
Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt,

Jay Pittman, Ira Smith, Liang Chen and Josh Clow
Center for Human Computer Communication

Oregon Graduate Institute of Science and Technology
P.O.Box 9 1000

Portland, OR 9729 1- 1000 USA
Tel: l-503-690- 1326

E-mail: pcohen@cse.ogi.edu
http://www.cse.ogi.edu/CHCC

ABSTRACT

This paper presents an emerging application of Artificial
Intelligence research to distributed interactive simulations,
with the goal of reducing exercise generation time and
effort, yet maximizing training effectiveness. We have
developed the QuickSet prototype, a pen/voice system
running on a hand-held PC, communicating via wireless
LAN through an agent architecture to NRaD’s’ LeatherNet
system, a distributed interactive training simulator built for
the US Marine Corps. The paper describes our novel
multimodal integration strategy offering mutual
compensation among modalities, as well as QuickSet’s
agent-based infrastructure, and provides an example of
multimodal simulation setup. Finally, we discuss our
applications experience and lessons learned.

KEYWORDS: multimodal interfaces, agent architecture,
gesture recognition, speech recognition, natural language
processing, distributed interactive simulation.

1. INTRODUCTION

In order to train personnel more effectively, the US
Government is developing large-scale military simulation
capabilities. Begun as SIMNET in the 1980’s [Thorpe,
19871, these distributed, interactive environments attempt to
provide a high degree of fidelity in simulating combat
equipment, movement, atmospheric effects, etc. Numerous
workstation-based simulators that share a replicated and
distributed database are networked together worldwide to
provide a computational substrate. A rather ambitious goal
for 1997 is to be able to create and simulate a large scale
exercise, in which there may be on the order of 50,000

Copyright 0 1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

’ NRaD = US Navy Command and Control Ocean Systems Center
Research Development Test and Evaluation (San Diego).

978 INNOVATIVE APPLICATIONS

entities (e.g., a vehicle or a person). A major goal of the
Government, as well as of the present research, is to
develop technologies that can aid in substantially reducing
the time and effort needed to create scenarios.

The Simulation Process

There are four general phases of user interaction with these
simulations: creating entities, supplying their initial
behavior, interacting with the entities during a running
simulation, and reviewing the results. In the first phase, a
user “lays down” or places forces on the terrain that need to
be positioned in realistic ways, given the terrain, mission,
available equipment, etc. In addition to positioning these
entities at the start of a simulation, the user needs to
supply them with behavior, which may involve complex
maneuvering, communication, etc. While the simulation is
being run, human controllers may observe ongoing events,
and change the behavior of those entities to react
appropriately to those events. Finally, after a simulation is
run, a user will often want to review and query the resulting
simulation history. This paper discusses the first two of
these phases, while our current and future research
addresses the remaining two.

2. THE SIMULATION INTERFACE

Our contribution to the distributed interactive simulation
(DIS) effort is to rethink the nature of the user interaction.
As with most modern simulators, DISs are controlled via
graphical user interfaces (GUIs). However, for a number of‘
reasons, GUI-based interaction is rapidly losing its
benefits, especially when large numbers of entities need to
be created and controlled. At the same time, for reasons of
mobility and affordability, there is a strong user desire to
be able to create simulations on small devices (e.g.,
PDA’s). This impending collision of trends for smaller
screen size and for more entities requires a different paradigm
for human-computer interaction with simulators.

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

3. QUICKSET

To address these simulation interface problems, we have
developed QuickSet (see Figure 2) a collaborative,
handheld, multimodal system for configuring military
simulations based on LeatherNet [Clarkson and Yi, 19961, a
system used in training platoon leaders and company
commanders at the USMC base at Twentynine Palms,
California. LeatherNet simulations are created using the
ModSAF simulator [Courtmanche and Ceranowicz, 19951
and can be visualized in a wall-sized virtual reality CAVE
environment [Cruz-Neira et al., 1993; Zyda et al., 19921
called CommandVu. In addition to LeatherNet, QuickSet is
being used in a second effort called ExInit (Exercise
Initialization), that will enable users to create brigade-level
exercises.

A major design goal for QuickSet was to provide the same
user interface for handheld, desktop, and wall-sized terminal
hardware. We believe that only gesture and speech-based
interaction comfortably span this range. However, rather
than provide just one of these modalities, QuickSet offers
both because it has been demonstrated that there exist
substantive language, task performance, and user preference
advantages for multimodal interaction over speech-only and
gesture-only interaction with map-based tasks [Oviatt,
1996; Oviatt, in press].

