
Anymation with C

Deutsches Forschungszentrum fur Kiinstliche Intelligenz (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany

butz@dfki.uni-sb.de

Abstract

This paper presents an incremental approach to
the automated generation of 3D animation clips
for the explanation of technical devices. It de-
scribes the system CATHI, which is part of the
intelligent multimedia presentation system PPP.
CATHI generates animation clips in the context of
a coordinated multimedia document.
The system is able to generate animation scripts
and to present the corresponding animations with
a minimal delay, i.e. within a few seconds. This
allows it to be used for on-line and on-demand
generation of presentations.
The structure of the generated animation de-
pends not only on the given communicative con-
tent. It is also influenced by a number of genera-
tion parameters. Furthermore, the design of the
final animation depends on resource limitations,
such as the available computing capacity and the
graphical capacity of the output medium.
The more powerful the machine is, the more com-
plex the animation scripts generated by @AWH
tend to be, but a fIuent output within a given
amount of time is achieved on (nearly) any ma-
chine - hence the name ‘anymation9.

Introduction
The CATHI system (Computer Animation Tool for
Help and Information Systems) is part of the intelligent
multimedia presentation system PPP (Andre, Miiller,
& Rist 1996). PPP presents information about the
usage and function of technical devices in the form of
interactive operating instructions, which are adapted
to the presentation situation and to the person inter-
acting with the system. This approach requires the
generation of adapted presentation components, such
as text, graphics, and animation from scratch.

Since no preproduced animation clips are used in
PPP, the whole design of the animation must be com-
puted, including camera motions, cuts, lighting setup,

_ Copyright @199’7, American association for Artificial
Intelligence (www.aaai.org). all rights reserved.

the coordination of these settings with object motions
in the model world, and visual effects such as depth
of field or spotlights. The model world as well as the
possible actions in it (resulting in object motions) are
given in the form of 3D geometry and motion descrip-
tions. One input to the CATHI system is the commu-
nicative goal that is to be fulfilled by the animation.
The other inputs are generation parameters that influ-
ence the structure of the resulting clip. As a first step,
CATHI generates a script for the animation, that spec-
ifies camera positions and settings, lights, object posi-
tions and motions, all at the lowest level of description
(matrices, absolute coordinates). This script is trans-
lated into commands for a specific renderer, rendered
into an animation clip and immediately presented on
the screen. The following sections will discuss several
aspects of the approach in more detail and show re-
sults produced by the system. There will also be a
short comparison to other work in related areas and
an outlook upon future extensions

System input
When the PPP system plans a multimedia presenta-
tion it decides which pieces of information should be
encoded in which parts of the presentation, and how
they will interact in the final document. It assigns com-
municative goals to the presentation parts, and trig-
gers their generation by the corresponding realization
modules (NLG for the text parts, automated graphics
generation for illustrations CATHI for animations).

Communicative goals

The specification of the communicative goal is the
starting point for the generation of a 3D animation.
It is done in the form of a simple statement naming
a communicative function of the clip (such as ‘local-
ize object’ or ‘show action’) and the object(s) and ac-
tion(s) to which this statement refers. An example for
this kind of top-level specification is the following:

QPoc%lize-object :o$jec% “cylinder-group”)

EMERGING APPLICATIONS 957

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

This statement indicates, that the object (group)
named ‘cylinder-group’ should be localized in an an-
imation clip, i.e. the spectator should know where the
object is after he has seen the animation. Other exam-
ples are

(show-relation : ob j -1 “arm” : ob j -2 “shaft ‘I)
(show-action : action “open” : object “door”)

Model worlds

In order to produce 3D animations in which objects
of a certain domain appear and act, CATHI uses de-
scriptions of the geometry of these objects as well as
descriptions of the actions they can execute. The ge-
ometries are given in the form of polygon models, more
precisely in the OOGL language defined in (Phillips
I.996). Objects are identified by their names, and while
their sets of polygons are needed for the production of
the final animation, CATHI~S script generator only re-
quires object names and a raw abstraction in the form
of a bounding box plus a few material properties.

Actions, which can happen in the model world, are
described by their corresponding object motions (i.e.
translations, rotations, . ..). Although other types of
actions (e.g., lighting up a lamp) are not yet imple-
mented, it is relatively straightforward to represent and
treat them in a similar way.

Presentation parameters
PPP’s presentation planner also specifies generation
parameters for the realization modules, such as the
target language for the text parts, visual complexity of
illustrations, duration and a set of stylistic restrictions
for the 3D animations. It can, for example, advise
CATHI to use or not to use certain illustration tech-
niques, such as exploded views, depth of field effects,
color, opacity or lighting effects.

