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ABSTRACT 

This paper presents an emerging application of Artificial 
Intelligence research to distributed interactive simulations, 
with the goal of reducing exercise generation time and 
effort, yet maximizing training effectiveness. We have 
developed the QuickSet prototype, a pen/voice system 
running on a hand-held PC, communicating via wireless 
LAN through an agent architecture to NRaD’s’ LeatherNet 
system, a distributed interactive training simulator built for 
the US Marine Corps. The paper describes our novel 
multimodal integration strategy offering mutual 
compensation among modalities, as well as QuickSet’s 
agent-based infrastructure, and provides an example of 
multimodal simulation setup. Finally, we discuss our 
applications experience and lessons learned. 

KEYWORDS: multimodal interfaces, agent architecture, 
gesture recognition, speech recognition, natural language 
processing, distributed interactive simulation. 

1. INTRODUCTION 

In order to train personnel more effectively, the US 
Government is developing large-scale military simulation 
capabilities. Begun as SIMNET in the 1980’s [Thorpe, 
19871, these distributed, interactive environments attempt to 
provide a high degree of fidelity in simulating combat 
equipment, movement, atmospheric effects, etc. Numerous 
workstation-based simulators that share a replicated and 
distributed database are networked together worldwide to 
provide a computational substrate. A rather ambitious goal 
for 1997 is to be able to create and simulate a large scale 
exercise, in which there may be on the order of 50,000 

Copyright 0 1997, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved. 

’ NRaD = US Navy Command and Control Ocean Systems Center 
Research Development Test and Evaluation (San Diego). 
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entities (e.g., a vehicle or a person). A major goal of the 
Government, as well as of the present research, is to 
develop technologies that can aid in substantially reducing 
the time and effort needed to create scenarios. 

The Simulation Process 

There are four general phases of user interaction with these 
simulations: creating entities, supplying their initial 
behavior, interacting with the entities during a running 
simulation, and reviewing the results. In the first phase, a 
user “lays down” or places forces on the terrain that need to 
be positioned in realistic ways, given the terrain, mission, 
available equipment, etc. In addition to positioning these 
entities at the start of a simulation, the user needs to 
supply them with behavior, which may involve complex 
maneuvering, communication, etc. While the simulation is 
being run, human controllers may observe ongoing events, 
and change the behavior of those entities to react 
appropriately to those events. Finally, after a simulation is 
run, a user will often want to review and query the resulting 
simulation history. This paper discusses the first two of 
these phases, while our current and future research 
addresses the remaining two. 

2. THE SIMULATION INTERFACE 

Our contribution to the distributed interactive simulation 
(DIS) effort is to rethink the nature of the user interaction. 
As with most modern simulators, DISs are controlled via 
graphical user interfaces (GUIs). However, for a number of‘ 
reasons, GUI-based interaction is rapidly losing its 
benefits, especially when large numbers of entities need to 
be created and controlled. At the same time, for reasons of 
mobility and affordability, there is a strong user desire to 
be able to create simulations on small devices (e.g., 
PDA’s). This impending collision of trends for smaller 
screen size and for more entities requires a different paradigm 
for human-computer interaction with simulators. 
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3. QUICKSET 

To address these simulation interface problems, we have 
developed QuickSet (see Figure 2) a collaborative, 
handheld, multimodal system for configuring military 
simulations based on LeatherNet [Clarkson and Yi, 19961, a 
system used in training platoon leaders and company 
commanders at the USMC base at Twentynine Palms, 
California. LeatherNet simulations are created using the 
ModSAF simulator [Courtmanche and Ceranowicz, 19951 
and can be visualized in a wall-sized virtual reality CAVE 
environment [Cruz-Neira et al., 1993; Zyda et al., 19921 
called CommandVu. In addition to LeatherNet, QuickSet is 
being used in a second effort called ExInit (Exercise 
Initialization), that will enable users to create brigade-level 
exercises. 

A major design goal for QuickSet was to provide the same 
user interface for handheld, desktop, and wall-sized terminal 
hardware. We believe that only gesture and speech-based 
interaction comfortably span this range. However, rather 
than provide just one of these modalities, QuickSet offers 
both because it has been demonstrated that there exist 
substantive language, task performance, and user preference 
advantages for multimodal interaction over speech-only and 
gesture-only interaction with map-based tasks [Oviatt, 
1996; Oviatt, in press]. 