QuickSet offers speech and pen-based gesture input on
multiple 3-lb hand-held PCs (Fujitsu Stylistic lOOO), which
communicate via wireless LAN through the Open Agent
Architecture (OAA) [Cohen et al., 19941, to ModSAF, and
to CommandVu. With this highly portable device, a user
can create entities, establish “control measures” (e.g.,
objectives, checkpoints, etc.), draw and label various lines
and areas, (e.g., landing zones) and give the entities
behavior; see Figure 1, where the user has said “M IA1
platoon follow this route <draws curved line 3.”

Figure 1: QuickSet running on a wireless handheld PC. The
user has created numerous units, fortifications and
objectives.

In the remainder of the paper, we describe the system
components, the multimodal -interface architecture, and the
agent infrastructure that integrates both the components of
QuickSet, as well as the military applications. We discuss

its application, and finally lessons
particularly about the agent architecture.

we have learned,

4. SYSTEM ARCHITECTURE

Architecturally, QuickSet uses distributed agent
technologies based on the Open Agent Architecture

’

for
interoperation, information brokering and distribution. An
agent-based architecture was chosen to support this
application because it offers easy connection to legacy
applications, and the ability to run the same set of software
components in a variety of hardware configurations, ranging
from standalone on the handheld PC to distributed
operation across numerous workstations and PCs.
Additionally, the architecture supports mobility in that
lighter weight agents can run on the handheld, while more
computationally-intensive processing can be migrated
elsewhere on the network. The agents may be written in
any programming language (here, Quintus Prolog, Visual
C++, Visual Basic, and Java), as long as they communicate
via the Interagent Communication Language (see below).
The configuration of agents used in the Quickset system is
illustrated in Figure 2. The architecture is described in detail
in Section 6. A brief description of each agent, relevant to
the user interface portions of the QuickSet system follows.

QuickSet interface: On the handheld PC is a geo-
referenced map of the region such that entities displayed on
the map are registered to their positions on the actual
terrain, and thereby to their positions on each of the various
user interfaces connected to the simulation. The map
interface agent provides the usual pan and zoom capabilities,
multiple overlays, icons, etc. The user can draw directly on
the map, in order to create points, lines, and areas. The user
can create entities, give them behavior, and watch the
simulation unfold from the hand-held. When the pen is
placed on the screen, the speech recognizer is activated,
thereby allowing users to speak and gesture simultaneously.

Speech recognition agent: The speech recognition
agent used in QuickSet is built on IBM

’

s

VolceType
Application Factory. The recognizer uses an HMM-based
continuous speaker-independent speech recognrtron
technology for PCs under Windows 95/NT and OS/2.
Currently, it produces a single most likely interpretation of
an utterance. One copy of this agent runs on every PC in
the QuickSet system.

Gesture recognition agent: OGI

’

s

gesture recognition
agent collects and processes all pen input from the PC
screen or tablet. The recognizer sends an n-best list of
possible interpretations to the facilitator, who forwards the
recognition results to the multimodal integration agent. A
gesture recognition agent runs on each PC in the Quickset
architecture. A more detailed description of the gesture
recognition agent is in Section 6.

* Open Agent Architecture is a trademark of SRI Internatlonal

EMERGING APPLICATIONS 979

QuickSet Brokered Architecture

Figure 2: The blackboard serves as a facilitator, channeling
queries to agents who claim they can solve them.

Natural language agent: The natural language agent
currently employs a definite clause grammar and produces
typed feature structures as a representation of the utterance
meaning. Currently, for this task, the language consists of
noun phrases that label entities, as well as a variety of
imperative constructs for supplying behavior.

Multimodal integration agent: The multimodal
interpretation agent accepts typed feature structure meaning
representations from the language and gesture recognition
agents. It unifies those feature structures together,
producing a multimodal interpretation. A more detailed
description of multimodal interpretation is in Section 5.

Simulation agent: The simulation agent, developed
primarily by SRI International [Moore et al., 19971, but
modified by us for multimodal interaction, serves as the
communication channel between the OAA-brokered agents
and the ModSAF simulation system. This agent offers an
API for ModSAF that other agents can use.

