
Using a Robot Control Arc itecture to Automate
Space Shuttle Operations*

R. Peter Bonasso and David Kortenkamp Troy Whitney
Metrica Inc., Texas Robotics and Automation Center North Dakota State University

NASA Johnson Space Center - ER2
Houston, TX 77058

bonasso@mickey.jsc.nasa.gov

Abstract

This paper describes preliminary results from using
an AI robot control software architecture, known as
3T, as the software framework for a procedure track-
ing system for the space shuttle Remote Manipula-
tor System (RMS). The system, called STPT, is de-
signed to track the expected steps of the crew as they
carry out RMS operations, detecting malfunctions in
the RMS system from failures or improper configu-
rations as well as improper or incomplete procedures
by the crew. Scheduled for a ground demonstration
in February 1997, and a test flight the following fall,
STPT, was employed this past fall to track the RMS
checkout procedures on a space shuttle mission. It
successfully carried out its task because the reactive
nature of the architecture allowed it to stay synchro-
nized with the procedures even in the face of intermit-
tent loss of telemetry and unexpected crew actions.

Introduction
The Orbiter Upgrade Program is a significant effort
to streamline space shuttle operations in all phases
by moving flight controller assistance from the ground
to on-board the spacecraft. Such assistance will take
the form of automatic procedure tracking and verifi-
cation, caution and warning monitoring and malfunc-
tion procedure execution, and fault isolation detection
and recovery. All of the orbiter main functions, e.g.,
propulsion, guidance, navigation and control, commu-
nications, etc. are to be automated in this manner.

The first such function is the Payload Deployment
and Retrieval System (PDRS) which uses the shut-
tle’s Remote Manipulator System (RR/IS). This system,
known as RMS Assistant, is to provide the procedural
and analytical knowledge of the PDRS flight controller
to the on-board crew in the form of a collective set of
functions including automatic procedure tracking and
verification, activity logging, fault isolation and recov-
ery, and payload operations replanning.

Copyright 01997 American Association for Artificial
Intelligence (www.aaai.org). All rights reserved

Fargo, ND

The RMS is a teleoperated robot, so it was decided
to use an existing intelligent robot control architecture
called 3T to implement the automatic procedure track-
ing (PT) and verification portion of the RMS Assistant
project, called 3TPT. This decision has the important
advantage of allowing for increased autonomy in RMS
operations in the future. We first give a brief overview
of the 3T intelligent robot control architecture, show
how it is being applied to the RMS Assistant project,
and describe how it was used during a recent live shut-
tle mission.

The ST robot control architecture
The three tiered robot control architecture (3T) has
been in development in one of several forms since
the late 80s (Firby 1987; Gat 1992; Connell 1992;
Bonasso et al. 1995). Space does not allow for an ex-
tended history of this architecture (a useful historical
summary can be found in (Gat 1997)). Its develop-
ment stemmed from the frustration of AI researchers
at the failure of “sense-plan-act” architectures to bring
AI reasoning to bear on real-world robots. Brooks
claimed that for many tasks, robots did not need tra-
ditional AI reasoning (Brooks 1991) and backed that
claim with robust autonomous robots that used essen-
tially a “sense-act” architecture. But others sought to
integrate traditional reasoning systems with the reac-
tive style, a kind of “plan-sense-act” approach. What
emerged was a software control architecture with a low-
est layer of reactivity, a topmost layer of traditional AI
planning, and a middle layer which transformed the
state-space representation of plans into the continuous
actions of the robot.

