
Suzanne M. Paley, John ID. Eowrance and Peter ID. Karp
Artificial Intelligence Center

SRI International
333 Ravenswood Ave., EJ231

Menlo Park, CA 94025
fax: 415-859-3735, voice: 415-859-5708

{paley, lowrance, pkarp}@ai.sri.com

Abstract-
The GKB Editor is a generic editor and browser of
knowledge bases (KBs) and ontologies - generic in the
sense that it is portable across several frame knowl-
edge representation systems (FRSs). This general-
ity is possible because the GKB Editor performs all
KB access operations using a generic application pro-
gramming interface to FRSs called the Generic Frame
Protocol (GFP). To adapt the GKB Editor to a new
FRS, we need only to create a GFP implementation for
that FRS - a task that is usually considerably sim-
pler than implementing a complete KB editor. The
GKB Editor also contains several relatively advanced
features, including three different viewers of KB rela-
tionships, incremental browsing of large graphs, KB
analysis tools, extensive customizability, complex se-
lection operations, cut-and-paste operations, and both
user- and KB-specific profiles. The GKB Editor is in
active use in the development of several ontologies and
KBs. This paper discusses the design of the GKB Ed-
itor from a graphical user interface point of view, and
describes the difficulties encountered in achieving true
portability across multiple FRSs.

Introduction
In 1991 Neches et al. articulated a vision of enabling
technology for knowledge sharing (Neches et al. 1991).
That vision involved a “Chinese menu” (not to be
confused with Searls’ Chinese room) of interoperable,
reusable components that a system designer could mix
and match to construct knowledge-based systems, in-
cluding knowledge representation systems, ontologies,
and reasoners. The paper argued that because the de
novo construction of knowledge-based systems is in-
credibly time consuming, future knowledge-based sys-
tems should be constructing by reusing and modifying
existing components. Five years later, this vision has

Copyright @ 1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

been realized to a limited extent; the ONTOLINGUA
project has produced a library of ontologies (Gru-
ber 1993), and the KIF project has produced a lan-
guage for knowledge interchange (Genesereth & Fikes
1992), but actual examples of knowledge reuse are few.
This paper reports a milestone of software reuse for
knowledge-based systems by describing a knowledge-
base browser and editor that is reusable across several
different knowledge representation systems.

The knowledge representation (KR) community has
long recognized the need for graphical knowledge-
base browsing and editing tools to facilitate the
development of complex knowledge bases (KBs).
Frame knowledge representation systems (FRSs) from
KREME (Abrett et a2. 1987) to KEE (Kehler &
Clemenson 1984) to CYCL (Lenat & Guha 1990) have
included graphical KB editors to assist users in devel-
oping new KBs, and in comprehending and maintain-
ing existing KBs. More recently, the ontology move-
ment in AI has spurred the development of graphical
ontology editors.

However, the past approach of developing KB editors
that were tightly wedded to a single FRS is impractical.
The substantial efforts required to create such tools be-
come lost if the associated FRS falls into disuse. Since
most FRSs share a common core functionality, a more
cost-effective approach is to amortize the cost of de-
veloping a single FRS interface tool across a number
of FRSs. Another benefit of this approach is that it
allows a user to access KBs created using a variety of
FRSs through a single graphical user interface (GUI),
thus reducing the barrier for a user to interact with a
new FRS. Finally, most past KB editors have imple-
mented essentially the same functionality, presumably
because each new system must be built from scratch
rather than building on a previous implementation.

The GKB Editor is a generic editor and browser of
KBs and ontologies - generic in the sense that it is
portable across several FRSs. This generality is pos-
sible because the GKB Editor performs all KB access

EMERGING APPLICATIONS 1045

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

and modification operations by using a generic applica-
tion programming interface to FRSs called the Generic
Frame Protocol (GFP) (Karp, Myers, & Gruber 1995).
To adapt the GKB Editor to a new FRS, we need only
to create a GFP implementation for that FRS - a
task that is usually considerably simpler than imple-
menting a complete KB editor. The GKB Editor also
contains a number of relatively advanced features, such
as incremental browsing of large graphs, KB analysis
tools, operation over multiple selections, cut-and-paste
operations, and both user- and KB-specific profiles.