Web display agent: The Web display agent can be used
to create entities, points, lines, and areas, and posts queries
for updates to the state of the simulation via Java code that
interacts with the blackboard and facilitator. The queries are
routed to the running ModSAF simulation, and the
available entities can be viewed over a WWW connection
using a suitable browser.

Other user interfaces: When another user interface
connected to the facilitator, subcribes to and produces the
same set of events as others, it immediately becomes part of
a collaboration. One can view this as human-human
collaboration mediated by the agent architecture, or as agent-
agent collaboration.

CommandVu agent: Since the CommandVu virtual
reality system is an agent, the same multimodal interface on
the handheld PC can be used to create entities and to fly the
user through the 3-D terrain. For example, the user can ask
“CommandVu, fly me to this platoon <gesture on the
map>.”

Application bridge agent: The bridge agent
generalizes the underlying applications

’

API to typed feature

structures, thereby providing an interface to the various
applications such as ModSAF, CommandVu, and Exinit.
This allows for a domain-independent integration
architecture in which constraints on multimodal
interpretation are stated in terms of higher-level constructs
such as typed feature structures, greatly facilitating reuse.

CORBA bridge agent: This agent converts OAA
messages to CORBA IDL (Interface Definition Language)
for the Exercise Initialization project.

Figure 3: The QuickSet interface as the user establishes
two platoons, a barbed-wire fence, a breached minefield,
and issues a command to the platoon in the southeast to
follow a specified route.

To see how QuickSet is used, we present the following
example.

4. EXAMPLE

Holding QuickSet in hand, the user views a map from the
ModSAF simulation, and with spoken language coupled
with pen gestures, issues commands to ModSAF. For
example, to create a unit in QuickSet, the user would hold
the pen at the desired location and utter: “red T72 platoon”
resulting in a new platoon of the specified type being
created. The user then adds a barbed-wire fence to the
simulation by drawing a line at the desired location while
uttering “barbed wire.” Similarly a fortified line is added. A
minefield of an amorphous shape is drawn and is labeled
verbally, and finally an M 1Al platoon is created as above.
Then the user can assign a task to the new platoon by
saying “M 1Al platoon follow this route” while drawing the
route with the pen. The results of these commands are
visible on the QuickSet screen, as seen in Figure 3, as well
as on the ModSAF simulation, which has been executing
the user

’

s

QuickSet commands (Figure 4). They are also
visible in the CommandVu 3D rendering of the scene.

Since any recognizer will make mistakes, the output of the
gesture recognizer is not accepted as a simple decision.
Instead the recognizer produces a set of probabilities, one for

980 INNOVATIVE APPLICATIONS

each possible interpretation of the gesture. The identities
and types of objects, units, points, lines, and areas that have
been drawn, tapped on, or encircled by the pen, as well as
their recognition probabilities, are sent to- the blackboard.
Through triggers,- the multimodal interpretation agent is
sent these candidate interpretations.

Figure 4: The ModSAF interface
obstacles created from QuickSet.

showing the forces and

In combining the meanings of the gestural and spoken
interpretations, we attempt to satisfy an important design
consideration, namely that the communicative modalities
should compensate for each other

’

s

weaknesses [Cohen,
1992; Oviatt, 19921. Here, we deliberately show an early
version of QuickSet because it illustrates graphically that
the unification-based multimodal integration process
discussed in Section 7 has ruled out the higher-scoring area
interpretation of the gesture (the shaded region in Figure 3)
in favor of the unifying interpretation of the gesture as a
linear route (“dog-legged” line in Figure 4), which was sent
to ModSAF.

’

In response to this multimodal command,
the automated platoon follows the route, sidesteps the
minefields, breaches the fortifications, and engages in
combat at the destination.

More detail on the gesture agent, multimodal integration,
and agent architecture are provide below, since these
artificial intelligence technologies are novel contributions of
our effort.

6. GESTURE RECOGNITION

In order increase accuracy, QuickSet

’

s

pen-based gesture
recognizer consists of both a neural network [Pittman,
19911 and a set of hidden Markov models. The digital ink is
size-normalized, centered in a 2D image, and fed into the
neural network as pixels. The ink is smoothed, resampled,
converted to deltas, and given as input to the HMM
recognizer. The system currently recognizes 68 pen-gestures

3 In the present version of the system, the ultimate
interpretation is reflected on the QuickSet screen

(including units, lines of various types, objectives, etc.),
and new ones are being added continually.

