
EWS NS: SC ing Trai e - erlandd

Ernest0 M. Morgado Jo50 P. Martins

SISCOG - Sistemas Cognitivos Lda.

Camp0 Grande 30 - 6”B
1700 Lisboa

PORTUGAL
ernesto@gia.ist.utl.pt

Abstract

We present a system, CREWS_NS, that is used in the
long-term scheduling of drivers and guards of the Dutch
Railways. CREWS_NS schedules the work of about
5,000 people. CREWS_NS is built on top of CREWS, a
scheduling tool for speeding the development of
scheduling applications. CREWS heavily relies on the
use of AI techniques and has been built in the
perspective of a “white box” system, in the sense that
the planner can perceive what is going on, can interact
with the system by proposing alternatives or querying
decisions, and can adapt the behaviour of the system to
changing circumstances. Scheduling can be done in
automatic, semi-automatic or manual mode.
CREWS has mechanisms for dealing with the constant
changes that occur in input data, can identify the
consequences of the change and guides the planner in
accommodating the changes in the already built
schedules (re-scheduling).

Problem Description

CREWS_NS is a system that addresses the long-term
scheduling of train crew at NS, the Dutch Railways (NV
Nederlandse Spoorwegen). Long-term scheduling of crew is
typically done 6 to 12 months prior to the execution of the
schedule and consists in arranging the tasks that have to be
done by crew members into duties (sequences of tasks to be
done by one crew member in one day -- Figure 1). A set of
duties for the crew members of a certain personnel base
with certain qualifications is called a schedule. Crew
scheduling is known for its algorithmic complexity. The
problem is even more complicated when the quality of a
solution depends on subjective constraints that are hard to
describe in quantitative terms. It is usually carried out
manually by a small number of planners that acquire most
of their knowledge through experience. In Dutch Railways
long-term scheduling of crew involved 24 planners that,
working full time, would take about 6 months to produce
the duties for about 5,000 train drivers and guards.

Copyright 0 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

JMartins @ interg.pt

Besides the human skill of efficiently arranging tasks
into duties, crew scheduling has to deal with the ever
changing information in data. Despite being done several
months before the execution of the schedules, time
constraints require this task to be started well before its
inputs - the final timetable and rolling stock scheduling -
have been completed. Moreover, after the schedules have
been completed and execution has started, the inputs of the
problem keep changing, requiring the outputs to be
constantly updated. For this reason, the schedules produced
have to be revised several times due to timetable changes
as well as the physical resources associated with tasks. A
human planner not only has to deal, within a short period
of time, with huge amounts of data to produce schedules
(scheduling), but has also to handle changes that pop up
constantly (re-scheduling), most of them produced by
different departments and thus often incomplete and
inconsistent as a whole, which must be incorporated in the
already produced schedules without producing much
disturbance.

Another aspect that puts a high demand on planners is
the increasing complexity of labour rules, required to
comply with increasing social benefits given to workers.
Because of this, scheduling crew is considered by railway
companies to be much more difficult than scheduling
rolling stock (equipment) or producing the train timetable
(scheduling rail track resource). In short, crew scheduling
requires human skills, knowledge, and hard work.

Being a typical resource allocation problem, we might
be inclined to consider it as a job shop problem (Fox
1987) (Smith 1889), where the trains are activities and the
resources are personnel individuals. Indeed, there are some
similarities with this problem, but there are many
differences, that prevent us from transposing techniques
from one domain to the other. (1) Besides dealing with
time constraints and other constraints of the job shop
domain (e.g., equipment constraints), crew planners must
also deal with space constraints to prevent space
discontinuities in duties, having to position crew where
they are needed, as passengers in trains or other
transportation means. (2) They must also deal with
complex train frequencies, such as week frequencies (e.g., a

DEPLOYED APPLICATIONS 893

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Frequency

(Saturdays,

Duration Local work Meal break

Figure 1: Example of duties.

train may run only on weekends), year periods (e.g., only
during summer), and special days (e.g., on holidays and
days before holidays), which puts additional constraints on
the combinations of tasks. These two aspects are critical to
the quality of the final schedules and to the efficiency of
the scheduling process. (3) The work periods of crew do
not have fixed times, as shifts in industry, but can slide
during the day to accommodate the irregularity of the train
operation, although subject to constraints. The resource
sliding dynamics makes very difficult to analyse activity
demand and resource contention as is usually done in the
job shop domain (Sadeh and Fox 1991). (4) The labour
rules are very complex and change every year due to unions
pressure. Worse, to avoid personnel strikes planners must
account for exceptions to the rules. This requires a high
degree of flexibility in accommodating exceptions and in
changing rules, without compromising the efficiency of
the process. It requires also a representation model to be
easily understood by the planners, different from a
constraint representation model based only upon variables
and values (Sadeh and Fox 1991).

