE design incorporates the 
common basic steps of CBR. This section describes how 
these steps are used in the design of the CBR module. 

Create a casebase shell to hold future cases. This is the 
most critical step in building a CBR system. The 
efficiency of the search engine will be governed by the 
data structure of the cases and their features. 
Add unique cases to the case base using unique 
features. Features are attributes of cases. Adding a 
unique feature to the case base involves specifying the 
type of matching which should be applied to the feature 
and the match and mismatch weights. These feature 
weights specify how much a match or mismatch on a 
particular feature will affect the overall score. In some 
cases, a set of case specific weights may be used to 
emphasize the importance of a specific feature match or 
mismatch. Every case must be verified for its 
uniqueness before adding it to the case base. 
Create an index using a data structure that will 
optimize the search effi ciency. Although, it is possible 
to use the case base as-is to search for possible matches, 
it is not very efficient since not all the searches are 
looking for exact matches. In order to optimize the 
efficiency by the search engine, the case base must be 
systematically packed to load faster and occupy less 
memory once it’s loaded. The method used to pack the 
index will depend on the scanning method used by the 
search engine. 
Load the index into memory prior to search. The time 
and size of the memory required to load the index will 
depend on the method used to pack the index. There is 
no direct correlation in the size of the packed index and 
the performance of the search engine. 



Specify global match parameters such as maximum 
number of cases to retrieve and the preciseness of the 
match required. These global casebase parameters 
allow the search engine to retrieve only the top ranked 
matches with the score higher than the threshold value. 
These parameters are very critical when this case-based 
system is used in remote/automated mode. 
Preprocess incident parameter to optimize search. 
Without some form of text preprocessing, the search 
engine would be overwhelmed with “noise” text that 
may accompany the text based features. Some 
preprocessing is obvious, such as, convert to upper case, 
remove word separators, remove ignored words, etc. 
Define local match parameters such as match, 
mismatch, and absence score. Once an incident is 
ready to be presented to the search engine, the final local 
weight parameters must be defined. One important 
weight most often ignored is the absence weight. If the 
incident case contains a feature that is not represented in 
a stored case, the final match score should reflect a 
deduction of the absence weight. 
Perform search. The search engine scans every stored 
case, compares it to the incident case on the closeness 
and scores each case accordingly, based on matches, 
mismatches, and absence. Then, it will rank all the cases 
on the final match score, and retrieve the top ranking 
cases above a specified threshold. 
Receivepre-ranked matched cases. These pre-ranked 
cases must be identified and stored into memory since 
there may be multiple searches on multiple case bases. 
Redefine localparameters and repeat search. The 
entire search and rank process must be dynamic. If the 
highest ranked match is not satisfactory, a modification 
for the incident case feature is needed before repeating 
the search. If all else fails and the search engine does 
not return a matched case, then a new case must be 
added to the case base. 

Basic Requirements: The CBR module in RESTORE was 
specifically designed to optimize the search of a product 
maintenance database. With proper data structure and 
index scheme, it was possible to implement this module 
with only the following key functions: 
1. Create compressed index of the casebase to optimize 

the search 
2. Preprocess cases (parse and create search objects, 

properties and descriptions) 
3. Highly optimized search engine 
4. Identification of best match 
5. Casebase update 

The above functions only allow the user to build and 
retrieve matched case histories manually. Since RESTORE 
will be eventually operating automatically and remotely, 
many other functions are needed in order to automatically 
provide accurate property information on current incidents, 

track all open incidents and close the ones with verified 
successtill resolution, and finally, provide a case-base 
maintenance facility. 

RESTORE CBR Process 

I 
Incident Case 

Figure 4. RESTORE CBR Process Diagram 

Figure 4 illustrates the process of the CBR module. All the 
key functions identified in this section are important parts 
of this process. The “Present Q & A” and “Present 
Solution“ functions are also key parts of this process. They 
manage the input and output of the case-related information 
from the CBR module. 