QuickSet offers speech and pen-based gesture input on 
multiple 3-lb hand-held PCs (Fujitsu Stylistic lOOO), which 
communicate via wireless LAN through the Open Agent 
Architecture (OAA) [Cohen et al., 19941, to ModSAF, and 
to CommandVu. With this highly portable device, a user 
can create entities, establish “control measures” (e.g., 
objectives, checkpoints, etc.), draw and label various lines 
and areas, (e.g., landing zones) and give the entities 
behavior; see Figure 1, where the user has said “M IA1 
platoon follow this route <draws curved line 3.” 

Figure 1: QuickSet running on a wireless handheld PC. The 
user has created numerous units, fortifications and 
objectives. 

In the remainder of the paper, we describe the system 
components, the multimodal -interface architecture, and the 
agent infrastructure that integrates both the components of 
QuickSet, as well as the military applications. We discuss 

its application, and finally lessons 
particularly about the agent architecture. 

we have learned, 

4. SYSTEM ARCHITECTURE 

Architecturally, QuickSet uses distributed agent 
technologies based on the Open Agent Architecture

’ 

for 
interoperation, information brokering and distribution. An 
agent-based architecture was chosen to support this 
application because it offers easy connection to legacy 
applications, and the ability to run the same set of software 
components in a variety of hardware configurations, ranging 
from standalone on the handheld PC to distributed 
operation across numerous workstations and PCs. 
Additionally, the architecture supports mobility in that 
lighter weight agents can run on the handheld, while more 
computationally-intensive processing can be migrated 
elsewhere on the network. The agents may be written in 
any programming language (here, Quintus Prolog, Visual 
C++, Visual Basic, and Java), as long as they communicate 
via the Interagent Communication Language (see below). 
The configuration of agents used in the Quickset system is 
illustrated in Figure 2. The architecture is described in detail 
in Section 6. A brief description of each agent, relevant to 
the user interface portions of the QuickSet system follows. 

QuickSet interface: On the handheld PC is a geo- 
referenced map of the region such that entities displayed on 
the map are registered to their positions on the actual 
terrain, and thereby to their positions on each of the various 
user interfaces connected to the simulation. The map 
interface agent provides the usual pan and zoom capabilities, 
multiple overlays, icons, etc. The user can draw directly on 
the map, in order to create points, lines, and areas. The user 
can create entities, give them behavior, and watch the 
simulation unfold from the hand-held. When the pen is 
placed on the screen, the speech recognizer is activated, 
thereby allowing users to speak and gesture simultaneously. 

Speech recognition agent: The speech recognition 
agent used in QuickSet is built on IBM

’
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VolceType 
Application Factory. The recognizer uses an HMM-based 
continuous speaker-independent speech recognrtron 
technology for PCs under Windows 95/NT and OS/2. 
Currently, it produces a single most likely interpretation of 
an utterance. One copy of this agent runs on every PC in 
the QuickSet system. 

Gesture recognition agent: OGI

’
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gesture recognition 
agent collects and processes all pen input from the PC 
screen or tablet. The recognizer sends an n-best list of 
possible interpretations to the facilitator, who forwards the 
recognition results to the multimodal integration agent. A 
gesture recognition agent runs on each PC in the Quickset 
architecture. A more detailed description of the gesture 
recognition agent is in Section 6. 

* Open Agent Architecture is a trademark of SRI Internatlonal 
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QuickSet Brokered Architecture 

Figure 2: The blackboard serves as a facilitator, channeling 
queries to agents who claim they can solve them. 

Natural language agent: The natural language agent 
currently employs a definite clause grammar and produces 
typed feature structures as a representation of the utterance 
meaning. Currently, for this task, the language consists of 
noun phrases that label entities, as well as a variety of 
imperative constructs for supplying behavior. 

Multimodal integration agent: The multimodal 
interpretation agent accepts typed feature structure meaning 
representations from the language and gesture recognition 
agents. It unifies those feature structures together, 
producing a multimodal interpretation. A more detailed 
description of multimodal interpretation is in Section 5. 