The 3T version of this architecture has been used at
NASA Johnson Space Center since 1992 in a variety
of space robot research programs (see (Bonasso et al.
1997) for a work summary). 3T, shown in Figure 1,
separates the general robot intelligence problem into
three interacting pieces. First, there is a set of robot
specific, real-time reactive skills, such as grasping, ob-

EMERGING APPLICATIONS 949

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Figure 1: The 3T architecture

ject tracking, and local navigation, which are tightly
bound to the specific hardware of the robot (Yu, Slack,
& Miller 1994). The next layer up is a sequencing ca-
pability which can activate the reactive skills in order
to direct changes in the state of the world and accom-
plish specific tasks. For example, exiting a room might
be activating and deactivating sets of reactive skills for
door tracking, local navigation, grasping, and pulling.
We are using the Reactive Action Packages (RAPS)
system (Firby 1995) for this portion of the architec-
ture. At the top layer there is a deliberative planning
capability that reasons in depth about goals, resources
and timing constraints (Elsaesser & MacMillan 1991).
This top tier was not used in this initial implemen-
tation of 3TPT. It will be used in pre-flight mission
planning and for on-board mission replanning in later
flights.

Applying 3T to the RMS
The RMS, shown in Figure 2, is a six degree of freedom
arm, fifty feet long and 15 inches in diameter, with a
capturing device on the end. It is controlled from the
shuttle

’

s

aft flight deck with two hand controllers and
a set of switch panels.

In applying 3T to the RMS we had several differ-
ent testbeds, each of which was used for different pur-
poses. First, there is a high-fidelity simulation of the
RMS developed at NASA JSC. This simulation runs on
Silicon Graphics workstations and has displays similar

Figure 2: An image of the shuttle

’

s

remote manipulator
system

to what the astronauts use. In addition, it uses the
same TCP/IP-based protocol as is used by the actual
RMS, so connecting to simulation data is no different
than connecting to real RMS data (see the next sub-
section). The RMS simulation was useful in debug-
ging our software and it also allowed us to experiment
with autonomous control of RMS operations, some-
thing that will not be possible on the real system until
the orbiter is upgraded. The second testbed that we
used was a playback system which generated teleme-
try from log files of previous shuttle missions that used
the RMS. The resulting telemetry is identical to that
of actual shuttle missions and let us check for problems
with data dropouts and noise, which are not modeled
in the simulation. However, we cannot control the ex-
ecution in order to test different execution paths as we
can with the simulation. Finally, we ran the system
in real-time against actual shuttle data during shuttle
mission STS-80. This offered the opportunity to test
the system in a situation similar to its delivery environ-
ment. In the next two subsections we briefly describe
how we connected 3T to the testbeds described above.

RMS skills 3T

’

s

hardware controlling skills are C
subroutines that perform some action or monitor sen-
sor values. There are three types of skills in 3T: blocks
control a piece of hardware or perform a specific com-
putation; events monitor sensor values and detect and
report key state changes back to the middle tier; and
queries interpret sensory data as requested by the mid-

950 INNOVATIVE APPLICATIONS

MSms skills and
ro”ter - skill - RAPS

manager

r-Y MSrns

RMS
simulation

Figure 3: Communications network for distributing
MSIDs.

dle layer. A skill manager program is responsible for
moving data among skills using shared memory, for
scheduling CPU access by the skills and for commu-
nicating with the middle tier of the architecture via a
TCP/IP socket.

Examples of RMS skills we implemented are blocks:
set-brakes, select-power, activate-cameras, drive-joint-
to, and test-joint; events: cameras-on, joint-switch-
at-position, correct-joint-response, arm-not-moving,
and joints-within; and queries: camera-state, brakes-
status, joint-switch-position, rms-mode, and joint-
angles. Of course, when the 3TPT cannot control the
RMS autonomously, blocks are replaced by requests to
the operator, however, all events and queries can be
used in either autonomous or teleoperated mode.