Crew scheduling has also been approached by
traditional programming (supported by operational
research, aiming at an optimised solution), but the results
obtained with full automatic “black box” optimisation
algorithms had only limited success and have proven to be
unsatisfactory in the following aspects: (1) when faced
with a full size problem, these solutions tend to need
computational resources that by far exceed what is
available and they cannot cope with the combinatorial
explosion; (2) they cannot provide explanations about the
decisions placed in the solution; and (3) solutions cannot
be manipulated by human planners to adapt them to
changing circumstances or to ill-represented constraints.

In summary, crew scheduling presents several
difficulties, some of them are external to the scheduling
problem itself, while others are internal to the problem.

The external difSicuZties are related with the complexity
and distribution of data (data is produced by different
departments, at different times, and is often incomplete and
inconsistent), with the fact that data is in constant change
(data is not produced once for all; while the problem is
being solved data keeps on changing and it is important to

894 INNOVATIVE APPLICATIONS

find out the effect that the changed data has on the work
that was already planned), and with the large amounts of
data involved in the problem (the problem is too big to be
solved as a whole and by one single planner; it must be
partitioned into manageable partitions, each of them being
handled by one planner).

The internal di@kuZties are related to the combinatorial
explosion of the problem and with the multiple and
complex constrains that have to be satisfied by the duties.
These constraints include physical constraints (e.g.,
temporal continuity in tasks, spatial continuity in tasks,
and compatibility of frequencies and year periods), Zabour
and social constraints (e.g., starting and ending place of a
duty, starting and ending times of a duty, compatibility of
rolling stock, transfer times between different rolling
stock, maximum duty length, meal breaks -- associated
with local resources, such as restaurants), and there are
economical constraints (that may want to minimise the
cost of the operation or the number of resources required).
The constraints may either be hard (cannot be violated) or
soft (may be violated, but violations should be avoided and
recorded).

escription

Since human planners can build acceptable schedules where
algorithmic solutions clearly fail, we took the challenge of
using AI techniques as an alternative to traditional
computer technology. One of our initial goals was to
produce a “white box” system, in the sense that the planner
could perceive what was going on, could interact with the
system, proposing alternatives or querying decisions, and
could adapt the behaviour of the system to changing
circumstances. The result is a system that plays the role of
a “digital colleague” interacting with planners to build
schedules in a co-operative way.

Furthermore, since crew scheduling has idiosyncrasies
for each company, we took the additional challenge of
building a tool, CREWS, that contains the basic
knowledge for crew scheduling, remains constant across
companies, and only needs to be extended with the
particularities of each one (domain, labour rules,
scheduling strategies, and objectives).

Timefabfe RalIing $X0&k
Planning

CREWS

Filtered data 1 Schedules
I
I
I Filtered data

! Pre-Schedufer < * Server
I
I Tasks
I
I Sequences Old schedules
I Partitions

Schedules
I

Tasks for a partition
I

I
Sequences

II

Assignment

. 1

I I I
I

Scheduler1

I I

Scheduler2 . . . Schedulern

I _-----------------------~~~-~------~-----~~-~~~----- -_---__-_-----J

Figure 2: Architecture of CREWS.

The system reported here is built on top of CREWS and is Generator to position crew where they are needed, and the
called CREWS_NS. The goals set up for CREWS_NS CREWS Server to support the client-server multi-user
were the following: to provide decision support in environment. The Data Manager is connected with outside
personnel scheduling; to speed up the scheduling process; systems that supply the timetable, the rolling stock roster
to make scheduling more reliable; to take a considerable and the corresponding updates. After generation of the
workload from the planners; and to keep the role of schedules, these are sent to the mainframe of the company
planners in taking the decisions. that distributes them to the relevant departments.