Known resource limitations

One final piece of input information is the graphical
capacity of the output medium, such as the availabil-
ity of color and opacity control or types of light. If a
certain feature (e.g.9 spotlights) is not available in the
output medium (e.g., a black and white wire frame dis-
play), the visual effects that rely on this feature cannot
be used in the animation clip and must be substituted,
if possible, by other effects. This kind of limitation is
called lcnown resource limitations, in contrast to aris-
ing resource limitations, which will be discussed later.

System output
The output of the system is produced in two steps.
Most of the work goes into the generation of an ani-
mation script in a neutral, i.e. not renderer-specific,
description language.

Animation scripts

According to a widely accepted position (Badler,
Barsky, & Zeltzer 1990; Badler, Phillips, & Webber
1993; Karp & Feiner 1993; Thalmann $c Thalmann
P993; Watt & Watt 1992), animation scripts are struc-
tured hierarchically. The leaves of the script tree are
called elementary sequences. They are lowest level de-
scriptions of object or camera motions during a certain
time span of the entire animation time. An example
for such an elementary sequence is the following:

(:transla-&e-object I.0 7.0
: object ssshaft-f’@
:star%position (71.0 79.5 30.0)
:endposition (71.0 -451.72 30.0))

This sequence specifies that object ‘shaft-l’ should
translate from position (71.0 79.5 30.0) to position
(71.0 -451.72 30.0) from time 11.0 sec. until 7.0 sec..
Likewise, all the object and camera motions, as well as
light positions, settings, object colors and opacity are
specified ‘by elementary sequences. On the way from
the leaves of the script tree towards its root, these ePe-
mentary sequences are grouped into sets of sequences,
which appear parallel (overlapping) or sequentially in
time. An example:

(:paraliPeB
(:translate-object 1.0 7.0

:object “shaft-l” . . .>
(:transPate-object I.0 7.0

:object “shaft-2” _. .> . . .>

The resulting groups are called the non-elementary se-
quences and are grouped again in the same way, until
the top-level group keeps all the sequences of a script
together.

Amimat ion clips

The scripts described above are translated into
renderer-specific animation descriptions. Currently it
is possible to generate output for the visualization tool
Geomview and in the RenderMan graphics description
language. The renderers then produce a series of sin-
gle frames, which build up the animation In the case
of Geomview, the animation is displayed directly on
the screen in more or less fluent motion, depending
on the specific 3D models and the graphics hardware.
In the case of RenderMan, the images are stored in
files and converted into an MPEG movie file after the
rendering process is finished. While the production of
animations in real time only works with Geomview as
the output renderer, RenderMan allows a much wider
range of graphical effects. This enables the genera-
tion of much more expressive animations in situations
where real-time presentation is not required.

958 INNOVATIVE APPLICATIONS

The generation process

In order to generate the kind of animation scripts de-
scribed above from communicative goals and model
worlds, CATHI uses a context-guided expansion and
decomposition strategy.

The context

The context, which guides the generation process, con-
tains information about the actual state of the model
world (e.g., current camera and object positions), in-
formation about the generation parameters (e.g., shall
we use light effects?) and limitations of the output
medium. In addition it keeps track of the time pass-
ing in the script, in the generation process and in the
presentation, which is possibly already running.

This information allows the script generator to make
decisions about how (by which visual effects) to achieve
a certain communicative goal. It allows decisions about
cuts and camera motions and enables the generation of
computationally cheaper solutions, as soon as genera-
tion time becomes scarce.

The script grammar

The structure of the animation scripts produced by
CATHI is defined in a set of decomposition rules,
that represent a context-sensitive grammar. The ini-
tial communicative goal triggers a decomposition rule,
which specifies, depending on the context, how the goal
can be achieved by a set of animation sequences. These
sequences can be specified as either parallel (overlap-
ping) or sequential in time, and they trigger their cor-
responding decomposition rules in turn. The following
example of a simple decomposition rule specifies that
an object motion is shown by moving the object while
keeping camera and light settings fixed.

(defrule show-object-motion (object motion)
(parallel

(move-object : obj ect object
Emotion motion : duration duration)

[steady-shot :duration duration)))

Three parameters are implicitly declared for every rule:
start-time, end-time and duration Only one or two of
them have to be specified, as long as this specification
is unambiguous. If, for example? only the duration
is given, start-time defaults to the current time and
end-time is computed accordingly. Overlapping sub-
sequences can be declared as parallel sequences with
different starting times and/or durations.

