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Abstract- 
The GKB Editor is a generic editor and browser of 
knowledge bases (KBs) and ontologies - generic in the 
sense that it is portable across several frame knowl- 
edge representation systems (FRSs). This general- 
ity is possible because the GKB Editor performs all 
KB access operations using a generic application pro- 
gramming interface to FRSs called the Generic Frame 
Protocol (GFP). To adapt the GKB Editor to a new 
FRS, we need only to create a GFP implementation for 
that FRS - a task that is usually considerably sim- 
pler than implementing a complete KB editor. The 
GKB Editor also contains several relatively advanced 
features, including three different viewers of KB rela- 
tionships, incremental browsing of large graphs, KB 
analysis tools, extensive customizability, complex se- 
lection operations, cut-and-paste operations, and both 
user- and KB-specific profiles. The GKB Editor is in 
active use in the development of several ontologies and 
KBs. This paper discusses the design of the GKB Ed- 
itor from a graphical user interface point of view, and 
describes the difficulties encountered in achieving true 
portability across multiple FRSs. 

Introduction 
In 1991 Neches et al. articulated a vision of enabling 
technology for knowledge sharing (Neches et al. 1991). 
That vision involved a “Chinese menu” (not to be 
confused with Searls’ Chinese room) of interoperable, 
reusable components that a system designer could mix 
and match to construct knowledge-based systems, in- 
cluding knowledge representation systems, ontologies, 
and reasoners. The paper argued that because the de 
novo construction of knowledge-based systems is in- 
credibly time consuming, future knowledge-based sys- 
tems should be constructing by reusing and modifying 
existing components. Five years later, this vision has 
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been realized to a limited extent; the ONTOLINGUA 
project has produced a library of ontologies (Gru- 
ber 1993), and the KIF project has produced a lan- 
guage for knowledge interchange (Genesereth & Fikes 
1992), but actual examples of knowledge reuse are few. 
This paper reports a milestone of software reuse for 
knowledge-based systems by describing a knowledge- 
base browser and editor that is reusable across several 
different knowledge representation systems. 

The knowledge representation (KR) community has 
long recognized the need for graphical knowledge- 
base browsing and editing tools to facilitate the 
development of complex knowledge bases (KBs). 
Frame knowledge representation systems (FRSs) from 
KREME (Abrett et a2. 1987) to KEE (Kehler & 
Clemenson 1984) to CYCL (Lenat & Guha 1990) have 
included graphical KB editors to assist users in devel- 
oping new KBs, and in comprehending and maintain- 
ing existing KBs. More recently, the ontology move- 
ment in AI has spurred the development of graphical 
ontology editors. 

However, the past approach of developing KB editors 
that were tightly wedded to a single FRS is impractical. 
The substantial efforts required to create such tools be- 
come lost if the associated FRS falls into disuse. Since 
most FRSs share a common core functionality, a more 
cost-effective approach is to amortize the cost of de- 
veloping a single FRS interface tool across a number 
of FRSs. Another benefit of this approach is that it 
allows a user to access KBs created using a variety of 
FRSs through a single graphical user interface (GUI), 
thus reducing the barrier for a user to interact with a 
new FRS. Finally, most past KB editors have imple- 
mented essentially the same functionality, presumably 
because each new system must be built from scratch 
rather than building on a previous implementation. 

The GKB Editor is a generic editor and browser of 
KBs and ontologies - generic in the sense that it is 
portable across several FRSs. This generality is pos- 
sible because the GKB Editor performs all KB access 
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and modification operations by using a generic applica- 
tion programming interface to FRSs called the Generic 
Frame Protocol (GFP) (Karp, Myers, & Gruber 1995). 
To adapt the GKB Editor to a new FRS, we need only 
to create a GFP implementation for that FRS - a 
task that is usually considerably simpler than imple- 
menting a complete KB editor. The GKB Editor also 
contains a number of relatively advanced features, such 
as incremental browsing of large graphs, KB analysis 
tools, operation over multiple selections, cut-and-paste 
operations, and both user- and KB-specific profiles. 