The scheduling process is divided into three phases: (1)
Data management, where an analysis of data is done, in
order to find inconsistencies or incompleteness, both
among input data and between input and output data (to
identify which schedules have to be changed, due to the
change of input. data); (2) Pre-scheduling, where personnel
tasks are generated according to rules that specify the
number of personnel resources required for each type of
activity, are sequenced according to criteria that will guide
the scheduling phase, and are distributed among partitions
that are scheduled quasi-independently; (3) Scheduling,
where abstraction is used to reduce detail in data, heuristic
search considers relevant alternatives to produce good
solutions, and constraint satisfaction is used to reduce the
size of the state space and to guide the search process.

The Data Manager

The Data Manager supports the preparation of the input
data, handles change in data, enables simulation of
hypothetical data situations, and maintains the consistency
and completeness of data (both before and during the
scheduling process).

The architecture of CREWS is based on components
that address these phases, the Data Manager, the Pre-
Scheduler, and the Scheduler, respectively (Figure 2). There
are other components, such as the Positioning Trip

The Data Manager organises all data pertaining to the
problem in a data set. A data set is a set of knowledge
bases, each one corresponding to a certain concept relevant
for the problem. The entities in the knowledge bases are
linked together by data dependencies, that tell how each
concept depends upon others. Data dependencies are used in
the propagation of the effects of change in input data.
These entities are color-coded to tell whether they are
correct, inconsistent, or incomplete (Figure 3). The Data
Manager guarantees that the other components receive their
data in good condition and signals what must be changed in
order to have the problem solved after the initial conditions

DEPLOYED APPLICATIONS 895

have changed. The Data Manager has an explanation
facility that tells which data dependencies were violated.

The Data Manager handles change by keeping a record
of a sequence of situations. A situation corresponds to a
state in time of a data set. The Data Manager enables
simulations, by keeping alternative sequences of
situations, organised in a tree of situations. Each branch of
the tree represents a sequence of situations: one corresponds
to the real problem, while the others correspond to different
simulations.

The Pre-Scheduler

The Pre-Scheduler makes the preparations for scheduling,
looking at the problem from a global perspective. The Pre-
Scheduler is composed of the Task Generator, the Task
Sequencer, and the Task Distributor.

In the description of the Pre-scheduler and of the
Scheduler it is important to keep a distinction between
activity and task. An activity is a specific action that
provides a service, for example, a train, that allows
passengers to travel from one place to another, or a
shunting activity, that consists of moving cars and engines
within a station to form a train. A characteristic of an
activity is that it requires resources. An activity may
require rolling stock resources (e.g., a train may require one
engine and eight cars) and personnel resources (e.g., one
driver and two guards), to provide the service associated
with the activity or to operate the rolling stock resources.
The rolling stock and personnel resources determine,
respectively, what and who operates the activities. A task

896 INNOVATIVE APPLICATIONS

(in the sense presented in this paper) is the association of
an activity with personnel resources. For example, a train
activity may generate one task for a driver and one or more
tasks for guards.
Task Generator. Computes the tasks that must be
scheduled for a certain class of personnel. The generation of
personnel tasks is important for computing the number of
drivers and guards to allocate to each activity. Normally, in
a train, only one driver is needed, but several guards may
be needed, depending on the number and types of coaches.
The number of rolling stock units are derived from the
rolling stock rosters and other sources.
Task Sequencer. Uses abstraction to reduce the amount
of detail the Scheduler has to work with. It groups the
personnel tasks into preferential sequences to be performed
by the crew, that suggest one out of several trains as the
best one to follow. In many cases, these suggest that the
personnel follows the rolling stock, avoiding problems
resulting from train delays; however, there are cases where
they may suggest something else. For example, if the
operation is very regular and on time, it is not important
to follow the rolling stock; it may be more convenient to
follow a train series (a certain number of trains following
an operation pattern). Sometimes it may be useful that the
preferential sequences suggest the patterns of the duties
produced the year before, so that changes are minimised.
The preferential sequences are just suggestions, and may be
changed later on in the Scheduler. The Task Sequencer
produces these sequences, according to one of the criteria
above. This phase heavily relies on heuristic knowledge
about where and when it is reasonable to change the crew.

Figure 4: Pre-assigned and assigned tasks.