Simulation agent: The simulation agent, developed 
primarily by SRI International [Moore et al., 19971, but 
modified by us for multimodal interaction, serves as the 
communication channel between the OAA-brokered agents 
and the ModSAF simulation system. This agent offers an 
API for ModSAF that other agents can use. 

Web display agent: The Web display agent can be used 
to create entities, points, lines, and areas, and posts queries 
for updates to the state of the simulation via Java code that 
interacts with the blackboard and facilitator. The queries are 
routed to the running ModSAF simulation, and the 
available entities can be viewed over a WWW connection 
using a suitable browser. 

Other user interfaces: When another user interface 
connected to the facilitator, subcribes to and produces the 
same set of events as others, it immediately becomes part of 
a collaboration. One can view this as human-human 
collaboration mediated by the agent architecture, or as agent- 
agent collaboration. 

CommandVu agent: Since the CommandVu virtual 
reality system is an agent, the same multimodal interface on 
the handheld PC can be used to create entities and to fly the 
user through the 3-D terrain. For example, the user can ask 
“CommandVu, fly me to this platoon <gesture on the 
map>.” 

Application bridge agent: The bridge agent 
generalizes the underlying applications

’ 

API to typed feature 

structures, thereby providing an interface to the various 
applications such as ModSAF, CommandVu, and Exinit. 
This allows for a domain-independent integration 
architecture in which constraints on multimodal 
interpretation are stated in terms of higher-level constructs 
such as typed feature structures, greatly facilitating reuse. 

CORBA bridge agent: This agent converts OAA 
messages to CORBA IDL (Interface Definition Language) 
for the Exercise Initialization project. 

Figure 3: The QuickSet interface as the user establishes 
two platoons, a barbed-wire fence, a breached minefield, 
and issues a command to the platoon in the southeast to 
follow a specified route. 

To see how QuickSet is used, we present the following 
example. 

4. EXAMPLE 

Holding QuickSet in hand, the user views a map from the 
ModSAF simulation, and with spoken language coupled 
with pen gestures, issues commands to ModSAF. For 
example, to create a unit in QuickSet, the user would hold 
the pen at the desired location and utter: “red T72 platoon” 
resulting in a new platoon of the specified type being 
created. The user then adds a barbed-wire fence to the 
simulation by drawing a line at the desired location while 
uttering “barbed wire.” Similarly a fortified line is added. A 
minefield of an amorphous shape is drawn and is labeled 
verbally, and finally an M 1Al platoon is created as above. 
Then the user can assign a task to the new platoon by 
saying “M 1Al platoon follow this route” while drawing the 
route with the pen. The results of these commands are 
visible on the QuickSet screen, as seen in Figure 3, as well 
as on the ModSAF simulation, which has been executing 
the user

’
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QuickSet commands (Figure 4). They are also 
visible in the CommandVu 3D rendering of the scene. 

Since any recognizer will make mistakes, the output of the 
gesture recognizer is not accepted as a simple decision. 
Instead the recognizer produces a set of probabilities, one for 
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each possible interpretation of the gesture. The identities 
and types of objects, units, points, lines, and areas that have 
been drawn, tapped on, or encircled by the pen, as well as 
their recognition probabilities, are sent to- the blackboard. 
Through triggers,- the multimodal interpretation agent is 
sent these candidate interpretations. 

Figure 4: The ModSAF interface 
obstacles created from QuickSet. 

showing the forces and 

In combining the meanings of the gestural and spoken 
interpretations, we attempt to satisfy an important design 
consideration, namely that the communicative modalities 
should compensate for each other

’
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weaknesses [Cohen, 
1992; Oviatt, 19921. Here, we deliberately show an early 
version of QuickSet because it illustrates graphically that 
the unification-based multimodal integration process 
discussed in Section 7 has ruled out the higher-scoring area 
interpretation of the gesture (the shaded region in Figure 3) 
in favor of the unifying interpretation of the gesture as a 
linear route (“dog-legged” line in Figure 4), which was sent 
to ModSAF.

’ 

In response to this multimodal command, 
the automated platoon follows the route, sidesteps the 
minefields, breaches the fortifications, and engages in 
combat at the destination. 