The GKB Editor is in active use in the development
of military-application planning KBs and ontologies
for LOOM (MacGregor 1991) at several sites, includ-
ing a military-transportation planning ontology. It is
used daily in the development of EcoCyc (Karp et al.
1997)) a biological KB containing more than 11,000
frames that is accessed daily via the WWW by scien-
tists from around the world2 (public access to EcoCyc
is provided by a biology-specific GUI). The editor also
works with the FRSs OCELOT (developed at SRI),
SIPE-2 (Wilkins 1990), and THEO (Mitchell et al.
1989), and in read-only mode for ONTOLINGUA.
GKB Editor development has benefited greatly from
the feedback provided by the user community, incor-
porating a number of user suggestions into subsequent
versions of the system.

This paper discusses the design of the GKB Editor
from a GUI point of view, and describes the difficulties
encountered in achieving true portability across multi-
ple FRSs.

Design Goals
The GKB Editor was designed to satisfy the follow-
ing criteria. (1) It must be portable across multiple
FRSs. (2) Users should be shielded from as many id-
iosyncrasies of the underlying FRS as possible. (3)
Knowledge should be presented in the most natural
form, which is often graphical. There should be mul-
tiple ways to view data, depending on the user’s per-
spective and the types of modifications they wish to
make. (4) The GKB Editor should support the en-
tire life cycle of a KB or an ontology, including de-
sign, development, maintenance, comprehension, and
reuse. By “comprehension” we mean the task of un-
derstanding a new and unfamiliar KB, which is usually
the first step in reuse. (5) Where appropriate, editing
should be accomplished through direct pictorial ma-
nipulation. For example, if a KB is represented as a
graph, then we should be able to translate an editing
operation that is natural to perform on a graph to the

2See www
http://www.ai.sri.com/ecocyc/ecocyc.html.

URL

corresponding editing operation on the KB. (6) The
interface should be intuitive for the novice user to un-
derstand and manipulate, but not unduly burdensome
for the expert user. Shortcuts should be available for
common operations. (7) The interface should be cus-
tomizable: the user should have control over both the
kind and amount of information displayed, including
incremental revealing, and the appearance of the dis-
played information.

We assert that the design requirements for an ontol-
ogy editor and browser are subsumed by the design re-
quirements for a KB editor and browser. That is, a sys-
tem that adequately supports the design, development,
maintenance, comprehension, and reuse of KBs will
adequately support the same tasks for ontologies. The
reason is that although there may be semantic differ-
ences between ontologies and KBs (Guarino & Giaretta
1995), there are no substantial symbol-level differences
between the two (as Guarino points out, ontologies can
include both classes and instances). Given that FRSs
can serve as implementation substrates for building on-
tologies, the GKB Editor can therefore serve as an ed-
itor and browser of ontologies. The converse is not
true: it is possible to develop ontology editors that are
not adequate KB editors. For example, since KBs will
generally have larger scale than ontologies, an editor
that is adequate for an ontology could easily prove in-
adequate for a large KB.

Architecture

The GKB Editor is built upon a graph-display tool
called Grasper-CL (Karp et al. 1994). Portability
among FRSs is achieved by using the Generic Frame
Protocol (GFP) to form a wrapping layer between the
GKB Editor and the underlying FRSs. Figure 1 il-
lustrates the overall architecture of the GKB Editor
system. OCELOT, THEO and LOOM KBs can all
be persistently stored in a relational DBMS (Karp &
Paley 1995).

Our architecture naturally lends itself to distributed
operation, in three possible modes. In the first mode,
we insert a network connection at (A) in Figure 1 by
using remote X-windows. In this mode, the GKB Edi-
tor and the FRS run in a LISP process on one machine,
and the X-window graphics flow over the network to
the user’s workstation. In practice, this approach is
slow but workable for cross-continent Internet connec-
tions; it is quite acceptable over local-area networks.
Approach (B) uses a remote-procedure call implemen-
tation of GFP. With the network link at (C), the LISP
process runs on the user’s workstation and communi-
cates with the DBMS server over the network using
SQL. This approach faults frames across the network;

1046 INNOVATIVEAPPLICATIONS

they are cached in the LISP process. All three of these
distributed modes have been implemented and tested;
our group currently uses (A) and (C), both alone and
in combination.

The Generic Frame Protocol
The GFP defines a set of operations that comprise a
generic API to underlying FRSs (Karp, Myers, & Gru-
ber 1995). This generic interface layer allows an ap-
plication such as the GKB Editor some independence
from the idiosyncrasies of specific FRS software and
enables the development of generic tools that operate
on many FRSs.