Task Distributor. Divides the problem into sub-
problems (partitions), so that they can be managed
effectively by the Scheduler. A problem partition may
correspond, for example, to a base of a certain class of
personnel. The Task Distributor determines to which
partitions tasks can be pm-assigned, taking in account,
among other aspects, the rolling stock and network
knowledge of the personnel associated with each partition.
A task can be pre-assigned to more than one partition,
allowing sub-problems to overlap. In this way, several
planners can try that task in their schedules. However, only
one of them will be able to schedule it. When that
happens, we say that the task has been assigned (as
opposed to pre-assigned) to the partition.

In Figure 4, we show a screen used in the Task
Distributor that illustrates some of these aspects. The
available partitions are listed and each partition can be
assigned a color; the constraints used in the task
distribution are also shown; the sequences of tasks were
computed by the Task Sequencer; tasks shown with a thin
line are pre-assigned to the partitions with the same colors

as the lines that correspond to the tasks; tasks with more
than one thin line are assigned to more than one partition;
and tasks shown with a thick line have been assigned to
the partition with the color of the line corresponding to the
task.

When scheduling a partition, the Scheduler only loads
the tasks that have been pre-assigned to that partition and
that have not yet been assigned (scheduled) in another
partition. When saving a schedule, its corresponding tasks
are assigned to the partition, if they have not yet been
assigned to another partition in the meanwhile. Of course,
when re-scheduling, the Scheduler also loads the tasks that
have been already assigned (scheduled) in that partition.

Tasks can be pre-assigned to partitions either manually,
by a planner, or automatically, following a strategy. These
two methods are integrated, allowing the planner and the
system to cooperate in partitioning the tasks. The
strategies use heuristics and constraints that can be changed
by the user. Tasks can also be swapped between partitions.

DEPLOYED APPLICATIONS 897

I IRASEQ.34 1 8909

RASEQ 42 8623 8660 8651 8659
123450 DH Ljj_p”s. ___~ _.s._I..‘“IIl--- --II_

123450
Gn Lw Gn Lw Gn Lw Gn Lw Gn Lw Gn

Figure 5: Moving tasks from the candidates to the duties (manual mode).

The Scheduler

The Scheduler works from the perspective of a partition,
creating a schedule by grouping the tasks of the partition
into duties according to rules and suggestions regarding the
partition.

The creation of a schedule starts with a set of tasks
produced by the Task Generator, pre-assigned to a partition
by the Task Distributor, and grouped in sequences by the
Task Sequencer. The Scheduler places those sequences, or
parts of them, into duties. A duty is a sequence of tasks to
be done by a crew member at a certain frequency.

Duties have to satisfy several constraints: the personnel
cannot have duties that exceed a certain number of hours,
cannot work continuously more that a certain number of
hours without a meal break, must have line, rolling stock,
and train knowledge in order to operate the trains, and so
on.

The Scheduler resorts to state-space search. It uses a
modified version of beam search (Bisiani 1987), with
heuristics. A state is a pair containing the sequences of
tasks that have to be scheduled (the candidates) and the
duties that have been constructed so far (the partial
schedule). States are generated by taking one (or part of
one) candidate and placing it in a duty. A final state is a

state in which there are no more candidates or when a pre-
determined number of duties has been reached. The search
is guided by a strategy consisting of: (1) A process for
selecting the initial state (e.g., what kinds of tasks should
be considered, sequences or groups of sequences) and how it
should be constructed (just with preferential sequences, or
also with abstraction); (2) A set of operators to generate
the successors of a state that resort to heuristic knowledge
to limit the number of successors; (3) An evaluation
function, composed of cost and heuristic functions; (4) A
test for deciding whether a final state was reached. The
Scheduler provides strategies, each one appropriate for a
certain type of schedule or for a certain type of operation,
scheduling or re-scheduling. The user can add new
strategies to handle new types of schedules.

The generation of successors can be done in four
different ways (Morgado and Martins 1989, 1992):
1. Manual mode. The user tells the system the (sub-)

sequence of tasks that should be moved from the
candidates to the duties (Figure 5). The system verifies
all constraints imposed upon the resulting duty and
tells the user the constrains that are violated by the
operation (we consider both soft constraints and hard
constraints). If the planner chooses to violate a soft

898 INNOVATIVE APPLICATIONS

Figure 6: Showing violations.