Both recognizers provide the same coverage (they recognize
the same set of gestures). These gestures, some of which
are illustrated in Figure 5, include various military map
symbols (platoon, mortar, fortified line, etc.), editing
gestures (deletion, grouping), route indications, area
indications, taps, etc. The probability estimates from the
two recognizers are combined to yield probabilities for each
of the possible interpretations. The inclusion of route and
area indications creates a special problem for the
recognizers. Both recognizers recognize shape (although
they see the shape in different data formats).

But as Figures 5 and 6 show, route and area indications may
have a variety of shapes. This problem is further
compounded by the fact that we want the recognizer to be
robust in the face of sloppy writing. More typically,
sloppy forms of various map symbols, such as those
illustrated in Figure 6, will often take the same shape as
some route and area indications. A solution for this
problem can be found by combining the outputs from the
gesture recognizer with the outputs from the speech
recognizer, as is described in the following section.

Figure 5: Pen drawings of routes and areas. Routes
and areas do not have signature shapes that can
be used to identify them.

mortar tank
platoon

deletion mechanized
company

Figure 6: Typical pen input from real users. The
recognizer must be robust in the face of sloppy input.

7. A UNIFICATION-BASED ARCHITECTURE FOR
MULTIMODAL INTEGRATION

One the most significant challenges facing the development
of effective multimodal interfaces concerns the integration
of input from different modes. The major contribution of
the present work is an architecture in which speech and
gesture can compensate for errors in the other modality.

To model this integration, we utilize a unification operation
over typed feature structures [Carpenter 1990, 1992; Calder
19871. Unification is an operation that determines the
consistency of two pieces of partial information, and if they
are consistent combines them into a single result. As such,
it is ideally suited to the task at hand, in which we want to
determine whether a given piece of gestural input is

EMERGING APPLICATIONS 981

compatible with a given piece of spoken input, and if they
are compatible, to combine the two inputs into a single
result that can be interpreted by the system.

The use of feature structures as a semantic representation
framework facilitates the specification of partial meanings.
Spoken or gestural input which partially specifies a
command can be represented as an underspecified feature
structure in which certain features are not instantiated. For
example, if a given speech input can be integrated with a
line gesture, it can be assigned a feature structure with an
underspecified location feature whose value is required to be
of type line.

The spoken phrase ‘barbed wire’ is assigned the feature
structure in Figure 7.

create- line

Figure 7: Feature Structure for ‘barbed wire’

Since QuickSet is a task-based system directed toward
setting up a scenario for simulation, this phrase is
interpreted as a partially specified creation command. Before
it can be executed, it needs a location feature indicating
where to create the line, which is provided by the user’s
drawing on the screen. The user’s ink is likely to be
assigned a number of interpretations, for example, both a
point interpretation and a line interpretation, which are
represented as typed feature structures (see Figures 8 and 9).
Interpretations of gestures as location features are assigned
the more general command type which unifies with all of
commands taken by the system.

Figure 8: Point Interpretation of Gesture

r r coordlist: 1
[(95301,94360),
(95305,94365),

command 1

11

Figure 9: Line Interpretation of Gesture

The task of the integrator agent is to field incoming typed
feature structures representing interpretations of speech and
of gesture, identify the best potential interpretation,
multimodal or unimodal, and issue a typed feature structure
representing the preferred interpretation to the bridge agent,
which will execute the command.

In the example case above, both speech and gesture have
only partial interpretations, one for speech, and two for

gesture. Since the speech interpretation (Figure 7) requires
its location feature to be of type line, only unification with
the line interpretation of the gesture will succeed and be
passed on as a valid multimodal interpretation (Figure 10).

create- lint

object:

coordlist:

location:
[(95301,94360),

I 1

(95305,94365),

line (95310,94380)]

Figure 10: Feature Structure for Multimodal Line Creation

The ambiguity of interpretation of the gesture was resolved
by integration with speech, which in this case required a
location feature of type line. If the spoken command had
instead been ‘M 1 Al Platoon’, intending to create an entity
at the indicated location, it would have selected the point
interpretation of the gesture in Figure 8.

Similarly, if the spoken command described an area, for
example an ‘anti tank minefield’, it would only unify with
an interpretation of gesture as an area designation. In each
case the unification-based integration strategy compensates
for errors in gesture recognition through type constraints on
the values of features.