To send commands and receive data, the skills use
a NASA JSC publish/subscribe communication pro-
tocol called Information Sharing Protocol (ISP, see
Figure 3). Each piece of space shuttle information is
assigned a unique message identifier called an MSID.
Processes subscribe to MSIDs in which they are inter-
ested and publish MSIDs that control pieces of hard-
ware. ISP distributes MSIDs to all processes that need
them. During shuttle missions, NASA JSC’s Mission
Control Center (MCC) publishes for use by authorized
computers actual MSIDs generated by the general pur-
pose computer (GPC) on the shuttle. Each of our
testbeds uses the same MSID tags for the same in-
formation. Thus, the simulation publishes MSIDs as if
it were the actual RMS GPC. Connecting to the sim-
ulation is then no different from connecting to the real
space shuttle; only the source of the process generating
MSIDs is different.
RMS RAPS When a shuttle mission calls for the
RMS, the crew first performs a series of functional
tests designed to ensure that the RMS and all of its
related controls are working properly. We have auto-
mated these tests in the second level of 3TPT with a
set of RAPS which include testing various switches and

responses on the control panels, testing that the RMS
joints can be driven in a variety of control modes, and
testing the hand controllers for proper operation. We
explain the operation of these RAPS by discussing our
implementation of the single drive test procedure in
detail in the next section.

The Single Drive Test
The single drive test involves a crew member driving
each of the six joints via the on-board GPC to deter-
mine that all joints can be commanded individually.
The crew member first places the RMS in single drive
mode, then, using switches on the control panel, selects
and drives each of the joints in both the positive and
negative directions, while watching a rate meter on a
switch panel.

Because 3T was designed for autonomous operations
it will be useful to first describe its operation for this
procedure as if the RMS was fully autonomous. The
RAP for this procedure, in a shortened form of the
LISP-based RAPS language, is shown below:

conduct-single-drive-test
succeed: (all-joints-tested)
preconditions: (rms-power-up procedure complete)

AND
(on-orbit-initialization
procedure complete) AND

(rms-at pre-cradle-position)
method standard-procedure

task-net
sequence
Tl: set-parameter-switch-p A8 joint-angle
T2: set-brake-switch-p A8 off
T3: set-mode-p A8 single
T4: verify-no-arm-motion-p
T5: test-all-joints 10 45
T6: set-brake-switch-p A8 on

When the above RAP is invoked it is placed on the
RAP agenda for execution, and the succeed clause is
checked by a deductive query of the RAP memory. If it
is true, the goal is achieved, otherwise the truth of the
preconditions are checked in the RAP memory before
proceeding. RAP memory is updated by forms known
as memory rules which will be discussed later, but such
rules fired after previous procedures have been com-
pleted will have established the truth of the first two
propositions in the preconditions. The third proposi-
tion is actually a function which invokes a query skill
which returns the six joint angles of the RMS.

Primitive RAPS and skills

Assuming the preconditions to be true, the RAP in-
terpreter then selects a method, here the standard-
procedure method being the only one, and executes
the plan of that method by posting each step to the

EMERGING APPLICATIONS 951

agenda and invoking the RAP each represents. Plan
steps whose names end in “-p” are primitive RAPS.
The first one, set-parameter-switch-p is defined as
follows:

set-parameter-switch-p (agent value)
succeed: (parameter-switch-position agent value)
method autonomous

primitive
enable: :set_parameter (:value value)
wait-for: :param_switch (:setting value)

(:timeout 15)
actual-value result
:succeed (actual-value

result)
disable :above

When this RAP is invoked from the previous RAP,
agent is bound to A8, the name of the control panel,
and value is bound to joint-angle. Our 3T architec-
ture can control and coordinate multiple agents, and in
the 3TPT prototype, we have used this ability to group
the skills for efficiency into those associated with the
panel switches (A8), those associated with the arm mo-
tion (RMS), and those associated with the end effector
(El%

In this RAP we see the use of all three types of
skills. The succeed clause is a primitive query to the
RMS system for the state of the parameter switch, and
: set-parameter and : param_switch are a primitive
action and a primitive event skill respectively. If the
parameter switch is at the joint-angle position, this
RAP succeeds and the set-parameter-switch-p goal
will be removed from the agenda. If the switch is in
any other position, the RAP system simultaneously en-
ables the action and event skills. These skills are C rou-
tines in the skill level of the architecture whose names
are set-parameter and param_switch and whose ar-
guments are value for the action and setting and
timeout for the event. The set-parameter skill will
command the state of the selected parameter in the
RMS GPC, and the param_switch event will watch
for the selected parameter value to change.