5629 8648

Figure 7: Duty #1 and alternatives for extending duty #l.

constraint, this violation is recorded and the duty is
shown with a violation indication. Clicking in the
violation indication icon generates a message that
explains the violation (Figure 6).
In manual mode, the planner can also move tasks from
the existing duties to the candidates, or from duties to
other duties, removing the effect of any previously
taken decision -- an operation called forward
backtracking -- or can do traditional backtracking by
moving into a previous state;
Semi-automatic mode. The system gives hints about
how the planner should pursue the schedule. In this
mode of operation, the system computes how the
duties can be extended with sequences of tasks from the
candidates and the role of the user is to select the
proposal that he thinks is best. Figure 7 shows some
of the alternatives for extending duty #I (the number of
alternatives presented is selected by the user);
Automatic mode. The system decides the sequence of
tasks that should be present in each duty, following a
strategy that is selected by the user;

4. Mixed mode. Combines the previous approaches. In
mixed mode the planner constructs the schedule by
resorting to an arbitrary combination of the other three
modes of operation. Typically, the planner starts
building some duties, according to criteria that he
wants to impose to the final schedule, then uses the
automatic mode to do the bulk of the work, and
afterwards, manipulates (using manual mode) the
resulting duties.
The mixed mode of operation really shows the
decision-support philosophy that was incorporated in
CREWS since its inception. In fact, it provides a full
cooperation between the planner and the system,
showing what is going on, providing explanations
about the decisions taken by the system (with an
explanation facility provided by the Scheduler),
enabling the interaction of the planner on the work
being done by the system, and taking the bulk of work
from the planner, when he selects to do so.

In summary, the main innovations offered by this system
are: (1) to provide a decision support system for crew
scheduling (in face of the traditional “black box”

DEPLOYED APPLICATIONS 899

Figure 8: Simple search tree.

scheduling systems); (2) to trade the “optimal solution”,
for a solution that is “good enough”; (3) to give the
possibility to the customer to change the behaviour of the
system in order to adapt to new situations, labour rules,
and strategies; (4) to integrate scheduling with the
dynamics of data; (5) to partition the problem among
several planners.

Uses of AI Technology

AI technology is the backbone of the operation of the
system. The most visible part is state-space search (using a
modified version of beam search). The search tree generated
serves as the unifying media of all modes of operation.
Whenever the planner uses manual mode, the system
generates the selected successors in the search tree. If the
planner decides to remove any tasks from the duties, the
system generates successors of the current state that
correspond to the removal actions (forward backtracking). If
the planner decides to undo some action, he just has to
move up in the tree to backtrack to a previous position.
The search tree and its states can be inspected at any
moment during the search process (Figure 8).

Abstraction is used in most phases of the scheduling
process to reduce the amount of detail present in this
domain. Without it, none of the other techniques used in
the system would be capable of coping with the huge
number of alternatives present, many of them having only
minor differences.

The concept of strategy defined above is also central to
the success of both the Automatic and Semi-automatic
modes of the Scheduler. By combining clever heuristics
(both in the generation and in the expansion of nodes) with
adequate cost functions, the system can be fine tuned to
optimise the relevant criteria chosen by the customer.

Another aspect of AI that is omnipresent is the use of
constraints. These are used by the Automatic and Semi-
automatic modes to select the most constrained tasks as
preferential tasks to be used in node expansion (the most
constrained tasks are those that are either in only one
partition or that offer less possibility of combination with
other tasks). Constraints are also used in the Pre-scheduler
during the problem partitioning phase.

Data dependencies are used in the Data Manager to find out
what concepts depend on a given concept. These
dependencies are set up in a way that was influenced by
TMS systems (Doyle 1979, Martins and Shapiro 88).

plication Use and Payoff

Before the deployment of the system, NS conducted
extensive tests and the results obtained were better than our
most optimistic expectations at the beginning of the
project. Originally, at NS there were 24 planners (both for
drivers and guards) that would take around 6 months to
produce the duties for the company. The life-size test,
conducted in early 1996, lead to conclude that the whole
scheduling process can be completed by five planners in
about two weeks (Notermans 1996). NS intends to use
other existing planners for simulation studies and further
improvement of the schedules. The comparison of the
quality of the schedules produced by CREWS with the
quality of the schedules produced by human planners points
to a yearly reduction of personnel costs in the order of
6,000,OOO Dutch Guilders (close to US$ 4,000,OOO)
(Linssen 1995). This would mean that, just the savings of
the drivers and guards, would pay the investment of NS in
the system in less than one year after the start of operation.