More detail on the gesture agent, multimodal integration, 
and agent architecture are provide below, since these 
artificial intelligence technologies are novel contributions of 
our effort. 

6. GESTURE RECOGNITION 

In order increase accuracy, QuickSet

’
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pen-based gesture 
recognizer consists of both a neural network [Pittman, 
19911 and a set of hidden Markov models. The digital ink is 
size-normalized, centered in a 2D image, and fed into the 
neural network as pixels. The ink is smoothed, resampled, 
converted to deltas, and given as input to the HMM 
recognizer. The system currently recognizes 68 pen-gestures 

3 In the present version of the system, the ultimate 
interpretation is reflected on the QuickSet screen 

(including units, lines of various types, objectives, etc.), 
and new ones are being added continually. 

Both recognizers provide the same coverage (they recognize 
the same set of gestures). These gestures, some of which 
are illustrated in Figure 5, include various military map 
symbols (platoon, mortar, fortified line, etc.), editing 
gestures (deletion, grouping), route indications, area 
indications, taps, etc. The probability estimates from the 
two recognizers are combined to yield probabilities for each 
of the possible interpretations. The inclusion of route and 
area indications creates a special problem for the 
recognizers. Both recognizers recognize shape (although 
they see the shape in different data formats). 

But as Figures 5 and 6 show, route and area indications may 
have a variety of shapes. This problem is further 
compounded by the fact that we want the recognizer to be 
robust in the face of sloppy writing. More typically, 
sloppy forms of various map symbols, such as those 
illustrated in Figure 6, will often take the same shape as 
some route and area indications. A solution for this 
problem can be found by combining the outputs from the 
gesture recognizer with the outputs from the speech 
recognizer, as is described in the following section. 

Figure 5: Pen drawings of routes and areas. Routes 
and areas do not have signature shapes that can 
be used to identify them. 

mortar tank 
platoon 

deletion mechanized 
company 

Figure 6: Typical pen input from real users. The 
recognizer must be robust in the face of sloppy input. 

7. A UNIFICATION-BASED ARCHITECTURE FOR 
MULTIMODAL INTEGRATION 

One the most significant challenges facing the development 
of effective multimodal interfaces concerns the integration 
of input from different modes. The major contribution of 
the present work is an architecture in which speech and 
gesture can compensate for errors in the other modality. 

To model this integration, we utilize a unification operation 
over typed feature structures [Carpenter 1990, 1992; Calder 
19871. Unification is an operation that determines the 
consistency of two pieces of partial information, and if they 
are consistent combines them into a single result. As such, 
it is ideally suited to the task at hand, in which we want to 
determine whether a given piece of gestural input is 
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compatible with a given piece of spoken input, and if they 
are compatible, to combine the two inputs into a single 
result that can be interpreted by the system. 

The use of feature structures as a semantic representation 
framework facilitates the specification of partial meanings. 
Spoken or gestural input which partially specifies a 
command can be represented as an underspecified feature 
structure in which certain features are not instantiated. For 
example, if a given speech input can be integrated with a 
line gesture, it can be assigned a feature structure with an 
underspecified location feature whose value is required to be 
of type line. 

The spoken phrase ‘barbed wire’ is assigned the feature 
structure in Figure 7. 

create- line 

Figure 7: Feature Structure for ‘barbed wire’ 

Since QuickSet is a task-based system directed toward 
setting up a scenario for simulation, this phrase is 
interpreted as a partially specified creation command. Before 
it can be executed, it needs a location feature indicating 
where to create the line, which is provided by the user’s 
drawing on the screen. The user’s ink is likely to be 
assigned a number of interpretations, for example, both a 
point interpretation and a line interpretation, which are 
represented as typed feature structures (see Figures 8 and 9). 
Interpretations of gestures as location features are assigned 
the more general command type which unifies with all of 
commands taken by the system. 

Figure 8: Point Interpretation of Gesture 

r r coordlist: 1 
[(95301,94360), 
(95305,94365), 

command 1 

11 

Figure 9: Line Interpretation of Gesture 

The task of the integrator agent is to field incoming typed 
feature structures representing interpretations of speech and 
of gesture, identify the best potential interpretation, 
multimodal or unimodal, and issue a typed feature structure 
representing the preferred interpretation to the bridge agent, 
which will execute the command. 