Some of these functions rely on “product specific” rules. 
Many of these functions are being constructed as separate 
modules to allow for easier separation of the product 
specific rules from the generic “logical direction” rules. 
This will allow for adaptation to other problem domains 
with minimal program changes to the base application. 
The domain specific knowledge can be added primarily in 
the form of cases in the case database and external sources 
for other helpful information such as on-line 
documentation. 

Integration of technologies 

The priority in implementing the RESTORE application 
was to focus the development effort on the core technology 
- the CBR module. Around this core CBR technology, the 
remainder of the application would be implemented with 
standard off-the-shelf technologies for the deployment 
platform of choice. We chose to alter the blackboard 
portion of the original design to be a “driver” of the overall 
session flow rather than a “reactor” to the data presented. 
Because the RESTORE application was dealing with a 
somewhat limited domain (servicing a specific family of 
IBM computers), this would improve the efficiency of the 
searches. This “Session Manager” as was designed, 
contained high-level program flow and served to analyze 

DEPLOYED APPLICATIONS 887 



. 

all data that was presented. This was accomplished 
through use of both rules and a special set of “cases” in the 
case base used only by this session manager. Together, 
these functioned to determine which sources of knowledge 
were appropriate to search using that data appropriate for 
the specific knowledge source, and in some logical order. 

A DB2 relational database was chosen to store the case 
data and solutions. The database tables were designed in 
order to allow efficiency in: 
* Creating and updating the specialized CBR indexes 
eJ Identifying and transforming new incidents or queries 

into new cases 
* Allow standard SQL queries into the case and incident 

data to track problem trends, etc. 

Uniqueness of design 

One unique feature of this system is the design of its 
high-performance CBR kernels including the search 
engine. This new design emphasizes the search 
performance and its accuracy in a CBR implementation for 
a help desk application. The resulting performance is 
discussed in later sections of this paper. 

Another unique feature of this system is its use of the 
blackboard technology in its design. This design allowed 
the RESTORE application to take advantage of the strength 
of this technology in the following way: 
1. Modularize the development of independent 

knowledge sources 
2. Integrate the new knowledge sources with the existing 

ones 
3. Allow the system maintainers to simplify the 

management of the updates 
The last advantage is particularly important because the 

product support strategy requires the maintenance team to 
update many independent knowledge sources for all models 
of products as they are released. In this domain, there are 
currently four system types, more than ten models and 
more than ten software release levels. 

Implementation 

An iterative step approach was used to implement this 
project, partially because a large amount of information 
had already been gathered and represented in a simple 
rule-based knowledge base. It was already deployed to the 
target audience. We chose to incorporate that information 
as-is into this project to speed building the knowledge and 
provide a base level of user familiarity. As new functions 
were completed, they were given to a subgroup of the 
target audience for ‘live’ testing. This provided early 
feedback and helped build a core of users who could act as 
advocates for the new tools. 

Application development 

As the RESTORE development team and project were 
pulled together, the first task was choosing where and how 
to develop the application, taking into account the 
following: 
. Skills of the development team 

- Considerable VM, REXX and Pipelines expertise 
- C/C++ experience 

. Application requirements 
- Optimal Search engine performance 
- Rapid development/prototype for User interface 

routines 
- Support and access multiple and independent 

knowledge sources 
* Database requirements 

- Relational database - DB2, SQL access 
. Deployment requirements/restrictions 

- Worldwide deployment 
- Support multiple types/level of user workstation 

(i.e. Dumb terminals) 
0 Development Tools/Environment 

- Access control/checkout 
- Build/integration 

Development process 

Project Plan: The ideas for this project began in late 1991 
as a method for improving the effectiveness and coverage 
provided by the existing knowledge base. After evaluating 
different knowledge processing methods and commercial 
tools (coupled with our desire to utilize the existing base of 
knowledge), we decided to develop a new application to 
allow us to merge several types of knowledge processing. 

These ideas quickly grew to become a full-fledged KBS 
project and grew in proposed function and scope. The 
basic concepts and high level design were put together over 
the closing months of 1991. This began as a pet project 
that we developed in addition to our assigned duties. 
Throughout the first half of 1992, we developed the ideas 
and fleshed out the concepts while building a project plan 
and business case. Much of this time was spent raising 
awareness of the concepts and defining benefits to the 
people who would be most affected. 