At every level of decomposition, different subsets of
sequences can be selected, depending on the current
state of the context. The next example shows a de-
composition rule, which selects different sets of subse-
quences, depending on the context state.

(defrule show-relation (object1 object21
(if (f eatur e :use-light-effects)

(shine-from-object-to-object
:objectf object1 :object2 object2
zduration duration)

(move-camera-from-object-to-object
:objectl object1 :object2 object2
:duration duration)))

At the leaves of the decomposition tree the correspond-
ing rules don’t decompose the sequences any further,
but instead directly specify the corresponding elemen-
tary script sequences (in LISP macro syntax).

(def rule k eep-camera (transform)
‘(:keep-camera ,start-time ,end-time

ztransform ,transform))

The expansion is done in a depth-first order and
chronologically, so that the generation of early elemen-
tary script sequences can modify the context according
to their content. A camera motion, for example, will
change the current camera position stored in the con-
text, so that later decomposition rules can decide, e.g.,
whether it makes sense to move the camera to a new
position smoothly, or to make a cut.

Inerementality

The decomposition strategy above produces the infor-
mation that a certain portion of the script is completely
specified (and won’t be changed by later generation) as
a side effect. This information is used to forward the
piece of script that has just been generated incremen-
tally to the translation and rendering processes.

Every time such an increment is generated, it is
passed on for presentation, which means that the pre-
sentation begins immediately after the generation of
the first increment of a script. This overlapping of
generation and presentation time shortens the delay
between script generation and presentation drastically.
The timing problems that can arise from this procedure
will be discussed shortly.

ProceduraEl attachment

Some information necessary for specifying an entire an-
imation script is not declared explicitly in the script
grammar. It is computed by procedures called by the
generation process during the evaluation of decompo-
sition rules. Such calculations include the choice of
camera and light coordinates, the identification of 3D
object overlappings or the object motions needed for
an exploded view.

The calculation of a global scene illumination, for
example, is also done by such a procedure. It positions
some light sources in the scene, generates some test
frames, evaluates them for brightness and adjusts the

EMERGING APPLICATIONS 959

The presentation prscess light sources accordingly. In addition, spotlights can be
positioned to illuminate certain parts of the scenery.

Arising resource limit at ions

After the first increment has been generated, the pre-
sentation of the animation is started. As long as the
generation process keeps step with the rendering and
presentation processg and supplies a new increment
each time the former one has been presented, CATHI
produces fluent animation output. As soon as the gen-
eration of an increment takes longer than the time left
until the scheduled start of its presentation, output will
pause until the generation is finished.

To avoid this phenomenon, each time an increment is
sent to the renderer, CATHI stores information about
the current generation and presentation time in the
context. This information is used to select computa-
tionally simpler decompositions or attached procedures
in order to finish the next increment in time. This kind
of resource limitations are called arising resource iirn-
itations in contrast to the known resource limitations
discussed earlier.

Timing effects

The consideration of time constraints in the genera-
tion process makes the system output depend on the
underlying hardware, as well as on the current machine
load and other factors. The faster a machine is (or the
longer time a presentation is allowed), the more com-
plex the animation scripts tend to be. This fact makes
the results of the system vary with the machine it runs
on. As a result a fluid animation output is achieved
on any type of machine from ‘486 PCs to SGI work-
stations - hence the name ‘anymation’.

Backtracking, Look-back and Look-ahead

Although the decomposition strategy described above
works recursively, it doesn’t involve any backtracking
in the sense of trial and error. Taking back earlier de-
cisions would impair the ability of the system to decide
at what point an increment has been completely gen-
erated. The generation context stores not only infor-
mation about the current state of the world, but also
about the state before the last modification of each
parameter. This ‘look-back’ by one step can be used
to simulate a ‘look-ahead’ of one step, too. On one
hand, these facilities are quite limited and the under-
lying philosophy of the generation process is ‘to make
the best of the current situation’ without taking back
earlier decisions On the other hand, it is the respon-
sibility of the grammar author - who has a complete
overview - to encode the idioms of the film language
(see (Arijon 1976)) properly and to take care of, for
example, line-crossing errors or continuous movement*