Assuming no other RAPS are waiting to be decom-
posed, the RAP interpreter will loop waiting for the
param_switch event to fire. If the value does not
change within the 15 second timeout, the event will
return the setting of the parameter switch and the re-
sult timeout. Otherwise it will return the new setting
and the result okay. After the event fires, it and the
primitive action are disabled in the skill layer.

Memory rules can be optionally written for the start,
finish and events of a RAP. Their left hand sides match
on the returned values of the event’s : succeed clause
and their right hand sides can make changes to the
RAP memory or can execute arbitrary LISP functions.

The operation of the RAP interpreter is designed for
reactivity. If the switch is already in the correct posi-
tion, no action is taken. If the event returns a time-
out condition, the subsequent succeed query will notice
that the RAP has not yet been successful and will en-
able the action and event skills again (the number of
retries is a user-setable parameter; we use two). If this
RAP fails, the top-level single-drive-test RAP method
will fail causing the interpreter to try it again, thus
also re-invoking the primitive RAP again. The combi-
nation of primitive queries and action retries makes for
a robust system in the face of data loss or other related
problems. If the reason the event times out is because
of a temporary data loss, the RAPS system will eventu-
ally get the switch thrown if the data is re-established
before the retry/query mechanisms are exhausted.

Iterative sperat ions
Returning to the conduct-single-drive-test RAP,
we see that in the standard-procedure method, prim-
itive RAPS similar to set-parameter-switch-p are
invoked for the brake switch and for setting the mode.
Verify-no-arm-motion-p uses a no-op action and in-
vokes an event that insures that no arm joint is moving.
Then the heart of the test is invoked, the RAP to test
all the joints as shown below:
test-all-joints (duration timeout)

succeed: NOT ((class-of ?jt joint) AND NOT
(tested-both-directions ?jt>>

preconditions: (parameter-switch-position
A8 joint-angle) AND

((current-rms-mode A8 single) OR
(current-rms-mode A8 direct))

repeat-while: (new-axis-direction-has-been
tested?)

method standard-procedure
task-net
Tl: select-and-test-joint-p rms duration

timeout

This RAP is also used for the direct drive test where
the joints are driven directly from the power supply
rather than through the GPC. As select-and-test-joint-
p executes, memory-rules associated with its actions
post tested-both-directions propositions to mem-
ory. The succeed clause is true when no item of class
joint is in need of testing. The class-of relations
are established as part of the RMS initialization. The
repeat-while clause is a kind of recomputable pre-
condition that insures that as long as there are new
axis directions being successfully tested, this RAP will
continue to execute until its succeed clause is true.

The real action takes place in the primitive RAP
which is shown below:
select-and-test-joint-p (
method auto+

agent duration timeout)

952 INNOVATIVEAPPLICATIONS

context: (next-joint-for-test ?j> AND
((joint-tested ?j -> OR NOT
(joint-tested ?j))

primitive
enable:. :test_joint (:joint ?j)

(:directioni:+)‘
(:duratidn duration)

wait-for: :correct-joint-response
(:timeout 15) joint direction

result
:succeed (joint direction result)

disable :above

method auto-
context: (next-joint-for-test ?j) AND

(joint-tested ?j +)
primitive

enable: :test_joint (:joint ?j)
(:direction -)
(:duration duration)

wait-for: :correct-joint-response
(:timeout 15) joint direction

result
:succeed (joint direction result)

disable :above

This RAP has two methods; if the context clause of
one of the methods is true, that method is a candidate
for selection. In the auto+ method the context is true
if the next joint to be tested has either already been
tested in the negative direction or has not been tested
at all. The next-joint-f or-test query is a memory
function that examines all the items of class joint to
determine which ones still need to be tested in both
directions. If more than one method is eligible, then
other mechanisms not discussed, such as prioritization,
will make the selection. In this case, the two context
clauses are mutually exclusive, so only one method will
be eligible each time the RAP is invoked depending on
the testing status of the next joint to be tested.