Although FRS implementations have significant dif-
ferences, there are enough common properties that one
can describe a generic model of frame representation
and specify a set of access functions for interacting with
FRSs. The GFP specification defines such a generic
model (with frames, classes, slots, and so forth) and
consists of a library of operations (e.g., get a frame by
its name, change a slot’s value in a frame). An appli-
cation or tool written to use these access functions can
access knowledge stored in any compatible FRS. GFP
implementations exist for LOOM, OCELOT, SIPE-
2, THEO, and ONTOLINGUA (Gruber 1993).

Each GFP operation is defined as a CLOS generic
function. The implementation of GFP for a given FRS
consists of a set of CLOS methods that implement the
GFP operations using calls to an FRS-specific func-
tional interface. Since many of the GFP generic func-
tions have default methods written in terms of other
GFP methods, only a core subset of the generic func-
tions in the specification must be implemented for a
given system. The default methods can be overridden
to improve efficiency or for better integration with de-
velopment environments.

Although GFP necessarily imposes some common
requirements on the organization of knowledge (e.g.,
frames, slots, and values) and semantics of some asser-
tions (e.g., instances and subclass relationship, and in-
herited slot values, slot constraints), it allows for some
variety in the behavior of underlying FRSs. The proto-
col achieves this heterogeneity by parameterizing FRSs
themselves, providing an explicit model of the proper-
ties of FRSs that may vary. An application can ask
for the behavior profile of an FRS, and adapt itself ac-
cordingly. For example, OCELOT supports annota-
tions on slot values, whereas LOOM does not.3 When
annotations are present, it is desirable for the GKB

3Annotations are an extension to the frame model that
our group has implemented for OCELOT. Annotations are
analogous to facets, and are essentially a property list for
slot values; they allow us to attach comments or citations
to the literature to a particular value within a slot.

Editor to display them. Before attempting this oper-
ation, however, the GKB Editor must first query an
FRS’s behavior profile to determine whether or not
annotations are supported.

The GFP model cannot incorporate all functional-
ities of all FRSs. A clever translation can minimize
the mismatch, however. For example, each LOOM
concept has associated with it a definition, enumer-
ating various restrictions on instances of the concept.
GFP currently provides no facility for definitions (we
plan to incorporate such a facility in GFP in the fu-
ture, perhaps based on KRSS). However, GFP does
support the notion of facets on slots (which LOOM
lacks), which can be used to encode restrictions about
values of that slot. In the translation between GFP
and LOOM, many of the restrictions that appear in
LOOM concept definitions can be converted to facet
values in GFP, which can then be displayed and edited
using the GKB Editor. We find that the majority of
LOOM concept definitions can be translated to a facet
encoding. Untranslatable definitions can be edited in
an Emacs-like window in the S-expression form, using
the standard LOOM concept-definition language.

There is no magic bullet whereby the GKB Editor
can access idiosyncratic or newly developed FRS fea-
tures that are not described by the GFP. Such features
must either be integrated into the GFP as extensions,
or the GKB Editor must be extended with condition-
ally compiled FRS-specific code.

Viewing and Editing Knowledge

The GKB Editor offers four different ways to view KBs.
The user can view the KB as a class-instance hierar-
chy graph, as a set of inter-frame relationships (this
is roughly analogous to a conceptual graph represen-
tation, a semantic network, or an entity-relationship
diagram), as a spreadsheet, or by examining the slot
values and facets of an individual frame.4 A set of edit-
ing operations appropriate to each view has been de-
fined so that the displayed objects can be manipulated
directly and pictorially. All editing operations trans-
late immediately to changes in the underlying KB.

Most commonly used commands are accessible via
both command menus and keystroke equivalents, and
most of the time a node can be selected either by click-
ing on it or by typing in its name (with completion).
Thus, a user can choose whether interaction is to be
primarily by mouse, by keyboard, or by a combination
of both. A cut-and-paste facility is also available for
copying slot values, facet values, and frame names.

at
4Snapshots from all viewers are available on the WWW
URL http://www.ai.sri.com/-gkb/overview.html.

EMERGING APPLICATIONS 1047

user -

0 A

GKB-Editor

Other FRSs

Generic Frame
Protocol

Loom El KB

Figure 1: The architecture of the GKB Editor system. All user interaction is through the GKB Editor, which uses
GFP to access KBs from a variety of FRSs, and Grasper-CL to generate and browse graphical displays.