Gesture also compensates for errors in speech recognition.
In the open microphone mode, spurious speech recognition
errors are more common than with click-to-speak, but are
frequently rejected by the system because of the absence of a
compatible gesture for integration. For example, if the
system recognizes ‘MlAl platoon’, but there is no
overlapping or immediately preceding gesture to provide the
location, the speech will be ignored. The architecture also
supports selection among the n-best speech recognition
results on the basis of the preferred gesture recognition. In
the future, n-best recognition results will be available from
the recognizer, and we will further examine the potential for
gesture to help select among speech recognition
alternatives.

COMPARISON WITH OTHER MULTIMODAL
INTEGRATION EFFORTS

Systems capable of integration of speech and gesture have
existed since the early 80’s. One of the first such systems
was the “Put-That-There” system [Bolt 19801. However, in
the sixteen years since then, research on multimodal
integration has not yielded a reusable scalable architecture
for the construction of multimodal systems that integrate
gesture and voice. There are four major limiting factors in
previous approaches to multimodal integration:

(i) The majority of approaches limit the bandwidth of the
gestural mode to simple deictic pointing gestures made with
a mouse [Brison and Vigouroux (ms.); Cohen 1992; Neal

982 INNOVATIVE APPLICATIONS

and Shapiro 199 1; Wauchope 19941 or with the hand
[Koons et al 19931.

(ii) Most previous approaches have been primarily
language-driven, treating gesture as a secondary dependent
mode [Neal and Shapiro 199 1, Cohen 1992; Brison and
Vigouroux (ms.), Koons et al 1993, Wauchope 19941. In
these systems, integration of gesture is triggered by the
appearance of expressions in the speech stream whose
reference needs to ‘be resolved, such as definite and deictic
noun phrases (e.g. ‘this one’, ‘the red cube’).

(iii) None of the existing approaches provide a well-
understood generally applicable common meaning
representation for the different modes.

(iv) None of the existing approaches provide a general and
formally-well defined mechanism for multimodal
integration.

Our approach to multimodal integration overcomes these
limiting factors in that a wide range of continuous gestural
input is supported, and integration may be driven by either
mode. Typed feature structures are used to provide a clearly
defined and well-understood common meaning representation
for the modes, and multimodal integration is accomplished
through unification. Vo and Wood [19961 present an
approach to multimodal integration similar in spirit to that
presented here in that it accepts a variety of gestures and is
not solely speech-driven. However, we believe that
unification of typed feature structures provides a more
general, formally well-understood, and reusable mechanism
for multimodal integration than the frame merging strategy
that they describe. Cheyer and Julia [1995] sketch a system
based on Oviatt’s [19961 results and the Open Agent
Architecture [Cohen et al., 19941, but describe neither the
integration strategy nor multimodal compensation.

8. AGENT INFRASTRUCTURE

Major considerations in designing QuickSet have been:
interoperation with legacy systems running in a
heterogeneous computing environment, modularity,
network transparency and distributed operation, scalability,
and collaboration. A requirement of the infrastructure was
that it be able to respond fast enough to provide near real-
time performance from a multimodal user interface running
on a small, handheld PC. The entire architecture had to run
standalone on a 486/100Mhz PC, but be able to be
reconfigured rapidly when more computing resources were
available on a LAN.

The Open Agent Architecture satisfies most of these
requirements. The architecture is based on FLiPSiDE
[Schwartz, 19931, an enhanced distributed Prolog-based
blackboard architecture. In the traditional blackboard model,
individual knowledge sources (agents) communicate by
posting and reading messages on a common blackboard. An
agent will periodically poll the board to see if there are any
posted goals (from other agents) it can solve; when an
agent needs help, it can post a goal to be solved, then
retrieve the answer when it appears on the board. The OAA
model enhances this with a facilitator agent resident on the
blackboard. This facilitator stores the blackboard data,

identifies agents that can solve particular posted goals and
routes requests to the appropriate agents.

All communication among the agents takes place through
the facilitator agent. In addition to the standard blackboard
operations of posting and reading, agents in an OAA can
send queries to the facilitator agent and they can request the
facilitator to set triggers on itself, or to route triggers to
agents who can satisfy the trigger’s conditions. These
requests are expressions in an Interagent Communication
Language (ICL) consisting of Horn clauses.