The context clause binds the variable ?j for use
in the primitive skills invoked in the method. The
: test-joint skill will drive the selected joint in the
given direction for the specified duration and then stop.
The : correct- joint-response skill will wait for a
joint to start moving and will then check for the proper
response, returning the joint that moved, the direction
it moved, and a result of okay or timeout (if no joint
moved within the 15 second timeout), or the joint mal-
functions of stalled, reverse tach or sluggish. As
discussed above, event memory rules will record the
appropriate propositions to allow the parent and prim-
itive RAPS to step through all the joints, as well as to
record the malfunctions.

Variable autonomy

While the 3T architecture is well suited for au-
tonomous operations as shown above, complete au-

tonomy for the RMS Assistant is only envisioned for
the far future. A key contribution of 3T to this effort
is it’s ability to handle variable autonomy. In par-
ticular, the very fact that our design begins with the
assumption of autonomy, makes it directly amenable
to variations on that autonomy. Below we show
the select-and-test-joint-p RAP with the changes
made for variable autonomy:

select-and-test-joint-p (agent duration timeout)
method auto+

context: (level-of-autonomy
select-and-test-joint-p
autonomous) AND

(next-joint-for-test ?j) AND
((joint-tested ?j -) OR NOT
(joint-tested ?j))

. . . etc.

method auto-
context: (level-of-autonomy

select-and-test-joint-p
autonomous) AND

(next-joint-for-test ?j> AND
(joint-tested ?j +>

. . . etc.

method tele-operation
context: (level-of-autonomy

select-and-test-joint-p
teleoperation)

primitive
enable: tell-user "There are "a more

joints to test."
(compute-joints-left)

wait-for: :correct-joint-response
(:timeout 15) joint direction

result
:succeed (joint direction result)

disable :above

A level-of-autonomy query has been added to
each context and is designed to allow RMS opera-
tors to declare which primitives should be run au-
tonomously or in teleoperation mode. It also al-
lows a semi-autonomous setting which generates an
interactive query as each method is invoked to al-
low the user to vary the autonomy on the fly. The
level-of -autonomy query and teleoperation methods
were developed for all the primitives of the procedure
tracking system. Yet, except for the general tell-user
interface function, RAPS above the primitive level re-
main unchanged.

The key item to note is that we have added no new
skills but have used the existing event skills to moni-
tor the human’s activity. The human is not told which
joint to move or in what direction. In discussions with
the crew it was determined that they want the RMS
Assistant to be an non-intrusive monitor of humans as-

EMERGING APPLICATIONS 953

sumed to be experienced in the task. So in autonomous
operations, the RAPS system determines the order of
joint and direction testing, but in teleoperation mode,
the : correct-joint-response skill serves to inform
the RAP system of the order of the human activity. As
long as progress is being made in the test, the RAP sys-
tem will act in the same manner as in the autonomous
mode.

A Summary of 3TPT Prototype
Development

The 3T Procedure Tracking (3TPT) prototype devel-
opment was started in mid-September 1996 and was
ready for the STS-80 flight following by mid-November
of the same year. A total of 35 RAPS and 75 skills were
developed, and five staff months were expended in the
effort. Two staff months were expended for the RAPS
development, two staff months for the skills develop-
ment and integration with the ISP architecture, and
one staff month for knowledge engineering with a flight
controller with 8 years’ experience in RMS operations.
This rapid development was made possible in part be-
cause the RMS simulation and the appropriate ISP ser-
vices were already in place, but primarily because .3T
is a mature robot control system for intelligent agents
which had been used in several projects (Bonasso et al.
1997) and thus had a body of documentation (see URL
http://tommy.jsc.nasa.gov/er/er6/mrl/projects/archs/)

and example code available. This made it possible
for all members of the RMS team - up to 12 other
members are involved with other aspects of the RMS
Assistant program - to become familiar with 3T and
to support the information requirements necessary for
the rapid development.