The GKB Editor is in active use in the development 
of military-application planning KBs and ontologies 
for LOOM (MacGregor 1991) at several sites, includ- 
ing a military-transportation planning ontology. It is 
used daily in the development of EcoCyc (Karp et al. 
1997)) a biological KB containing more than 11,000 
frames that is accessed daily via the WWW by scien- 
tists from around the world2 (public access to EcoCyc 
is provided by a biology-specific GUI). The editor also 
works with the FRSs OCELOT (developed at SRI), 
SIPE-2 (Wilkins 1990), and THEO (Mitchell et al. 
1989), and in read-only mode for ONTOLINGUA. 
GKB Editor development has benefited greatly from 
the feedback provided by the user community, incor- 
porating a number of user suggestions into subsequent 
versions of the system. 

This paper discusses the design of the GKB Editor 
from a GUI point of view, and describes the difficulties 
encountered in achieving true portability across multi- 
ple FRSs. 

Design Goals 
The GKB Editor was designed to satisfy the follow- 
ing criteria. (1) It must be portable across multiple 
FRSs. (2) Users should be shielded from as many id- 
iosyncrasies of the underlying FRS as possible. (3) 
Knowledge should be presented in the most natural 
form, which is often graphical. There should be mul- 
tiple ways to view data, depending on the user’s per- 
spective and the types of modifications they wish to 
make. (4) The GKB Editor should support the en- 
tire life cycle of a KB or an ontology, including de- 
sign, development, maintenance, comprehension, and 
reuse. By “comprehension” we mean the task of un- 
derstanding a new and unfamiliar KB, which is usually 
the first step in reuse. (5) Where appropriate, editing 
should be accomplished through direct pictorial ma- 
nipulation. For example, if a KB is represented as a 
graph, then we should be able to translate an editing 
operation that is natural to perform on a graph to the 

2See www 
http://www.ai.sri.com/ecocyc/ecocyc.html. 
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corresponding editing operation on the KB. (6) The 
interface should be intuitive for the novice user to un- 
derstand and manipulate, but not unduly burdensome 
for the expert user. Shortcuts should be available for 
common operations. (7) The interface should be cus- 
tomizable: the user should have control over both the 
kind and amount of information displayed, including 
incremental revealing, and the appearance of the dis- 
played information. 

We assert that the design requirements for an ontol- 
ogy editor and browser are subsumed by the design re- 
quirements for a KB editor and browser. That is, a sys- 
tem that adequately supports the design, development, 
maintenance, comprehension, and reuse of KBs will 
adequately support the same tasks for ontologies. The 
reason is that although there may be semantic differ- 
ences between ontologies and KBs (Guarino & Giaretta 
1995), there are no substantial symbol-level differences 
between the two (as Guarino points out, ontologies can 
include both classes and instances). Given that FRSs 
can serve as implementation substrates for building on- 
tologies, the GKB Editor can therefore serve as an ed- 
itor and browser of ontologies. The converse is not 
true: it is possible to develop ontology editors that are 
not adequate KB editors. For example, since KBs will 
generally have larger scale than ontologies, an editor 
that is adequate for an ontology could easily prove in- 
adequate for a large KB. 

Architecture 

The GKB Editor is built upon a graph-display tool 
called Grasper-CL (Karp et al. 1994). Portability 
among FRSs is achieved by using the Generic Frame 
Protocol (GFP) to form a wrapping layer between the 
GKB Editor and the underlying FRSs. Figure 1 il- 
lustrates the overall architecture of the GKB Editor 
system. OCELOT, THEO and LOOM KBs can all 
be persistently stored in a relational DBMS (Karp & 
Paley 1995). 

Our architecture naturally lends itself to distributed 
operation, in three possible modes. In the first mode, 
we insert a network connection at (A) in Figure 1 by 
using remote X-windows. In this mode, the GKB Edi- 
tor and the FRS run in a LISP process on one machine, 
and the X-window graphics flow over the network to 
the user’s workstation. In practice, this approach is 
slow but workable for cross-continent Internet connec- 
tions; it is quite acceptable over local-area networks. 
Approach (B) uses a remote-procedure call implemen- 
tation of GFP. With the network link at (C), the LISP 
process runs on the user’s workstation and communi- 
cates with the DBMS server over the network using 
SQL. This approach faults frames across the network; 
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they are cached in the LISP process. All three of these 
distributed modes have been implemented and tested; 
our group currently uses (A) and (C), both alone and 
in combination. 