There are two different ways to transform the scripts
generated by CATHI into usable animation clips They
are implemented in the respective output modules for
Geomview and RenderMan. The Geomview program
directly supports a limited set of animation commands.
It is, for example, possible to make objects, or the cam-
era, translate or rotate by a certain amount within a
certain time span. These commands can be used to an-
imate elementary script sequences describing object or
camera motions. In principle each elementary sequence
can be translated into one or several commands in the
target description language. Thus the animation can
be specified sequence by sequence, leaving the rest of
the work to the renderer. While this procedure is ade-
quate for description languages with basic support for
animation, such as the Geomview command language
(Phillips I996) or VRML 2.0 (SGI 1996), things are
more complicated in the following case: The Render-
Man interface, as described in (Upstill 1990), is a static
description format for 3D scenes (like Postscript for
2D). It completely specifies the spatial constellation of
a single frame, but doesn’t include any animation sup-
port. This situation makes it necessary to completely
specify each single frame of the animation However
the resulting process can still be carried out incremen-
tally and is in principle nothing more than what sys-
tems like Geomview do by themselves Despite the
fact, that rendering RenderMan files is currently not
possible within reasonable time limits for real-time ap-
plications, the procedure fits well with the incremental
design of the whole CATHI system.

other Properties of the system

The current implementation of the CATHI system pos-
sesses several other properties, which didn’t fit directly
into any of the above sections.

Object abstractions

Prom VRML and animation systems we have learned
that a fully detailed representation of an object does
not always yield the best results. In VRML, full object
geometries can be replaced by simpler ones depending
on the distance between the object and the camera.
Since simpler geometries are computationally cheaper,
rendering speed and frame rate increase and result in
a more fluent animation. In CATHI, this strategy of
object abstraction is further elaborated. There is an
elementary sequence type which controls the level of
detail of objects. The decomposition rules of the script
grammar specify whether certain objects in the model
world shall be shown detailed or at a higher abstraction
level. In addition to speeding up the rendering process,

960 INNOVATIVE APPLICATIONS

this strategy makes it possible, for example, to direct
the viewer’s attention away from unimportant objects
(shown abstracted) towards the ‘main actors’ which
are shown detailed. The object abstractions needed
for this technique are derived automatically from the
original models. For a closer description, see (Butz 8z
Kruger 1996).

Metagraphics

One interesting technique in 3D animations is the use
of metagraphical objects. These can be short textual
annotations or arrows pointing to objects. The ar-
rows and strings are placed in the 3D object world,
and their positioning is computed by attached proce-
dures in the same way as camera positions or object
occlusions. Metagraphics in 3D animations represent
a powerful extension to the classical film language.

Different grammars

By changing the set of decomposition rules used by
CATHI, different styles of generated animation clips can
be selected. In the current implementation, there are,
for example two different grammars. The ‘standard
grammar9 produces simple, straightforward, easy-to-
understand explanatory animation clips These fit well
in technical documentation.

The second grammar contains decomposition rules
for the same top-level presentation goals, but it speci-
fies different decompositions and calls attached proce-
dures with different parameters. The resulting anima-
tions have a ‘fresh’ design with fast cuts, quick camera
motions and many visual effects, reminding the spec-
tator of MTV video clips. Each of these grammars
consists of approximately 70 decomposition rules.

Implementation

The system is implemented in Common LISP and
@LOS and runs on several UNIX platforms from
LINUX PCs to SGIs. For testing and development
there is a small user interface which allows the formu-
lation of communicative goals as the system input, and
the setting of generation parameters. One interesting
aspect of the implementation is that the decomposition
rules of the animation grammar are transformed into
an internal procedural form, which can be compiled by
the LISP compiler. This speeds up the generation pro-
cess substantially and allows the system to generate
much more complex animation scripts within a limited
time.

Examples

The following image sequences show snapshots from
simple animations generated by CATHI. The commu-
nicative goal of the first animation is to show how to

Figure 1: Show how to open the can opener

open the can-opener of the Swiss knife. Initially, the
whole knife is shown in the frame in order to estab-
lish the visual context. Then the camera position is
adjusted in such a way that the ensuing object motion
can be entirely viewed using a stationary camera.

Figure 2: Show the parts of a constructive group

In the second sequence, the animation shows the
parts (two in this case) of a constructive group by first
creating an exploded view and then zooming in and
out on the single objects. While these are very simple
examples, CATHI is able to generate much more sophis-
ticated animations using spotlights or depth of field
effects which unfortunately can not be shown here by
a few small-sized keyframes.

A different solution to a similar task is presented in the
work of (Karp & Feiner 1993). Their ESPLANADE
system generates animation scripts using a hierarchi-
cal planning approach. The generation of the scripts is

EMERGING APPLICATIONS 961

done in a breadth-first order, which allows for a com-
plete look-ahead and look-back, but not for incremen-
tal generation. Other work, such as in (Badler, Barsky,
& Zeltzer 1990) or (Badler, Phillips, & Webber 1993)
concentrates more on motion planning of objects in the
model world, but relies heavily on defaults for the cam-
era and light settings. In contrast to this, the choice
of camera perspective for statical graphics is quite well
examined in the work of (Rist & Andre 1990). I have
adopted their basic strategies for the selection of cam-
era positions and modified them, if necessary, in order
to make the system work in real-time.