Results of Flight Following STS-80
The RMS is not used on every shuttle flight. Two
flights were scheduled in our development time frame,
STS-80 in November 96, and STS-82 in late February
97. Since it would be beneficial to have data available
on 3TPT’s performance with real time flight data for
the February prototype, management decided to at-
tempt to flight follow the portions of the RMS Check-
out planned for February as well as various RMS joint
movements during payload deployment and retrieval.
In this test, obviously all operations would be in tele-
operated mode.

STS-80 was a 17 day flight which involved the use
of the RMS to deploy and retrieve the Wake Shield
and the SPAS satellite. We employed 3TPT during
all the daytime RMS operations. The flight following
succeeded beyond our expectations, showing the util-
ity of the system under circumstances which it was

not explicitly designed to handle. The key distinction
between flight following and the intended use for the
RMS Assistant is that the crew would be actively us-
ing the RMS Assistant on board, but for the flight
following, the crew was unaware of the 3TPT activity.
Thus, there was no attempt on the part of the crew
to tailor their actions based on the monitoring activity
of 3TPT. Nevertheless, as discussed below, the reac-
tive nature of the architecture allowed 3TPT to stay
synchronized with the crew activity even in the face of
the transient data losses normally experienced during
a flight.

Getting started
We had at our disposal the flight plan for STS-80, so
we knew when the RMS operations should be tak-
ing place. But these schedules were adjusted often
throughout the flight. Since we were not in commu-
nications with the crew (3TPT was run out of the
Robotics, Automation & Simulation Division building,
not the MCC building), a data display client program
was made available to us which allowed us to watch
the settings of the switches which cued us that certain
operations should be taking place. For example, the
RMS Select switch, normally in the off position, would
be switched to port prior to RMS operations. To mon-
itor the RMS Power Up procedure, we would wait for
that switch to change and then invoke the appropri-
ate RAP. As the flight progressed, we automated this
process using monitor RAPS, since there were several
hour long delays in the flight activities.

RMS checkout operations
The five RMS Checkout procedures to be tracked
were Reconfigure to Primary Power, Single Drive Test,
Backup Drive Test, Direct Drive Test, and the Hand
Controller Test. The system successfully tracked all
five tests with the exception of the Hand Controller
Test, though, as explained below, it did the best it
could in that test, given the crew actions. Reconfig-
ure to Primary Power is used to power up the RMS
or to switch from Backup Power to Primary Power. It
involves turning the power on, establishing I/O com-
munications between the RMS and the GPC, and can-
celing the automatic safing system. Once the RMS
select switch was turned to PORT, 3TPT straightfor-
wardly tracked the reconfiguration by either querying
the status of the switches or by watching for the events
to occur, such as the I/O from the GPC being estab-
lished.

When the RMS was at the pre-cradle position (see
the discussion on monitoring arm movement below),
we started the single-drive test. The tracking went
well until we noticed that each joint was reported by

954 INNOVATIVE APPLICATIONS

3TPT as being stalled. It turned out that the skills
were receiving zero’s for the tachometer readings be-
cause our MSID assignments were not synchronized
with that being used by the MCC. Later in the flight,
once we used the correct MSID assignments, all skills
using the tachometers worked properly. About half
way through the joint test, several data dropouts oc-
curred and 3TPT thought the RMS had gone out of
single mode. It automatically informed us of this and
started waiting for the mode to change. When we
started getting data again, 3TPT noted the return to
mode and began tracking the crew activity, but by that
time the crew had finished the test and had moved on
to another procedure.

For the backup drive test, wherein the crew tests
the joints under a backup power configuration, 3TPT
successfully followed the reconfiguration into backup
power. After that, because of the reduced telemetry
during backup operations, the system waited until the
RMS Select switch was moved to “off” signaling the
start of reconfiguring to primary power. The system
noted the switch change and again successfully followed
the crew reconfiguring to primary power.