Class-Instance Hierarchy Viewer Inter-Frame Relationships Viewer

This viewer displays the class-instance hierarchy of a
KB as a graph. Each node in the graph represents a
single class or instance frame, and directed edges are
drawn from a class to its subclasses and from a class
to its instances. Multiple parentage is handled prop-
erly. Users can incrementally browse large hierarchies
by starting at root node(s) that are either computed,
or are specified by the user. The tool automatically ex-
pands the hierarchy to a preconfigured depth cutoff. If
a particular node has more than a designated number
of children (the breadth cutoff), the remaining children
are condensed and represented by a single node. Unex-
panded nodes are visually distinguished from expanded
nodes. The user can browse the hierarchy by select-
ing, with the mouse, nodes that are to be expanded or
compacted. Alternatively, the user can type in (with
completion) the name of a frame that does not yet ap-
pear in the display, and, where possible, the hierarchy
will be expanded out along the appropriate path until
that frame is visible.

The hierarchy viewer can also be used to edit the
class-instance hierarchy. Operations such as creating,
deleting, and renaming frames, and altering super-
subclass and class-instance links can all be accom-
plished with a few mouse clicks. A frame can be cre-
ated either as an empty frame or as a duplicate of an
existing frame. When deleting a frame, the user can
choose either to delete only that frame, or to delete
the entire subtree rooted at that frame. When creat-
ing or changing links, the GKB Editor checks for and
disallows links that would create a cycle in the class
hierarchy.

It is often useful to visualize relationships in a KB by
following slot links rather than parent-child links. For
example, if frame B is a value of slot X in frame A,
then an edge can be drawn from node A to node B,
labeled X. If we recognize that slot X represents a
relationship between frames A and B, then this kind of
graph is analogous to the view of a KB as a conceptual
graph (although our displays do not use all the visual
conventions of the conceptual graph community) or to
a semantic network. This view is useful for showing
relationships in the KB other than the class-instance
hierarchy, for example, a Part-Of hierarchy.

The frame-relationships viewers can depict instance-
level relationships and class-level relationships. The
example in the preceding paragraph describes an
instance-level relationship. In a class-level relation-
ships view, an edge labeled X is drawn from class Cl
to class C2 if values of slot X in instances of Cl are
constrained to be instances of C2.

Like the hierarchy view, a relationships view is
browsed incrementally. The user specifies a set of
frames to serve as roots, and optionally a set of slots to
follow (by default, all slots are followed), and the graph
is expanded to the designated depth and breadth. A
class-level or instance-level browse is selected automat-
ically, depending on whether the specified roots are
classes or instances. The user selects, with the mouse,
nodes to be expanded or compacted. Unlike with the
hierarchy view, the user cannot type in an arbitrary
frame and have the browse expanded to that frame.
This limitation is for efficiency reasons, because of the
large number of possible paths to any frame.

1048 INNOVATIVE APPLICATIONS

Spreadsheet Viewer

The spreadsheet viewer allows frame data to be ex-
ported to NeXS, a commercial spreadsheet product for
X-windows. Spreadsheets allow large volumes of data
to be visualized in a very compact form, and support
a variety of data analysis tools, such as X-Y plotting.
User-specified instances form the rows of the spread-
sheet, and user-specified slots form the columns of the
spreadsheet. Users can launch the spreadsheet viewer
from within the class-hierarchy viewer by clicking ei-
ther on selected instances or on one or more classes; all
instances of those classes are exported to the spread-
sheet. Within the spreadsheet, users can both view
and modify cell values, as well as adding new rows to
the spreadsheet - the new rows are translated to new
instances when the user terminates NeXS. A limitation
of the spreadsheet viewer is its current inability to dis-
play more than one value per slot. We are investigating
several approaches to overcome this limitation.

Frame-Editing Viewer

The frame-editing viewer allows the user to view and
edit the contents of an individual frame. From the
hierarchy viewer or the relationships viewer, the user
may select a frame and display it in a frame-editing
viewer. It presents the contents of a frame as a graph.
Each slot name forms the root of a small tree; its chil-
dren are individual slot values, and slot facets and their
values. Inherited slot values are distinguished visually
from local items, and cannot be edited (but they can
be overridden where appropriate). The user can choose
whether to display all slots and facets, filled slots and
facets only, or selected slots and facets only.