Basic issues for cutting and camera settings in ani-
mations are discussed in (Karp & Feiner 1990). These
issues have largely been observed in the formulation
of the current script grammars. Finally the work
described in (Christianson et ai. 1996; He, Cohen,
& Salesin 1996) is inspired much by the same idea,
namely the formalization of a certain subset of the film
language (as described in (Arijon 1976)) in a declara-
tive way, but while their system emphasizes on camera
planning with aspects of story-telling, their formaliza-
tion fails to yield a fitting light setup and to make use
of light effects or animation-specific techniques, such
as spotlights, metagraphics and levels of detail.

Future work

There is at least one possible extension that seems in-
teresting at the current state of implementation.

Interactivity

If the output medium allows a direct interaction with
the spectator, it would be interesting to make use
of this feature. A newly generated animation could,
for example, start from the 3D constellation left-over
by former user interaction, instead of choosing a new
starting position by itself. This can easily be realized
by changing the script grammar in such a way that
every time a new animation clip is started, the current
3D state is read out from the graphics system instead
of resetting it. The selection of objects in the graph-
ics window could be used to start new animations If
the spectator clicks on an object, an animation could
be started, showing possible actions with this object.
These extensions of the system go beyond its current
use in P’PP, but could be interesting in the future.

Acknowledgements

The work presented in this article was funded by the
Ph.D. program ‘Landesgraduiertenfijrderung des Saar-
landes’ at the University of Saarbriicken. The Ge-
omview visualization software was developed at the
Geometry Center of the University of Minnesota, in
Minneapolis a

References

Andre, E.; Miiller, J.; and Rist, T. 1996. Wip/ppp:
Automatic generation of personalized multimedia
presentations. ACM Multimedia 407-408.

Arijon, D. 1976. Grammar of the Film Language.
Silman- James Press.

Badler, N.; Barsky, B.; and Zeltzer, D. 1990. Making
Them Move: Mechanics, Control and Animation of
Articulated Figures. Morgan Kaufmann.

Badler, N. I.; Phillips, C. B.; and Webber, B. L. 1993.
Simulating Humans. Computer Graphics Animation
and Control. Oxford University Press.

Butz, A., and Krfiger, A. 1996. Lean modeling - the
intelligent use of geometrical abstraction in 3d ani-
mations In Wahlster, W., ed., Proceedings of ECAI
960 John Wiley $c Sons, Ltd.

Christianson, D. B.; Anderson, S. E.; wei He, L.;
Salesin, D. II.; Weld, D. S.; and Cohen, M. F. 1996.
Declarative camera control for automatic cinematog-
raphy. In Proceedings of AAAI ‘96, 148-155.

He, L.; Cohen, M. F.; and Salesin, D. II. 1996. The
virtual cinematographer: A paradigm for automatic
real-time camera control and directing. In Proceedings
of SIGGRAPH ‘96.

Karp, P., and Feiner, S. 1990. Issues in the Au-
tomated Generation of Animated Presentations. In
Graphics Interface ‘90, 39-48.

Karp, P., and Feiner, S. 1993. Automated Presenta-
tion Planning of Animation Using Task Decomposi-
tion with I-Ieuristic Reasoning. In Graphics Interface
‘9$ 17-21.

Phillips, M. 1996. Geomview Manual. distributed
with the software at http://www.geom.umn.edu/.

Rist, T., and Andre, E. 1990. Wissensbasierte
Perspektivenwahl fur die automatische Erzeugung
von 3D-Objektdarstellungen. In Kansy, K., and
Wifikirchen, P. 7 eds. 7 Graphik und KI? volume IFB
239. Berlin, Beidelberg: Springer. 48-57.

SGI. 11996. VRML 2.0. Specification by Silicon
Graphics Inc.: http:// vrml.sgi.com/moving-worlds/,

Thalmann, N. M., and Thalmann, D., eds. 1993. Mod-
els and Techniques in Computer Animation. Com-
puter Animation Series. Springer.

Upstill, S. 1990. The RenderMan companion.
Addison-Wesley.

Watt, A., and Watt, M. 1992. Advanced Anima-
tion and Rendering Techniques, Theory and Practice.
Addison-Wesley0

962 INNOVATIVE APPLICATIONS