In the example case above, both speech and gesture have 
only partial interpretations, one for speech, and two for 

gesture. Since the speech interpretation (Figure 7) requires 
its location feature to be of type line, only unification with 
the line interpretation of the gesture will succeed and be 
passed on as a valid multimodal interpretation (Figure 10). 

create- lint 

object: 

coordlist: 

location: 
[(95301,94360), 

I 1 

(95305,94365), 

line (95310,94380)] 

Figure 10: Feature Structure for Multimodal Line Creation 

The ambiguity of interpretation of the gesture was resolved 
by integration with speech, which in this case required a 
location feature of type line. If the spoken command had 
instead been ‘M 1 Al Platoon’, intending to create an entity 
at the indicated location, it would have selected the point 
interpretation of the gesture in Figure 8. 

Similarly, if the spoken command described an area, for 
example an ‘anti tank minefield’, it would only unify with 
an interpretation of gesture as an area designation. In each 
case the unification-based integration strategy compensates 
for errors in gesture recognition through type constraints on 
the values of features. 

Gesture also compensates for errors in speech recognition. 
In the open microphone mode, spurious speech recognition 
errors are more common than with click-to-speak, but are 
frequently rejected by the system because of the absence of a 
compatible gesture for integration. For example, if the 
system recognizes ‘MlAl platoon’, but there is no 
overlapping or immediately preceding gesture to provide the 
location, the speech will be ignored. The architecture also 
supports selection among the n-best speech recognition 
results on the basis of the preferred gesture recognition. In 
the future, n-best recognition results will be available from 
the recognizer, and we will further examine the potential for 
gesture to help select among speech recognition 
alternatives. 

COMPARISON WITH OTHER MULTIMODAL 
INTEGRATION EFFORTS 

Systems capable of integration of speech and gesture have 
existed since the early 80’s. One of the first such systems 
was the “Put-That-There” system [Bolt 19801. However, in 
the sixteen years since then, research on multimodal 
integration has not yielded a reusable scalable architecture 
for the construction of multimodal systems that integrate 
gesture and voice. There are four major limiting factors in 
previous approaches to multimodal integration: 

(i) The majority of approaches limit the bandwidth of the 
gestural mode to simple deictic pointing gestures made with 
a mouse [Brison and Vigouroux (ms.); Cohen 1992; Neal 
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and Shapiro 199 1; Wauchope 19941 or with the hand 
[Koons et al 19931. 

(ii) Most previous approaches have been primarily 
language-driven, treating gesture as a secondary dependent 
mode [Neal and Shapiro 199 1, Cohen 1992; Brison and 
Vigouroux (ms.), Koons et al 1993, Wauchope 19941. In 
these systems, integration of gesture is triggered by the 
appearance of expressions in the speech stream whose 
reference needs to ‘be resolved, such as definite and deictic 
noun phrases (e.g. ‘this one’, ‘the red cube’). 

(iii) None of the existing approaches provide a well- 
understood generally applicable common meaning 
representation for the different modes. 

(iv) None of the existing approaches provide a general and 
formally-well defined mechanism for multimodal 
integration. 

Our approach to multimodal integration overcomes these 
limiting factors in that a wide range of continuous gestural 
input is supported, and integration may be driven by either 
mode. Typed feature structures are used to provide a clearly 
defined and well-understood common meaning representation 
for the modes, and multimodal integration is accomplished 
through unification. Vo and Wood [ 19961 present an 
approach to multimodal integration similar in spirit to that 
presented here in that it accepts a variety of gestures and is 
not solely speech-driven. However, we believe that 
unification of typed feature structures provides a more 
general, formally well-understood, and reusable mechanism 
for multimodal integration than the frame merging strategy 
that they describe. Cheyer and Julia [1995] sketch a system 
based on Oviatt’s [ 19961 results and the Open Agent 
Architecture [Cohen et al., 19941, but describe neither the 
integration strategy nor multimodal compensation. 