In addition to duplicating, renaming, or deleting the
viewed frame, the kinds of editing operations available
in this viewer permit adding, deleting, replacing, and
editing of slot values, facet values, and annotations.
Slots themselves may be added, removed, or renamed,
when classes are edited.

Customizability
The GKB Editor is highly customizable, allowing users
to specify via a set of preference dialogs what should
be displayed in the various viewers and how various
objects should be drawn. Customizability is important
if the GKB Editor is to find widespread use - the more
control the user has over the appearance and behavior
of the displays, the more likely that the GKB Editor
will suit the user’s needs.

A style dialog for the hierarchy and relationships
viewers lets the user control how individual nodes are
displayed. The user can specify icon and label colors,
icon shape, and label font, face, and size. The user

can specify a style for all frames satisfying some predi-
cate. Any number of these styles and predicates can be
specified, and frames that satisfy more than one pred-
icate will show characteristics of each corresponding
style (except where such characteristics conflict with
each other). Currently, only a few predefined predi-
cates are available, such as for identifying classes, in-
stances, and primitive classes, for testing frames for a
particular user-specified slot value, or identifying chil-
dren of a class.

In these same two viewers, the user can specify
slots whose values are to appear as part of the dis-
play for a frame node. This facility permits the user
to see parts of each frame’s interior while browsing
the KB, without actually opening a frame-editing win-
dow for each frame. If the FRS provides each frame
with a “pretty name”, intended to be user-readable
rather than machine-readable (perhaps encoded as a
slot value), then the user can specify that frames
should be labeled with their pretty names.

A user can define a personal preferences profile that
will take effect across all KBs. In addition, because
many preferences make sense only when applied to a
particular KB (such as the list of browse roots or slots
to be displayed), the user can save an individual profile
for each KB (KB-specific preferences take precedence).

Lessons in Portability

The proof of the successful multi-FRS portability of
the GKB Editor is the ongoing use of the GKB Edi-
tor to edit real-world KBs for OCELOT and LOOM.
These two FRSs lie at fairly opposite ends of the FRS
spectrum: LOOM is a KL-ONE descendant that sup-
ports classification. OCELOT is in the UNIT Package
family of FRSs, along with KEE, CYCL, and THEO
(Karp 1992). It does not perform classification -
all class-subclass and class-instance relationships are
specified by the user.. It does support facets (both
built-in facets such as value-type and cardinality, and
user-specified facets) and annotations, which LOOM
does not. OCELOT supports multiple parentage, pro-
cedural attachment, constraints on slot values, and
runtime schema alterations (e.g., changes to class defi-
nitions for a loaded KB). OCELOT KBs can be stored
in files or in a database back-end (Karp & Paley 1995).

Here we summarize the limitations that exist and the
difficulties that were encountered in making the GKB
Editor truly generic. Limitations: (1) GFP supports
neither contexts nor complex inheritance relationships
among KBs; the GKB Editor does not recognize these
constructs. (2) The section on The Generic Frame Pro-
tocol discusses the partial mapping we have defined
between facets and the LOOM concept definition lan-

EMERGING APPLICATIONS 1049

guage. Although this approach works in practice, use
of a common concept-definition language would make
multiple description-logic systems look more uniform
to the user. (3) Any FRS will have idiosyncrasies that
fall outside the GFP model. For example, LOOM
provides three alternative implementations of instance
frames, which are not supported by GFP. We extended
the GKB Editor to recognize this construct.

FRSs vary in the degree of dynamic schema alter-
ation (changes in class definitions) they allow; LOOM
and OCELOT are flexible in this regard, whereas
CLASSIC, for example, is not. The GKB Editor can-
not provide an FRS with functionality that the FRS
lacks.

Related Work

Many graphical browsers and editors have been built
for individual FRSs. We have built on ideas from sev-
eral of these systems. KnEd (Eilerts 1994) offers two
types of viewers, a graphical hierarchy viewer analo-
gous to both our hierarchy and relationships viewers
(although KnEd does not support editing operations)
and a textual viewer for browsing and editing individ-
ual frames and slots. The user interface for the Univer-
sity of Ottawa’s CODE4 knowledge management sys-
tem (Skuce & Lethbridge 1995) offers a spreadsheet
view as well as textual outline and semantic net views
of a KB. “Masks” let the user control what KB ele-
ments are visible and, to a limited extent, how they
should be displayed. The HITS Editor (Terveen &
Wroblewski 1990) supports browsing and editing of the
CYC (Lenat & Guha 1990) KB. It defines user perspec-
tives on a per-class basis to determine what informa-
tion should be displayed, and builds checklists for data
entry tasks.