The business case was first presented to management in 
June 1992. Within three months a development team was 
assembled and the design completed. By early January 
1993, a limited function prototype was undergoing 
usability and ‘proof of concept’ tests with the targeted 
users. The first full function version was placed in 
production in March 1993. Worldwide roll-out began in 
June 1993. 

The resource required for this initial version amounted 
to approximately 4 person-years effort. This includes the 
low-level designs, coding, test and support of the initial 
roll-out. Since our development and deployment utilized 

888 INNOVATIVE APPLICATIONS 



the existing corporate processing and communications 
infrastructure, no costs other than the development 
personnel were planned or realized. 

Justification of this cost: Cost justification for 
development of this tool was based primarily on the theory 
that with the proper information readily available to the 
support center personnel, the duration of the calls should be 
reduced and the rate at which those problems are fixed on 
the first call should improve. Additional benefits were 
expected by reducing the unnecessary replacement of parts. 

Some intangible savings, though not quantifiable were 
also expected. Customer satisfaction with service was 
expected to rise due to handling problems quicker, and 
improving the rate at which they were solved on the first 
call. In addition, feedback of specific field failure data 
captured through this application would enable product 
development teams to recognize and correct problems 
sooner than was historically possible. 

Benefits and Validation. Validation was performed using 
real calls to the support center and was intended to measure 
two points. First and foremost was validation of the time 
savings per problem. A secondary point was the parts 
savings based on use of the knowledge provided by this 
tool. 

After actual problem calls to the support center were 
handled, a follow-up evaluation was performed by a 
different support person, using only the information 
contained in the call record. During this follow-up 
evaluation, this knowledge tool was used as the first source 
for information. Actual time required to locate the proper 
solution was measured in both cases. Parts replacements 
were also tracked. 

A range of savings was identified based on the 
conservative and potential values of several variables, such 
as usage rates, effectiveness based on partial population of 
the knowledge domain, etc.. This validation was 
performed when only a few hundred cases were present in 
the casebase. Solving problems for which information 
existed in the casebase was dramatically improved. The 
time required to locate the proper information was reduced 
and consistency in locating the proper information was 
greatly improved. Since the plan was to add all new 
solutions (those not found in the casebase when searching 
for a solution), the overall effectiveness would naturally 
improve as the casebase becomes more populated. With 
the relatively few cases at the time of this evaluation, the 
effectiveness was expected to be quite low. In reality 
however, since the first cases that were added were those 
for which many calls to the support center are received, the 
effectiveness was higher than expected. 

The results of this trial showed time savings for the 
support center person of eight to nine minutes per problem 
call. This represents a significant portion of the overall 
time spent on each call. In addition, the instance of parts 

replacement CC’;IS reduced by 15 to 20%. Overall, these 
results represented worldwide savings of between 33 and 
40 million dollars (US) in the first year alone. This is the 
total benefit, including that from the original knowledge 
base data. This was projected to grow in subsequent years 
based on increasing the knowledge base (domain coverage) 
and usage. 

WW Knowledge Base Distribution 

Self contained country local 
KBS is maintained via 
central KBS link 
Several country support 
centers tied to a central 
RETAIN & KBS. KBS is 
maintained as in “A” 
Support center reliant on 
central KBS 

Figure 5. Worldwide Knowledge Base Distribution 
Network 

Application deployment 

This application was deployed worldwide and is regularly 
used by over 2000 service and support personnel. As 
mentioned earlier, RESTORE is a follow-on project that 
had the following requirements: 
1. Provide a superset of the functions of the earlier 

Expert System. 
2. Deploy worldwide as effectively as the predecessor. 

Figure 5 shows a high level view of the knowledge base 
distribution network utilized to distribute the application 
set and databases. The remote nodes are then 
automatically updated worldwide. 