Once the RMS was at the direct drive test position,
3TPT successfully tracked this test to completion. The
RMS is configured such that the brakes must be on in
the direct drive mode, not off as is the case in single
drive mode. The official procedure calls for the crew
to test this when going into direct drive mode (leave
the brakes off and see if a joint can be driven) and
when switching to back to single mode (see if a joint
can be driven with the brakes on). The crew did not
perform these tests, so 3TPT timed out on both of
them, but was able to resynchronize to the subsequent
joint testing that was conducted.

The hand controller tests involved the crew moving
the hand controllers in test mode (not actually com-
manding the RMS joints) to see if proper deflection sig-
nals were generated. During this test, the crew moved
the hand controllers faster and held them for less time
than was called for in the official procedure. As a re-
sult, 3TPT stopped with a constraint error after three
axes were tested since the repeat-while clause being
used detected no more progress when the crew had ac-
tually completed the procedure. Fortunately, we were
able to retry the hand-controller test during STS-82.
The crew on that flight conducted the test more in
accordance with the official procedures and 3TPT suc-
cessfully tracked it to completion.

Monitoring arm movement

Another cue for when an operation was taking place
was that the RMS had to be moved to certain posi-

tions - the pre-cradle position, the direct drive test
position and the hand controller test position - in sin-
gle drive mode using a certain ordering of the joints.
Though it was not a formal procedure, we wrote a RAP
for doing this and executed it when we saw the RMS
placed in single drive mode. 3TPT successfully tracked
these movements for all three positions. This was pos-
sible even though the crew was not responding to the
promptings of the system because for long joint moves,
there was plenty of time to synchronize the RAP steps,
and for shorter joint moves, often the RMS would be
at the new joint position before the RAP commanded
it. In the latter case the RAP simply computed the
next joint to be moved to and pressed on. In one case,
after commanding two of the required four joint moves,
the RMS was already at the final position, so the RAP
finished, announcing success.

The Wake Shield and the SPAS satellite were re-
trieved/deployed not in joint mode but with the hand
controllers in a mode that moved the point of resolu-
tion (POR) of the RMS, be it the end effector or a
point on the payload. In a few days’ time we wrote
a RAP with the appropriate skills which could mon-
itor the progress of the POR to any designated po-
sition as well as watch for the correct joint response
during such movements. In this manner, armed with
the planned positions of the payloads, 3TPT success-
fully tracked the RMS as it deployed and retrieved the
Wake Shield and retrieved the SPAS satellite. In one
instance, 3TPT reported sluggish tachometers on two
of the joints. The readouts on the data display sys-
tem verified that the tachometer readings were indeed
below the demand from the hand controllers on those
two occasions.

Discussion

3TPT showed that it could follow crew operations suc-
cessfully even in the face of loss of data and an “unre-
sponsive” crew. After some reflection it was clear why
3TPT did so well despite the fact that the crew was
unaware of its activity. 3T was designed not only for
controlling autonomous robots but with the assump-
tion that things will go wrong in the real-world. Such
mechanisms as event timeouts, alternate methods, suc-
ceed, preconditions and constraint queries, and multi-
ple retries are a direct result of that assumption. In
this light, the flight following effort essentially required
3TPT to command (via speech only) and monitor an
errant robot - i.e., a robot that was executing tasks ei-
ther too fast or too slow while having trouble with its
communications (something that has happened to us
with several robots in other projects). In that regard,
3TPT performed as all 3T implementations: it accom-

EMERGING APPLICATIONS 955

plished whatever the real-world would allow, failing
gracefully, and always keeping the user informed as to
the events which caused its actions.