8. AGENT INFRASTRUCTURE 

Major considerations in designing QuickSet have been: 
interoperation with legacy systems running in a 
heterogeneous computing environment, modularity, 
network transparency and distributed operation, scalability, 
and collaboration. A requirement of the infrastructure was 
that it be able to respond fast enough to provide near real- 
time performance from a multimodal user interface running 
on a small, handheld PC. The entire architecture had to run 
standalone on a 486/100Mhz PC, but be able to be 
reconfigured rapidly when more computing resources were 
available on a LAN. 

The Open Agent Architecture satisfies most of these 
requirements. The architecture is based on FLiPSiDE 
[Schwartz, 19931, an enhanced distributed Prolog-based 
blackboard architecture. In the traditional blackboard model, 
individual knowledge sources (agents) communicate by 
posting and reading messages on a common blackboard. An 
agent will periodically poll the board to see if there are any 
posted goals (from other agents) it can solve; when an 
agent needs help, it can post a goal to be solved, then 
retrieve the answer when it appears on the board. The OAA 
model enhances this with a facilitator agent resident on the 
blackboard. This facilitator stores the blackboard data, 

identifies agents that can solve particular posted goals and 
routes requests to the appropriate agents. 

All communication among the agents takes place through 
the facilitator agent. In addition to the standard blackboard 
operations of posting and reading, agents in an OAA can 
send queries to the facilitator agent and they can request the 
facilitator to set triggers on itself, or to route triggers to 
agents who can satisfy the trigger’s conditions. These 
requests are expressions in an Interagent Communication 
Language (ICL) consisting of Horn clauses. 

When an agent registers with the facilitator agent, it 
supplies a list of goals it can solve as an argument. The 
facilitator will add the agent to its list of available 
knowledge sources, recording the goals in the supplied 
parameter list. The current semantics of this registration are 
those of an assertion followed by a conditional offer. That 
is, not only is the registering agent asserting that it can 
solve the goals in the argument list, it is also offering to 
do so whenever requested by the facilitator. 

Whenever a goal to be solved is posted to the blackboard, 
the facilitator routes the goal to those registered agents that 
have claimed to be able (and willing) to solve it. These 
solution-requests use synchronous communication - the 
agent posting the solve will block until a solution (or 
failure) is reported by the facilitator. The OAA also provides 
an asynchronous query facility -allowing the agent who 
posts the request to continue local computation while 
waiting for a response. Through the use of triggers, the 
agent can request that the facilitator notify it when an event 
has occurred, where an event can be any phenomenon in the 
distributed system describable in the ICL. In particular, the 
event in question could be the appearance of a solution to an 
asynchronous request posted earlier. Most of the QuickSet 
integration is based on asynchronous agent interaction, 
thereby allowing multiple agents to engage in interactions 
with centralized agents (e.g., the simulation agent) without 
blocking or waiting for others. This is particularly 
important for user interfaces, which must respond to speech 
and gesture input within a very short time window, even 
while the system’s responses to prior inputs are being 
computed. 

Although this architecture is derived from FliPSiDe, it 
omits Schwartz’ considerable effort devoted to locking of 
the blackboard. (Similar considerations were vital in the 
early blackboard systems [Fennel and Lesser, 19771.) The 
architecture is similar to that of KQML/KIF [Finin et al., 
1994; Genesereth and Ketchpel, 19941 in its use of a 
brokered architecture, an agent communications language 
and a logically-based propositional content language. We 
employ many fewer speech act types (and have argued that 
in fact, KQML should only have a small number of 
communication acts as well [Cohen and Levesque, 1995; 
Smith and Cohen, 19961) and use a subset of first-order 
logic, where that effort uses KIF. The OAA has provided 
an effective framework for integrating legacy applications. 
By linking in an agent library written in the application’s 
native language, the application can become a full-fledged 
agent, potentially capable of participating in multiagent 
systems. To date, the architecture has been sufficient for our 
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initial experiments, but needs to be revised significantly for fidelity “wizard-of-Oz” studies were performed in advance of 
data and interaction intensive applications. building the system that predicted the utility of multimodal 
8. CONCLUDING REMARKS 

Below we characterize how QuickSet has been applied and 
what we have learned from this research, development and 
technology transition experience. 