Deployment process. This process is used to distribute all 
executable programs, data files, SQL data for stored cases, 
and SQL data for incidents (usage information). The 
programs and data files are automatically distributed 
worldwide via interconnected VM service machines. The 
stored cases are developed at a master location, and 
distributed to remote nodes. 

(i) Updates: All data and program updates are made to 
the master distribution account in Rochester MN, and the 
service machines automatically update the other 
world-wide service locations. This process is used for all 
RESTORE programs, control files, and data files. In 

DEPLOYED APPLICATIONS 889 



practice, it takes less than three minutes for all the 
worldwide machines to be updated, once the master 
machine receives an update. It takes less than 10 seconds 
for each site to receive and store the update files, so the 
bulk of these three minutes is due to network delays, 

primarily between the US and Europe or Japan. 

(ii) Projectplan: The deployment plan consisted 
primarily of three parts. The first was training and use by 
the local (Rochester) hardware support team. This team 
was already using a simple rule-based system to assist them 
in solving problems involving a machine failure code. This 
was a very narrow and finite domain. Our challenge here 
was to modify their thinking to encompass a much broader 
scope and multiple problem domains to enable them to 
realize the benefits this application could provide. This 
consisted of specific training and demonstrations showing 
how the flow of this application mirrored the flow they 
generally followed in solving a problem. 

The second was training a subset of the users to create 
new cases and populate the casebase. Our initial plan was 
to enable all users to perform the initial building of new 
cases for any solutions they found that were not already in 
the casebase. Then a select few (basically, the leaders of 
the sub teams) would review the cases for technical 
accuracy and assure adherence to our case structure 
guidelines. This was soon modified to a scheme where all 
users are expected to identify new solutions to be added to 
the casebase, but a core of two or three people actually 
build the case. The sub-team leaders are still responsible to 
ensure technical accuracy, but the few case builders are to 
ensure the case guidelines are followed. 

The third major part was training and use at the remote 
support centers around the world. A User’s Guide was 
assembled and distributed to the leaders of these remote 
support centers. A demonstration and presentation of the 
features and flow of the application was made at a meeting 
of these support center leaders. They in turn would then 
work with their respective teams to ensure proper 
understanding and operation of the application. 

(iii) Other costs: One cost that is sometimes overlooked 
is the cost of maintenance of the actual data or knowledge 
contained in the tools. We chose to have the technical data 
maintenance performed by the more knowledgeable 
support people who would also be the users of the tool. 

Platform. RESTORE is currently deployed on the VM 
platform, and updates are automatically handled over the 
VM RSCS network. This decision was based on the 
reliability and availability of the existing data and 
knowledge distribution methods, as well as the VM code 
development skills that were available at the time. 

The main consideration for choosing the deployment 
platform was the need for worldwide distribution and 
access. The RESTORE application would be used by 
AS/400 service personnel throughout the world. VM was 

the logical chorce since the network was available 
worldwide, and tools were already in place with which to 
distribute the programs and the data. 

Training. RESTORE was developed as an AS/400 
Product Support Center Representative (PSC Reps) 
assistance tool. These PSC Reps have limited knowledge 
of VM, but are highly specialized in their area of AS/400 
expertise. Team leaders for these PSC Reps were closely 
involved in the design meetings of the RESTORE tool, and 
this simplified the training process. 

The RESTORE developers and the Support Center Team 
Leaders performed all the training of the PSC Reps. 
Classes for RESTORE users typically took one hour, and 2 
more hours of training were needed for case-builders. 

Maintenance 

Stored-case data. If a user runs RESTORE, and a useful 
action plan is not found, the user can enter the action that 
fixed the problem, and flag the incident as ‘case-required.’ 
A service machine automatically detects these incidents, 
and notifies the case-builders. The case-builders typically 
take 10 to 15 minutes to research and build a case, and to 
forward it for approval. Currently, about 8 to 12 new cases 
per week are being added. 

On-line documentation. This data is refreshed with each 
major AS/400 Operating System release, typically a couple 
times a year. Due to this low frequency, this is a fairly 
manual process. 