The Generic Frame Protocol 
The GFP defines a set of operations that comprise a 
generic API to underlying FRSs (Karp, Myers, & Gru- 
ber 1995). This generic interface layer allows an ap- 
plication such as the GKB Editor some independence 
from the idiosyncrasies of specific FRS software and 
enables the development of generic tools that operate 
on many FRSs. 

Although FRS implementations have significant dif- 
ferences, there are enough common properties that one 
can describe a generic model of frame representation 
and specify a set of access functions for interacting with 
FRSs. The GFP specification defines such a generic 
model (with frames, classes, slots, and so forth) and 
consists of a library of operations (e.g., get a frame by 
its name, change a slot’s value in a frame). An appli- 
cation or tool written to use these access functions can 
access knowledge stored in any compatible FRS. GFP 
implementations exist for LOOM, OCELOT, SIPE- 
2, THEO, and ONTOLINGUA (Gruber 1993). 

Each GFP operation is defined as a CLOS generic 
function. The implementation of GFP for a given FRS 
consists of a set of CLOS methods that implement the 
GFP operations using calls to an FRS-specific func- 
tional interface. Since many of the GFP generic func- 
tions have default methods written in terms of other 
GFP methods, only a core subset of the generic func- 
tions in the specification must be implemented for a 
given system. The default methods can be overridden 
to improve efficiency or for better integration with de- 
velopment environments. 

Although GFP necessarily imposes some common 
requirements on the organization of knowledge (e.g., 
frames, slots, and values) and semantics of some asser- 
tions (e.g., instances and subclass relationship, and in- 
herited slot values, slot constraints), it allows for some 
variety in the behavior of underlying FRSs. The proto- 
col achieves this heterogeneity by parameterizing FRSs 
themselves, providing an explicit model of the proper- 
ties of FRSs that may vary. An application can ask 
for the behavior profile of an FRS, and adapt itself ac- 
cordingly. For example, OCELOT supports annota- 
tions on slot values, whereas LOOM does not.3 When 
annotations are present, it is desirable for the GKB 

3Annotations are an extension to the frame model that 
our group has implemented for OCELOT. Annotations are 
analogous to facets, and are essentially a property list for 
slot values; they allow us to attach comments or citations 
to the literature to a particular value within a slot. 

Editor to display them. Before attempting this oper- 
ation, however, the GKB Editor must first query an 
FRS’s behavior profile to determine whether or not 
annotations are supported. 

The GFP model cannot incorporate all functional- 
ities of all FRSs. A clever translation can minimize 
the mismatch, however. For example, each LOOM 
concept has associated with it a definition, enumer- 
ating various restrictions on instances of the concept. 
GFP currently provides no facility for definitions (we 
plan to incorporate such a facility in GFP in the fu- 
ture, perhaps based on KRSS). However, GFP does 
support the notion of facets on slots (which LOOM 
lacks), which can be used to encode restrictions about 
values of that slot. In the translation between GFP 
and LOOM, many of the restrictions that appear in 
LOOM concept definitions can be converted to facet 
values in GFP, which can then be displayed and edited 
using the GKB Editor. We find that the majority of 
LOOM concept definitions can be translated to a facet 
encoding. Untranslatable definitions can be edited in 
an Emacs-like window in the S-expression form, using 
the standard LOOM concept-definition language. 

There is no magic bullet whereby the GKB Editor 
can access idiosyncratic or newly developed FRS fea- 
tures that are not described by the GFP. Such features 
must either be integrated into the GFP as extensions, 
or the GKB Editor must be extended with condition- 
ally compiled FRS-specific code. 

Viewing and Editing Knowledge 

The GKB Editor offers four different ways to view KBs. 
The user can view the KB as a class-instance hierar- 
chy graph, as a set of inter-frame relationships (this 
is roughly analogous to a conceptual graph represen- 
tation, a semantic network, or an entity-relationship 
diagram), as a spreadsheet, or by examining the slot 
values and facets of an individual frame.4 A set of edit- 
ing operations appropriate to each view has been de- 
fined so that the displayed objects can be manipulated 
directly and pictorially. All editing operations trans- 
late immediately to changes in the underlying KB. 