Applications 

QuickSet has been delivered to the US Navy and US Marine 
Corps. for use at Twentynine Palms, California, where it is 
primarily used to set up training scenarios and to control the 
virtual environment. The system was also used by the US 
Army’s 82 Airborne Corps. at Ft. Bragg during the Royal 
Dragon Exercise. There, QuickSet was deployed in a tent, 
where it was subjected to noise from explosions, low-flying 
jet aircraft, generators, etc. Not surprisingly, it readily 
became apparent that spoken interaction with QuickSet 
would not be feasible. To support usage in such a harsh 
environment, a complete overlap in functionality between 
speech, gesture, and direct manipulation was desired. The 
system has been revised to accomodate these needs. 

Finally, QuickSet is now being extended for use in the 
ExInit simulation initialization system for DARPA‘s 
STOW-97 (Synthetic Theater of War) Advanced Concept 
Demonstration. In this version, QuickSet runs either on a 
Pentium Pro or on the handheld unit, with the agent 
architecture interoperating with a collection of CORBA 
servers (written by MRJ Corp. and Ascent Technologies) 
that decompose high-level units into their constituents, and 
that perform terrain reasoning, and other “back-end” 
functions. The multimodal integration here is used to 
create and position the high level units, and to mark up 
boundaries, objectives, and obstacles on a map. 

Lessons learned 

Much was learned from the effort to date about the 
scalability of agent architectures and about multimodal user 
interfaces. Although a conceptually reasonable first step, the 
implementation of the OAA agent architecture lacked 
necessary features for supporting robust interaction and 
collaboration. First, it had no features for authentication, or 
for locking, as in FliPSiDe. Thus, one user’s agents could 
interfere with another’s. This was addressed through better 
identification of the user behind each agent. In an 
environment where there is one multimodal integration 
agent on the network, this approach prevents one user’s 
speech from being combined with another user’s gesture. 
Second, the implementations in Prolog and C were not 
multi-threaded. Thus, when multiple users were rapidly 
creating units, the simulator agent would lose data and only 
create the last of the units received. Finally both control 
and data were routed through the blackboard to the various 
agents. This works well when the amount of data is 
relatively small, but will not scale for multimedia 
applications. Rather, data and control paths should be 
separated. Research is ongoing at OGI to redesign an agent 
architecture that overcomes the above limitations. 

Regarding the multimodal interface itself, QuickSet has 
undergone a “proactive” interface evaluation in that high- 

over unimodal speech as an input to map-based systems 
[Oviatt, 1996; Oviatt et al., 19971. For example, it was 
discovered there that multimodal interaction would lead to 
simpler language than unimodal speech. Such observations 
have been confirmed when examining how users would 
create linear features with CommandTalk [Moore, 19951, a 
unimodal spoken system that also controls LeatherNet. 
Whereas to create a “phase line” between two three-digit 
<x,y> grid coordinates, a user would have to say: “create a 
line from nine four three nine six one to nine five seven 
nine six eight and call it phase line green,” a QuickSet 
user would say “phase line green” while drawing a line. 
Given that numerous difficult-to-process linguistic 
phenomena (such as utterance disfluencies) are known to be 
elevated in lengthy utterances and also to be elevated when 
people speak locative constituents [Oviatt, 1996; Oviatt in 
press], multimodal interaction that permits’ pen input to 
specify locations offers the possibility of more robust 
recognition. 

In summary, we have developed a handheld system that 
integrates numerous artificial intelligence technologies, 
including speech recognition, gesture recognition, natural 
language processing, multimodal integration, distributed 
agent technologies, and reasoning. The multimodal 
integration strategy allows speech and gesture to 
compensate for each other, yielding a more robust system. 
We are currently engaged in evaluation experiments to 
quantify the benefits of this approach. The system 
interoperates with existing military simulators and virtual 
reality environments through a distributed agent 
architecture. QuickSet has been deployed for the US Navy, 
US Marine Corps, and the US Army, and is being 
integrated into the DARPA STOW-97 ACTD. We are 
currently evaluating its performance, interacting with the 
end users of the system in the various services, and will 
begin to collect field usage data during future exercises. 
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