Software patch information. Due to the complexity of 
the operating system, the number of supported releases, and 
the number of supported devices and IBM Program 
Products new patch information is generated every day. 
Currently, this information is automatically processed and 
forwarded worldwide, via VM service machines. 

Exception information documentation. The maintenance 
associated with this (predecessor) type of data is very 
minimal. About twice a year, one support center rep 
spends a day removing any obsolete data. Any new data of 
this type is entered as stored cases instead. 

Impkmentation Results 

Total cost of implementation. The total cost associated 
with this project amounted to about 1.2 million dollars 
(US). This includes the design, coding, testing, training, 
and maintenance support for three years. This also 
includes user training and setup and maintenance of four 
installations worldwide with their associated maintenance 
including code level and database synchronization. Since 
we chose to place the knowledge/data maintenance 
responsibility with the users, the time invested in such 
maintenance is a relatively low incremental amount above 
what they were spending to document problems and 
solutions in notes and other non-knowledge based means. 

890 INNOVATIVE APPLICATIONS 



Functional Results. Overall. the choice of using C and 
REX for coding has worked out very well. This has 
enabled very quick redesigns that became necessary as 
cases were developed. It is very important that the users of 

’ the tool were highly involved in the early design decisions. 
This, coupled with the planned ‘Beta’ deployment and the 
significant usability rework of the final product, meant that 
no significant functional changes have been required. The 
primary changes were made between the Beta and final 
stage. Other than that, several short-cut methods have been 
implemented to reduce keystrokes. 

Knowledge Bases. The transition from the predecessor 
Expert System to RESTORE dictated that the new tool had 
to provide all of the existing knowledge, and more. This 
incremental requirement clearly defined our starting point, 
and where improvement was needed. All of the data 
refreshes with a high frequency of change have been 
automated. As a result, our users have come to expect 
extremely current data, and the Support Center efficiency is 
very high. 

There are currently over 2000 active stored cases in 
RESTORE, and new cases are being written at a rate of 10 
to 12 per week. These cases have an average of 4 to 6 
properties each, and we have found our initial performance 
projections to be accurate. 

Performance: In a live help desk environment, the speed 
of response can have a high impact on customer 
satisfaction, as well as morale and productivity. Certain 
design modifications were made to reduce keystrokes, 
provide shortcuts, and to speed up the data searches. 

One interesting point is the reliability of moving large 
files over the IBM Remote Spooling Communications 
Subsystem (RSCS) network. Some of the patch data files 
are over 100 MB long. A file this large can take up to four 
hours to transmit across the network, due to scheduling 
constraints beyond our control. 

The tradeoff we have reached is to pack this data to 20 
percent of its original size, and add about 0.6 seconds to 
the real-time data search process. Our users have agreed 
that this is a worthwhile compromise. 

The RESTORE users are concerned with the following 
performance factors: 
1. Minimize the number of screens. Screen refreshes can 

take 5 to 10 seconds for remote users at some 
worldwide locations. 

2. Minimize screen-to-screen delays. Part of this is due 
to interactive network delays, as mentioned above. At 
the master site, most screens refresh within 2 seconds, 
and two take about 5 seconds to refresh. 

3. Minimize keystrokes if possible. 
RESTORE design focused on these three performance 

areas. Aside from interactive network delays, which is a 
continual challenge to improve, we have been very 
successful. During the longest screen-to-screen delays, we 

have added progress-indicator blips, which show the brief 
description of the task being performed. This has almost 
universally improved the perceived performance of 
RESTORE. 

(i) Case search engine: The case search design has 
been very effective. Several minor changes have been 
implemented, and they could best be characterized as 
application-specific. The scoring algorithms for properties 
with multiple value answers were expanded and 
generalized in order to produce the results expected by the 
case builders. The scoring algorithm for one particular 
property, the textual problem description, was fine-tuned 
several times in order to produce expected scoring results. 

(ii) Performance of the design prototype: The case 

search was designed to be an extremely high-efficiency 
process, and our evaluations have not changed. Some of 
the data-preparation work, prerequisite to the search, 
needed to be modified in order to improve the apparent 
performance of the case-search. 