The directly quantified gains were summarised by (van
Aarle 1996) by a ten fold increase in speed of the
scheduling process and a reduction of the required crew
members in the order of 3%.

Besides the benefits of an automatic schedule
generation, speeding up the process and making the
generation criteria uniform, CREWS_NS, being an AI-
based system, preserves the scheduling knowledge within
the company easing the training of new planners (semi-
automatic mode), brings a dramatic reduction of mechanical
and tedious work done by planners, enables to adapt to new
situations and to produce alternative solutions.

Another aspect that is currently starting to be explored
by NS is the use of the system in “what-if’ situations.
These will be mainly used in three aspects: (1) NS wants
to test the result of the introduction of changes in labour
rules, in fact, this provides a valuable tool for supporting
negotiation with the unions, since it can give an idea of

900 INNOVATIVE APPLICATIONS

the overall impact of a rule change in the use and needs of
personnel; (2) NS wants to perceive the effect that changes
in the distribution of knowledge skills by different
personnel bases will have on the existing schedules, based
on the results of these studies, training actions may be
taken in order to have qualified personnel in specific bases
or bases may be closed down, being replaced by personnel
in near-by bases; and (3) NS wants to find out further ways
to improve the schedules, using different strategies and
different duty patterns from what is being used nowadays.

Application evelopment and eployment

The initial ideas for developing CREWS started in 1986
with a demonstration prototype for TAP/Air Portugal (in
crew scheduling). Together with the development of this
prototype, SISCOG started the development of a general
crew scheduling tool, CREWS. Initially, CREWS was
developed on Explorer LISP Machines using KEE as the
underlying AI tool.

In 1988, SISCOG developed a crew scheduling
prototype for the Portuguese Railways, CP, that was
followed by the development of the ESCALAS system
from March 1989 to January 199 1. ESCALAS used a
preliminary version of CREWS, that was a single user
system, composed of one sub-system only (except for an
early version of the Positioning Trip Generator), which
included preliminary versions of the Scheduler, the Task
Generator and the Task Sequencer.

After the completion of this system, we started to
understand the strong constraints that the use of a LISP
machine would place on the sale of CREWS and we ported
CREWS (and ESCALAS) to a UNIX environment. At the
same time, we also realised that KEE was placing an extra
burden on the cost of the system (this was even more
dramatic if we would take into account that only a small
portion of KEE was being used by CREWS) and we
developed a frame-based representation system, SIKE
(SIscog Knowledge Environment), that would make
available the knowledge representation characteristics
needed by CREWS.

In September 1993, we started the development of
CREWS_NS, the first product to include the CREWS
system as described in this paper. This project, was
completed in July 1996, and started operation in October
1996, after being thoroughly tested.

CREWS_NS was developed in three steps: (1) Single-
user system that would work in manual mode. This
included communication with external systems, manual-
construction of duties, and manual assignment of trains to
partitions; (2) Multi-user system. This included
development of locking mechanisms, possibility of
swapping of tasks among partitions, and automatic
assignment of trains to partitions; and (3) Automatic and
semi-automatic modes. This included development of

special-purpose
strategies.

strategies and fine tuning of those

In each of these steps there were several partial versions
delivered to NS that were tested by the members of the
project team. At the end,of each step, documentation about
the completed version was delivered and a life-size test,
with all data and a larger number of planners was
performed.

The development of CREWS_NS and the new version
of CREWS was carried out by a team composed of 10
programmers and knowledge engineers from SISCOG, two
planners from NS, and one programmer from CVI (a
software company daughter of NS and currently part of
EDS). The role of SISCOG was to do knowledge
elicitation and system development; the planners from NS
supplied scheduling knowledge and tested the several
versions of the system; and the programmer from CVI lead
the team from NS side and implemented the man-machine
interface. During the development we had 2-day meetings
every other month during the first year of the project, that
were mainly devoted to knowledge elicitation and versions
testing. In the last two years of development these meeting
were held every 3 months and were devoted to knowledge
elicitation and evaluation of the system results.

Since SISCOG and NS are about 2,000 miles away,
the communication and correction of bugs was chiefly done
by e-mail which enabled us to correct small bugs within
24 hours of their detection.