Most commonly used commands are accessible via 
both command menus and keystroke equivalents, and 
most of the time a node can be selected either by click- 
ing on it or by typing in its name (with completion). 
Thus, a user can choose whether interaction is to be 
primarily by mouse, by keyboard, or by a combination 
of both. A cut-and-paste facility is also available for 
copying slot values, facet values, and frame names. 

at 
4Snapshots from all viewers are available on the WWW 
URL http://www.ai.sri.com/-gkb/overview.html. 
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Figure 1: The architecture of the GKB Editor system. All user interaction is through the GKB Editor, which uses 
GFP to access KBs from a variety of FRSs, and Grasper-CL to generate and browse graphical displays. 

Class-Instance Hierarchy Viewer Inter-Frame Relationships Viewer 

This viewer displays the class-instance hierarchy of a 
KB as a graph. Each node in the graph represents a 
single class or instance frame, and directed edges are 
drawn from a class to its subclasses and from a class 
to its instances. Multiple parentage is handled prop- 
erly. Users can incrementally browse large hierarchies 
by starting at root node(s) that are either computed, 
or are specified by the user. The tool automatically ex- 
pands the hierarchy to a preconfigured depth cutoff. If 
a particular node has more than a designated number 
of children (the breadth cutoff), the remaining children 
are condensed and represented by a single node. Unex- 
panded nodes are visually distinguished from expanded 
nodes. The user can browse the hierarchy by select- 
ing, with the mouse, nodes that are to be expanded or 
compacted. Alternatively, the user can type in (with 
completion) the name of a frame that does not yet ap- 
pear in the display, and, where possible, the hierarchy 
will be expanded out along the appropriate path until 
that frame is visible. 

The hierarchy viewer can also be used to edit the 
class-instance hierarchy. Operations such as creating, 
deleting, and renaming frames, and altering super- 
subclass and class-instance links can all be accom- 
plished with a few mouse clicks. A frame can be cre- 
ated either as an empty frame or as a duplicate of an 
existing frame. When deleting a frame, the user can 
choose either to delete only that frame, or to delete 
the entire subtree rooted at that frame. When creat- 
ing or changing links, the GKB Editor checks for and 
disallows links that would create a cycle in the class 
hierarchy. 

It is often useful to visualize relationships in a KB by 
following slot links rather than parent-child links. For 
example, if frame B is a value of slot X in frame A, 
then an edge can be drawn from node A to node B, 
labeled X. If we recognize that slot X represents a 
relationship between frames A and B, then this kind of 
graph is analogous to the view of a KB as a conceptual 
graph (although our displays do not use all the visual 
conventions of the conceptual graph community) or to 
a semantic network. This view is useful for showing 
relationships in the KB other than the class-instance 
hierarchy, for example, a Part-Of hierarchy. 

The frame-relationships viewers can depict instance- 
level relationships and class-level relationships. The 
example in the preceding paragraph describes an 
instance-level relationship. In a class-level relation- 
ships view, an edge labeled X is drawn from class Cl 
to class C2 if values of slot X in instances of Cl are 
constrained to be instances of C2. 

Like the hierarchy view, a relationships view is 
browsed incrementally. The user specifies a set of 
frames to serve as roots, and optionally a set of slots to 
follow (by default, all slots are followed), and the graph 
is expanded to the designated depth and breadth. A 
class-level or instance-level browse is selected automat- 
ically, depending on whether the specified roots are 
classes or instances. The user selects, with the mouse, 
nodes to be expanded or compacted. Unlike with the 
hierarchy view, the user cannot type in an arbitrary 
frame and have the browse expanded to that frame. 
This limitation is for efficiency reasons, because of the 
large number of possible paths to any frame. 
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Spreadsheet Viewer 

The spreadsheet viewer allows frame data to be ex- 
ported to NeXS, a commercial spreadsheet product for 
X-windows. Spreadsheets allow large volumes of data 
to be visualized in a very compact form, and support 
a variety of data analysis tools, such as X-Y plotting. 
User-specified instances form the rows of the spread- 
sheet, and user-specified slots form the columns of the 
spreadsheet. Users can launch the spreadsheet viewer 
from within the class-hierarchy viewer by clicking ei- 
ther on selected instances or on one or more classes; all 
instances of those classes are exported to the spread- 
sheet. Within the spreadsheet, users can both view 
and modify cell values, as well as adding new rows to 
the spreadsheet - the new rows are translated to new 
instances when the user terminates NeXS. A limitation 
of the spreadsheet viewer is its current inability to dis- 
play more than one value per slot. We are investigating 
several approaches to overcome this limitation. 