In light of the application environment, this issue was 
very important from the start. A target was established of 
0.5 seconds to score the initial set of cases, projected to 
include upto 10,000 cases. 

It was possible to easily stay within the target of 0.5 
seconds for the ranking of the initial set of case data. Thus, 
the case-based design will not need further enhancements 
to satisfy our performance requirements. 

(iii) Performance of the final implementation: The 
case-search is so efficient that performance has never been 
an issue. The case-search interface screen takes 3 to 5 
seconds to be built initially, and even the most 
sophisticated case search takes less than 0.3 seconds. 

RESTORE was initially designed to run as a blackboard, 
performing data searches in parallel as needed. As it 
turned out, true parallel processing is available with some 
VM operating systems, but implementing it would have 
impacted, and not improved performance. A user typically 
spends an elapsed time of 3 to 5 minutes running one 
RESTORE consultation, from start to finish. This includes 
the time required to gather the pertinent data and enter it 
into the tool. The tasks that could be performed in parallel 
currently take 5 to 7 seconds, total, when they are run 
sequentially. 

Lessons learned 

Fairly early in the process of building and distributing 
actual case data, it was determined that some aspects of the 
RESTORE CBR function needed to be redesigned. These 
were predominantly related to usability and requests for 
enhancements. However, the only aspect of the case-search 
design that was changed was adding additional multiple 
answer scoring algorithms. 

During the development process, the designs were 
thoroughly discussed, documented, and reviewed. Due to 

DEPLOYED APPLICATIONS 891 



the variety of input that was received, it was concluded that 
certain areas of the original design needed to be 
implemented with the intent to easily modify them later. 
This added initial resources for the implementation, but 
dramatically reduced the time required to make design 
enhancements as a part of maintenance. 

Summary 
The RESTORE application was designed to solve a 
product support and help desk problem for the AS/400 
business computer systems. It was designed using AI 
technologies, such as KBS, CBR and Blackboard to solve a 
very complex problem that is not easily solved otherwise. 
Although not all of the initial design components were 
implemented fully, this system has already demonstrated 
the benefits of using these technologies. 

One of the unique features of this system is its high 
performance CBR subsystem. This CBR module design 
applies to a specific application domain such as the help 
desk application for AS/400 systems. Furthermore, the 
rule-based and case-based hybrid implementation greatly 
increases the effectiveness of RESTORE to operate 
remotely and automatically. 

Another unique feature of this system is the blackboard 
architecture used in its design. This design allowed 
RESTORE to take full advantage this technology by 
modularizing the development of independent knowledge 
sources and integrating these new knowledge sources with 
the existing ones. It also allows the system maintainers to 
simplify the management of the updates. This is 
particularly important because the product support requires 
the maintenance team to update many independent 

knowledge sources for every model of product as they are 
released. 

Implementation began with a skeleton simulating the 
various functions and user user interface. This allowed for 
as much user interaction and user input to the design of 
both the user interface and functions as possible. New 
functions were added as soon they were operational to give 
the user the ability to provide early feedback. This 
approach has allowed the ability to revise items based on 
user input and actually provide some functions ahead of 
schedule. However, this shifted the focus to some domain 
specific functions and delayed the building of cases. 
Significant case building has been ongoing for the past 2 

years. 

References 

Charles Moon, Tom Shore, and Gary Brophy, “Design of 
High Performance Case Base Module for a Help 
Desk Application and Its Implementation 
Results”, IBM Technical Report, 1997. 

Daniel Corkill, “Blackboard Systems”, AI Expert 
6(9):40-47. September, 1991. 

Chuck Williams and Bruce Clayton, “Case Base Retrieval”, 
White paper, Inference corporation, 1994. 
(http://m5.inference.com/products/cbrwp.html) 

Christopher K. Riesbeck and Roger C. Schank, “Inside 
Case-Based Reasoning”, Lawrence Erlbaum 
Associates, 1989. 

David S. Prerau, “Developing and Managing Expert 
Systems”, Addison-Wesley, 1990 

892 INNOVATIVE APPLICATIONS 