Before deployment, NS had training sessions with one
week duration, divided in two groups of planners. The first
group started operation while the second group was being
trained. The transition from traditional scheduling to
automated scheduling was done with the emphasis on the
manual mode and has gradually moved to the semi-
automatic and automatic mode. The deployment was done
without major problems and originated a lot of request of
new functionality from the planners.

Maintenance

The maintenance of CREWS_NS should be considered
under two different perspectives: the planned changes
perspective corresponds to the changes in labour rules, in
scheduling strategies, and the addition/replacement of types
of tasks in the knowledge base. This is performed by NS
itself, resorting to the technical person in charge of the
system. The unforeseen changes, such as the needs for
additional functionality are done by SISCOG (and may
entail a change in CREWS itself) as part of a maintenance
contract. The maintenance contract contemplates the
delivery of new versions of CREWS, technical support,
and a certain amount of manpower that is assigned to work
on extra functionality for the system.

DEPLOYED APPLICATIONS 901

Future Directions
Although the development in LISP and Unix workstations
has been quite satisfactory, we fell the market pressure to
use a widespread language and PCs. For this reason, we
started in January 1997 the porting of CREWS to C++
running under Windows NT. This development is expected
to take over one year, after which we will be able to offer
CREWS both in LISP and C++. The performance of this
new version and the market demands will tell whether we
should keep both versions or if we should only adopt one
of them

Acknowledgements

We would like to acknowledge the important role that the
teams from both CP and NS played, in the development of
ESCALAS and CREWS_NS, respectively, and their
dedication to the development of the projects. In particular,
we would like to thank Ana Paula Cabecas, Claudia
Freitas, Carlos Lopes, Manuel Silveira Lopes, and Arlindo
Marques, from CP, and Robert Bijeman, Jos Broos, Jurjen
Hooghiemstra, Hans Munk, and Math Notermans, from
NS. Finally, we would like to thank the staff from
SISCOG, Hugo Cadete, Patricia Fernandes, Jogo Filipe,
Antonio Frazao, Antonio Leitao, Luis Lisboa, Ricardo
Saldanha, Sandra Sousa, Jogo P. Varandas, and Antonio
Vasconcelos, for their work and dedication.

References

Bisiani, R. 1987. Beam Search: Encyclopedia of Artificial
Intelligence, S.C. Shapiro (ed.): 56-58, New York. John
Wiley and Sons.
Doyle J 1979. A Truth Maintenance System. Artificial
Intelligence 12(3): 231-272.
Fox MS. 1987. Constraint-Directed Search: A Case Study
of Job-Shop Scheduling, San -Francisco, CA: Morgan
Kaufmann.
Linssen C. 1995. Written Communication.
Martins J.P.; and Shapiro S.C. 1988. A Model for Belief
Revision, Artificial Intelligence 35(1): 25-79
Morgado E M.; and Martins J.P. 1989. CREWS A Crew
Scheduling System. In Proc. of EXPERSYS-89, Expert
Systems Applications.
Morgado E.M.; and Martins J.P. 1992. Scheduling and
Managing Crew in the Portuguese Railways. Expert
Systems with Applications, An International Journal 5:
301-321.
Morgado E.M.; and Martins J.P. 1993. An AI-Based
Approach to Crew Scheduling. Proc. IEEE Conference on
AI Applications - CAIA 93: 71-77.
Morgado E.M.; and Martins J P. 1996. Managing Change
in Scheduling Data. Computers in Railways V, Volume I:

Railway Systems and Management: 479 - 4 8 9,
Southampton, U K : C o m p u t a t i o n a l M e c h a n i c s
Publications.
Notermans M. 1996. Personal Communication.
van Aarle J. 1996. Scheduling Crew in the Dutch
Railways, Communication presented in the Transportation
Seminar, Lisbon, Portugal.
Sadeh, N.; and Fox, M.S. 1991. Variable and Value
Ordering Heuristics for Hard Constraint Satisfaction
Problems: An Application to Job Shop Scheduling,
Technical Report CMU-RI, TR-9 l-23, The Robotics
Institute, Carnegie Mellon University.
Smith S.F. 1989. The OPIS Framework for Modelling
Manufacturing Systems, Technical Report TR-CMU-RI-
89-10, The Robotics Institute, Carnegie Mellon
University.

902 INNOVATIVE APPLICATIONS