The failure of 3TPT to successfully track the hand
controller test is an indication of placing the control of
such activity at too high a level. The 3T philosophy
dictates that activities with smaller time constants be
situated lower down in the architecture. The crew’s
movement of the hand controller during the hand con-
troller test, because they were not connected with the
physical movement of the RMS, took place 5 to 10
times faster than during analogous joint motion. So
we are considering redesigning the test -all-j o int s
RAP so that the correct-hc-response event skill
would not return to the RAPS level unless there was
a problem with one of the hand controller axes. Oth-
erwise it should simply monitor the joints and return
when they were all tested. This in effect allows the
faster running event skills to watch for the selection
and testing of all axes rather than have RAPS inter-
vene after each axis is tested.

A final note is in order with regard to knowledge en-
gineering. We have found that knowledge engineering
intelligent control, as opposed to intelligent analysis -
like analyzing the stock market, seems to be made eas-
ier by the fact that one is constrained by the laws of
the physical system. The physical system is designed
to operate in a certain manner; any other manner will
result in failure. Thus, once we had been tutored on
how each major portion of the system functioned - the
arm, the end-effector, and the switch panels - it was
relatively easy to examine an official procedure and
discern the rationale behind each step. In some cases,
we identified redundant or superfluous steps and found
that those steps were indeed being eliminated for the
Orbiter Upgrade.

Conclusions
We believe this work and the early results as demon-‘
strated during STS-80, have shown that 3T and re-
lated three-layer agent control architectures are emerg-
ing as a promising framework for the automation of
any computer controlled machine in deployed appli-
cations. 3T’s robustness, designed originally for au-
tonomous robots in unstructured environments, is re-
quired in any real world environment involving hu-
mans and computer controlled machines. Its ability
to smoothly allow human intervention and control for
all or any part of the task makes it especially suited to
applications where there is gradual movement toward
less human-in-the-loop operations or toward full auton-
omy. In the RMS Assistant application, 3T is allowing
the capture and use of both procedural (RAPS) and

task execution/monitoring knowledge (skills) in differ-
ent forms (task-nets or C functions) that allow for that
knowledge to be applied in the most appropriate way,
i.e., as state-based or continuous activity. Using the
framework of 3T, NASA will realize its RMS Assistant
automation goals in a cost effective manner and in a
time frame which should see it in operation before the
end of the century.

References
Bonasso, R. P.; Kortenkamp, D.; Miller, D. P.; and
Slack, M. 1995. Experiences with an architecture
for intelligent, reactive agents. In Proceedings 1995
IJCAI Workshop on Agent Theories, Architectures,
and Languages.

Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.;
Miller, D.; and Slack, M. 1997. Experiences with an
architecture for intelligent, reactive agents. Journal
of Experimental and Theoretical Artificial Intelligence

g(2).

Brooks, R. A. 1991. Intelligence without representa-
tion. Artificial Intelligence 47.

Connell, J. H. 1992. SSS: A hybrid architecture ap-
plied to robot navigation. In Proceedings IEEE Inter-
national Conference on Robotics and Automation.

Elsaesser, C., and MacMillan, R. 1991. Repre-
sentation and algorithms for multiagent adversarial
planning. Technical Report MTR-91W000207, The
MITRE Corporation.

Firby, R. J. 1987. An investigation into reactive plan-
ning in complex domains. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI).

Firby, R. J. 1995. The RAPS Language Manual. Ani-
mate Agent Project Working Note AAP-6, University
of Chicago.

Gat, E. 1992. Integrating planning and reacting in
a heterogeneous asynchronous architecture for con-
trolling real-world mobile robots. In Proceedings
of the National Conference on Artificial Intelligence
(AAAI).

Gat, E. 1997. On three-layer architectures. In Ko-
rtenkamp, D.; Bonasso, R. P.; and Murphy, R., eds.,
Artificial Intelligence and Mobile Robots. Cambridge,
MA: AAAI/MIT Press.

Yu, S. T.; Slack, M. G.; and Miller, D. P. 1994. A
streamlined software environment for situated skills.
In Proceedings of the AIAA/NASA Conference on In-
telligent Robots in Field, Factory, Service, and Space
(CIRFFSS ‘$4).

956 INNOVATIVE APPLICATIONS