When an agent registers with the facilitator agent, it
supplies a list of goals it can solve as an argument. The
facilitator will add the agent to its list of available
knowledge sources, recording the goals in the supplied
parameter list. The current semantics of this registration are
those of an assertion followed by a conditional offer. That
is, not only is the registering agent asserting that it can
solve the goals in the argument list, it is also offering to
do so whenever requested by the facilitator.

Whenever a goal to be solved is posted to the blackboard,
the facilitator routes the goal to those registered agents that
have claimed to be able (and willing) to solve it. These
solution-requests use synchronous communication - the
agent posting the solve will block until a solution (or
failure) is reported by the facilitator. The OAA also provides
an asynchronous query facility -allowing the agent who
posts the request to continue local computation while
waiting for a response. Through the use of triggers, the
agent can request that the facilitator notify it when an event
has occurred, where an event can be any phenomenon in the
distributed system describable in the ICL. In particular, the
event in question could be the appearance of a solution to an
asynchronous request posted earlier. Most of the QuickSet
integration is based on asynchronous agent interaction,
thereby allowing multiple agents to engage in interactions
with centralized agents (e.g., the simulation agent) without
blocking or waiting for others. This is particularly
important for user interfaces, which must respond to speech
and gesture input within a very short time window, even
while the system’s responses to prior inputs are being
computed.

Although this architecture is derived from FliPSiDe, it
omits Schwartz’ considerable effort devoted to locking of
the blackboard. (Similar considerations were vital in the
early blackboard systems [Fennel and Lesser, 19771.) The
architecture is similar to that of KQML/KIF [Finin et al.,
1994; Genesereth and Ketchpel, 19941 in its use of a
brokered architecture, an agent communications language
and a logically-based propositional content language. We
employ many fewer speech act types (and have argued that
in fact, KQML should only have a small number of
communication acts as well [Cohen and Levesque, 1995;
Smith and Cohen, 19961) and use a subset of first-order
logic, where that effort uses KIF. The OAA has provided
an effective framework for integrating legacy applications.
By linking in an agent library written in the application’s
native language, the application can become a full-fledged
agent, potentially capable of participating in multiagent
systems. To date, the architecture has been sufficient for our

EMERGING APPLICATIONS 98

initial experiments, but needs to be revised significantly for fidelity “wizard-of-Oz” studies were performed in advance of
data and interaction intensive applications. building the system that predicted the utility of multimodal
8. CONCLUDING REMARKS

Below we characterize how QuickSet has been applied and
what we have learned from this research, development and
technology transition experience.

Applications

QuickSet has been delivered to the US Navy and US Marine
Corps. for use at Twentynine Palms, California, where it is
primarily used to set up training scenarios and to control the
virtual environment. The system was also used by the US
Army’s 82 Airborne Corps. at Ft. Bragg during the Royal
Dragon Exercise. There, QuickSet was deployed in a tent,
where it was subjected to noise from explosions, low-flying
jet aircraft, generators, etc. Not surprisingly, it readily
became apparent that spoken interaction with QuickSet
would not be feasible. To support usage in such a harsh
environment, a complete overlap in functionality between
speech, gesture, and direct manipulation was desired. The
system has been revised to accomodate these needs.

Finally, QuickSet is now being extended for use in the
ExInit simulation initialization system for DARPA‘s
STOW-97 (Synthetic Theater of War) Advanced Concept
Demonstration. In this version, QuickSet runs either on a
Pentium Pro or on the handheld unit, with the agent
architecture interoperating with a collection of CORBA
servers (written by MRJ Corp. and Ascent Technologies)
that decompose high-level units into their constituents, and
that perform terrain reasoning, and other “back-end”
functions. The multimodal integration here is used to
create and position the high level units, and to mark up
boundaries, objectives, and obstacles on a map.

Lessons learned

Much was learned from the effort to date about the
scalability of agent architectures and about multimodal user
interfaces. Although a conceptually reasonable first step, the
implementation of the OAA agent architecture lacked
necessary features for supporting robust interaction and
collaboration. First, it had no features for authentication, or
for locking, as in FliPSiDe. Thus, one user’s agents could
interfere with another’s. This was addressed through better
identification of the user behind each agent. In an
environment where there is one multimodal integration
agent on the network, this approach prevents one user’s
speech from being combined with another user’s gesture.
Second, the implementations in Prolog and C were not
multi-threaded. Thus, when multiple users were rapidly
creating units, the simulator agent would lose data and only
create the last of the units received. Finally both control
and data were routed through the blackboard to the various
agents. This works well when the amount of data is
relatively small, but will not scale for multimedia
applications. Rather, data and control paths should be
separated. Research is ongoing at OGI to redesign an agent
architecture that overcomes the above limitations.