Frame-Editing Viewer 

The frame-editing viewer allows the user to view and 
edit the contents of an individual frame. From the 
hierarchy viewer or the relationships viewer, the user 
may select a frame and display it in a frame-editing 
viewer. It presents the contents of a frame as a graph. 
Each slot name forms the root of a small tree; its chil- 
dren are individual slot values, and slot facets and their 
values. Inherited slot values are distinguished visually 
from local items, and cannot be edited (but they can 
be overridden where appropriate). The user can choose 
whether to display all slots and facets, filled slots and 
facets only, or selected slots and facets only. 

In addition to duplicating, renaming, or deleting the 
viewed frame, the kinds of editing operations available 
in this viewer permit adding, deleting, replacing, and 
editing of slot values, facet values, and annotations. 
Slots themselves may be added, removed, or renamed, 
when classes are edited. 

Customizability 
The GKB Editor is highly customizable, allowing users 
to specify via a set of preference dialogs what should 
be displayed in the various viewers and how various 
objects should be drawn. Customizability is important 
if the GKB Editor is to find widespread use - the more 
control the user has over the appearance and behavior 
of the displays, the more likely that the GKB Editor 
will suit the user’s needs. 

A style dialog for the hierarchy and relationships 
viewers lets the user control how individual nodes are 
displayed. The user can specify icon and label colors, 
icon shape, and label font, face, and size. The user 

can specify a style for all frames satisfying some predi- 
cate. Any number of these styles and predicates can be 
specified, and frames that satisfy more than one pred- 
icate will show characteristics of each corresponding 
style (except where such characteristics conflict with 
each other). Currently, only a few predefined predi- 
cates are available, such as for identifying classes, in- 
stances, and primitive classes, for testing frames for a 
particular user-specified slot value, or identifying chil- 
dren of a class. 

In these same two viewers, the user can specify 
slots whose values are to appear as part of the dis- 
play for a frame node. This facility permits the user 
to see parts of each frame’s interior while browsing 
the KB, without actually opening a frame-editing win- 
dow for each frame. If the FRS provides each frame 
with a “pretty name”, intended to be user-readable 
rather than machine-readable (perhaps encoded as a 
slot value), then the user can specify that frames 
should be labeled with their pretty names. 

A user can define a personal preferences profile that 
will take effect across all KBs. In addition, because 
many preferences make sense only when applied to a 
particular KB (such as the list of browse roots or slots 
to be displayed), the user can save an individual profile 
for each KB (KB-specific preferences take precedence). 

Lessons in Portability 

The proof of the successful multi-FRS portability of 
the GKB Editor is the ongoing use of the GKB Edi- 
tor to edit real-world KBs for OCELOT and LOOM. 
These two FRSs lie at fairly opposite ends of the FRS 
spectrum: LOOM is a KL-ONE descendant that sup- 
ports classification. OCELOT is in the UNIT Package 
family of FRSs, along with KEE, CYCL, and THEO 
(Karp 1992). It does not perform classification - 
all class-subclass and class-instance relationships are 
specified by the user.. It does support facets (both 
built-in facets such as value-type and cardinality, and 
user-specified facets) and annotations, which LOOM 
does not. OCELOT supports multiple parentage, pro- 
cedural attachment, constraints on slot values, and 
runtime schema alterations (e.g., changes to class defi- 
nitions for a loaded KB). OCELOT KBs can be stored 
in files or in a database back-end (Karp & Paley 1995). 

Here we summarize the limitations that exist and the 
difficulties that were encountered in making the GKB 
Editor truly generic. Limitations: (1) GFP supports 
neither contexts nor complex inheritance relationships 
among KBs; the GKB Editor does not recognize these 
constructs. (2) The section on The Generic Frame Pro- 
tocol discusses the partial mapping we have defined 
between facets and the LOOM concept definition lan- 
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guage. Although this approach works in practice, use 
of a common concept-definition language would make 
multiple description-logic systems look more uniform 
to the user. (3) Any FRS will have idiosyncrasies that 
fall outside the GFP model. For example, LOOM 
provides three alternative implementations of instance 
frames, which are not supported by GFP. We extended 
the GKB Editor to recognize this construct. 

FRSs vary in the degree of dynamic schema alter- 
ation (changes in class definitions) they allow; LOOM 
and OCELOT are flexible in this regard, whereas 
CLASSIC, for example, is not. The GKB Editor can- 
not provide an FRS with functionality that the FRS 
lacks. 

Related Work 

Many graphical browsers and editors have been built 
for individual FRSs. We have built on ideas from sev- 
eral of these systems. KnEd (Eilerts 1994) offers two 
types of viewers, a graphical hierarchy viewer analo- 
gous to both our hierarchy and relationships viewers 
(although KnEd does not support editing operations) 
and a textual viewer for browsing and editing individ- 
ual frames and slots. The user interface for the Univer- 
sity of Ottawa’s CODE4 knowledge management sys- 
tem (Skuce & Lethbridge 1995) offers a spreadsheet 
view as well as textual outline and semantic net views 
of a KB. “Masks” let the user control what KB ele- 
ments are visible and, to a limited extent, how they 
should be displayed. The HITS Editor (Terveen & 
Wroblewski 1990) supports browsing and editing of the 
CYC (Lenat & Guha 1990) KB. It defines user perspec- 
tives on a per-class basis to determine what informa- 
tion should be displayed, and builds checklists for data 
entry tasks. 

Protege-II is a powerful suite of knowledge- 
acquisition tools (Eriksson et al. 1994). One tool sup- 
ports ontology editing; a second tool accepts an ontol- 
ogy as input, and produces as output a specification 
of a forms-based editor for instance frames within that 
ontology. Protege-II includes a relationships viewer. 
Protege-II and the GKB Editor embody different ap- 
proaches for visualizing frames. We use a graph visu- 
alization of frames rather than a forms-based visual- 
ization because the forms approach is problematic for 
encoding slots with multiple values (it is often not clear 
how many blank form elements to allocate for new val- 
ues of a multivalued slot), and for representing facets 
and annotations - the graph visualization makes the 
relationships among a slot, its facets, its values, and 
their annotations very evident. In addition, although 
Protege-II gets significant mileage from decoupling the 
editing of ontologies (classes) and instances, there are 

two problems with this approach: first, during the 
KB development process these two operations are of- 
ten tightly coupled - a user may alternate between 
editing of classes and instances frequently, and may 
prefer to avoid the process of generating a new user 
interface for instance editing after every class change; 
second, some modifications to classes actually demand 
immediate modifications to instances of those classes, 
for example, when deleting a slot from a class, the 
GKB Editor will automatically delete all occurrences 
of that slot from instances of the class (with user con- 
firmation). It is not clear how Protege-II can modify 
instances in response to class changes. 

The preceding tools operate with only one FRS. 
Stanford’s Ontology Editor (Farquhar et al. 1995) 

is a browser and editor for shared ontologies, en- 
coded using the ONTOLINGUA language (Gruber 
1993). Users access the interface using the WWW. 
Currently, the Ontology Server operates only on ON- 
TOLINGUA ontologies. Because it is implemented 
using GFP, and because some translators between ON- 
TOLINGUA and other representations either exist or 
are under development, the Ontology Server could in 
principle be used to browse and edit KBs for a vari- 
ety of KR systems. The WWW implementation of the 
Ontology Editor is both its biggest advantage and its 
biggest drawback. The advantage is the easy accessi- 
bility; the drawbacks result from the many limitations 
of the HTTP protocol: most information is presented 
in textual form, rather than graphically; displays can- 
not be updated incrementally, as they can in the GKB 
Editor - the only operation within HTTP is to send 
an entire new page, which can be slow; the lack of 
state in HTTP limits the style of user interaction that 
can occur, as does the few mouse events supported by 
HTTP. Use of Java would overcome many of these lim- 
itations of HTTP. 

Performance and Availability 
The performance of the GKB Editor is quite accept- 
able on a SPARC-20 workstation (now an outdated 
machine) with 48 MB of memory; graphics operations 
execute fast, and the incremental browsing facilities 
provide fast browsing of the EcoCyc biology KB, which 
contains more than 11,000 frames. 

The GKB Editor is available under license from SRI 
International at no charge.5 
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