Regarding the multimodal interface itself, QuickSet has
undergone a “proactive” interface evaluation in that high-

over unimodal speech as an input to map-based systems
[Oviatt, 1996; Oviatt et al., 19971. For example, it was
discovered there that multimodal interaction would lead to
simpler language than unimodal speech. Such observations
have been confirmed when examining how users would
create linear features with CommandTalk [Moore, 19951, a
unimodal spoken system that also controls LeatherNet.
Whereas to create a “phase line” between two three-digit
<x,y> grid coordinates, a user would have to say: “create a
line from nine four three nine six one to nine five seven
nine six eight and call it phase line green,” a QuickSet
user would say “phase line green” while drawing a line.
Given that numerous difficult-to-process linguistic
phenomena (such as utterance disfluencies) are known to be
elevated in lengthy utterances and also to be elevated when
people speak locative constituents [Oviatt, 1996; Oviatt in
press], multimodal interaction that permits’ pen input to
specify locations offers the possibility of more robust
recognition.

In summary, we have developed a handheld system that
integrates numerous artificial intelligence technologies,
including speech recognition, gesture recognition, natural
language processing, multimodal integration, distributed
agent technologies, and reasoning. The multimodal
integration strategy allows speech and gesture to
compensate for each other, yielding a more robust system.
We are currently engaged in evaluation experiments to
quantify the benefits of this approach. The system
interoperates with existing military simulators and virtual
reality environments through a distributed agent
architecture. QuickSet has been deployed for the US Navy,
US Marine Corps, and the US Army, and is being
integrated into the DARPA STOW-97 ACTD. We are
currently evaluating its performance, interacting with the
end users of the system in the various services, and will
begin to collect field usage data during future exercises.

ACKNOWLEDGMENTS

This work is supported in part by the Information
Technology and Information Systems offices of DARPA
under contract number DABT63-95-C-007, in part by ONR
grant number N00014-95- l- 1164, and has been done in
collaboration with the US Navy’s NCCOSC RDT&E
Division (NRaD), Ascent Technologies, MRJ Corp. and
SRI International.

REFERENCES

Bolt, R. A. 1980. “Put-That-There”:Voice and gesture at the
graphics interface. Computer Graphics. 14.3, pp. 262-270
Calder, J. 1987. Typed unification for natural language
processing. In E. Klein and J. van Benthem (Eds.),
Categories, Polymorphisms, and Unification. Centre for
Cognitive Science, University of Edinburgh, Edinburgh,
pp. 65-72.
Brison, E. and N. Vigouroux. (unpublished ms.).
Multimodal references: A generic fusion process. URIT-
URA CNRS. Universite Paul Sabatier, Toulouse, France.

984 JNNO’.‘ATIW APPLJCATIONS

Cheyer, A., and L. Julia. 1995. Multimodal maps: An
agent-based approach. International Conference on
Cooperative Multimodal Communication (CMC/95), May
1995. Eindhoven, The Netherlands. pp. 24-26.
Carpenter, R. 1990. Typed feature structures: Inheritance,
(In)equality, and Extensionality. In W. Daelemans and G.
Gazdar (Eds.), Proceedings of the fTK Workshop:
Inheritance in Natural Language Processing, Til burg
University, pp. 9- 18.
Carpenter, R. 1992. The logic of typed feature structures.
Cambridge University Press, Cambridge.
Clarkson, J. D., and J. Yi. 1996. LeatherNet: A synthetic
forces tactical training system for the USMC commander.
Proceedings of the Sixth Conference on Computer
Generated Forces and Behuvioral Representation. Orlando,
Florida, 275-28 1.
Cohen, P. R. The Role of Natural Language in a
Multimodal Interface. Proceedings of UIST’92, ACM Press,
NY, 1992, 143-149.

Cohen, P.R., Cheyer, A., Wang, M., and Baeg, S.C. An
Open Agent Architecture. Proceedings of the AAAI Spring
Symposium Series on Soji’ware Agents (March 21-22,
Stanford), Stanford Univ., CA, 1994, 1-8.
Cohen, P. R. and Levesque, H. J. Communicative actions
for artificial agents. In Proceedings of the International
Conference on Multiagent Systems, AAAI Press, Menlo
Park, California, 1995.
Courtemanche, A.J. and Ceranowicz, A. ModSAF
Development Status. Proceedings of the Fifth Conference

Computer Generated Forces and Behavioral
gpresentation, Univ. Central Florida, Orlando, 1995, 3- 13.
Cruz-Neira, C. D.J. Sandin, T.A. DeFanti, “Surround-
Screen Projection-Based Virtual Reality: The Design and
Implementation of the CAVE,” Computer Graphics, ACM
SIGGRAPH, August 1993, pp. 135-142.
Fennell, R. D., and Lesser, V. R., Parallelism in artificial
intelligence problem solving: A case study of HEARSAY-
II, IEEE Transactions on Computers C-26(2), 1977, 98-
111.
Finin, T. and Fritzson, R. and McKay, D. and McEntire, R.
KQML as an agent communication language, Proceedings
of the Third International Conference on Information and
Knowledge Management (CIKM’94), ACM Press, New ,
November, 1994.
Genesereth, M. and Ketchpel, S., Software Agents,
Communications of the ACM, 37(7), July, 1994, 100-105.
Koons, D.B., C.J. Sparrell and K.R. T,horisson. 1993.
Integrating simultaneous input from speech, gaze, and hand
gestures. In Mark T. Maybury (ed.) Intelligent Multimedia

Inter$aces. AAAI Press/ MIT Press, Cambridge, MA, pp.
257-276.
Moore, R. C., Dowding, J, Bratt, H., Gawron, M., and
Cheyer, A. CommandTalk: A spoken-language interface
for battlefield simulations, Proc. of the 3rd Applied Natural
Language Conference, Wash. DC, 1997.
Neal, J.G. and Shapiro, S.C. Intelligent multi-media
interface technology. In J.W. Sullivan and S.W. Tyler,
editors, Intelligent User Interfaces, chapter 3, pages 45-68.
ACM Press Frontier Series, Addison Wesley Publishing
Co., New York, New York, 1991.
Oviatt, S. L., Pen/Voice: Complementary multimodal
communication, Proceedings of SpeechTech’92, New York,
February, 1992, 238-24 1.
Oviatt, S.L., Multimodal interfaces for dynamic interactive
maps. Proceedings of CHI’96 Human Factors in
Computing Systems ACM Press, NY, 1996, 95- 102.
Oviatt, S.L. Multimodal interactive maps: Designing for
human performance, Human Computer Interaction, in press.
Oviatt, S. L, A. DeAngeli, and K. Kuhn. Integration and
synchronization of input modes during multimodal human-
computer interaction. Proceedings of the Conference on
Human Factors in Computing Systems (CHI ‘97), ACM
Press, NY, 1997, 415-422.

Pittman, J. A. Recognizing handwritten text Human
Factors in Computing Systems (CHI’91), 199 1, 27 l-275.
Schwartz, D.G. Cooperating heterogeneous systems: A
blackboard-based meta approach. Technical report 93- 1 12,
Center for Automation and Intelligent Systems Research,
Case Western Reserve University, Cleveland, Ohio, April
1993. Ph.D. thesis.
Smith, I. A. and Cohen, P. R. Toward a Semantics for an
Agent Communications Language Based on Speech-Acts
Proceedings of the Thirteenth National Conference in
Artificial Intelligence (AAAI 96), AAAI Press, 24-3 1.
Thorpe, J. A. The new technology of large scale simulator
networking: Implications for mastering the art of
warfighting 9rh Interservice Training Systems Conference,
1987, 492-501.
Vo, M. T. and C. Wood. 1996. Building an application
framework for speech and pen input integration in
multimodal learning interfaces. International Conference on
Acoustics, Speech, and Signal Processing, Atlanta, GA.
Wauchope, K. 1994. Eucalyptus: Integrating natural
language input with a graphical user interface. Naval
Research Laboratory, Report NRL/FIUSS 1 O--94-97 1 1.
Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K.
P., NPSNET: Constructing a 3-D virtual world,
Proceedings of the 1992 Symposium on Interactive 3-D
Graphics, March, 1992.

EMERGING APPLICATIONS 985