Protege-II is a powerful suite of knowledge-
acquisition tools (Eriksson et al. 1994). One tool sup-
ports ontology editing; a second tool accepts an ontol-
ogy as input, and produces as output a specification
of a forms-based editor for instance frames within that
ontology. Protege-II includes a relationships viewer.
Protege-II and the GKB Editor embody different ap-
proaches for visualizing frames. We use a graph visu-
alization of frames rather than a forms-based visual-
ization because the forms approach is problematic for
encoding slots with multiple values (it is often not clear
how many blank form elements to allocate for new val-
ues of a multivalued slot), and for representing facets
and annotations - the graph visualization makes the
relationships among a slot, its facets, its values, and
their annotations very evident. In addition, although
Protege-II gets significant mileage from decoupling the
editing of ontologies (classes) and instances, there are

two problems with this approach: first, during the
KB development process these two operations are of-
ten tightly coupled - a user may alternate between
editing of classes and instances frequently, and may
prefer to avoid the process of generating a new user
interface for instance editing after every class change;
second, some modifications to classes actually demand
immediate modifications to instances of those classes,
for example, when deleting a slot from a class, the
GKB Editor will automatically delete all occurrences
of that slot from instances of the class (with user con-
firmation). It is not clear how Protege-II can modify
instances in response to class changes.

The preceding tools operate with only one FRS.
Stanford’s Ontology Editor (Farquhar et al. 1995)

is a browser and editor for shared ontologies, en-
coded using the ONTOLINGUA language (Gruber
1993). Users access the interface using the WWW.
Currently, the Ontology Server operates only on ON-
TOLINGUA ontologies. Because it is implemented
using GFP, and because some translators between ON-
TOLINGUA and other representations either exist or
are under development, the Ontology Server could in
principle be used to browse and edit KBs for a vari-
ety of KR systems. The WWW implementation of the
Ontology Editor is both its biggest advantage and its
biggest drawback. The advantage is the easy accessi-
bility; the drawbacks result from the many limitations
of the HTTP protocol: most information is presented
in textual form, rather than graphically; displays can-
not be updated incrementally, as they can in the GKB
Editor - the only operation within HTTP is to send
an entire new page, which can be slow; the lack of
state in HTTP limits the style of user interaction that
can occur, as does the few mouse events supported by
HTTP. Use of Java would overcome many of these lim-
itations of HTTP.

Performance and Availability
The performance of the GKB Editor is quite accept-
able on a SPARC-20 workstation (now an outdated
machine) with 48 MB of memory; graphics operations
execute fast, and the incremental browsing facilities
provide fast browsing of the EcoCyc biology KB, which
contains more than 11,000 frames.

The GKB Editor is available under license from SRI
International at no charge.5

Acknowledgments
We thank Jon Doyle, Bob MacGregor, and Tom Russ
for comments and suggestions for the GKB Editor.
Ife Olowe provided programming assistance. This

5See WWW URL http: //www. ai. sri . corn/-gkb/.

1050 INNOVATIVE APPLICATIONS

work was supported by DARPA Contract F30602-94-
C-0263, and by grant R29-LM-05413-OlAl from the
National Institutes of Health. The contents of this ar-
ticle are solely the responsibility of the authors and
do not necessarily represent the official views of the
Advanced Research Projects Agency or of the NIH.

References
Abrett, G.; Burstein, M.; Gunsbenan, J.; and
Polanyi, L. 1987. KREME: A user’s introduction.
Technical Report 6508, BBN Laboratories Inc., Cam-
bridge, MA.

Eilerts, E. 1994. KnEd, an interface for a frame-
based knowledge representation system. Master’s the-
sis, University of Texas at Austin.

Eriksson, H.; Puerta, A. R.; Gennari, J. H.; Rothen-
fluh, T. E.; Tu, S. W.; and Musen., M. A. 1994.
Custom-Tailored Development Tools for Knowledge-
Based Systems. Technical Report KSL-94-67, Stan-
ford University Knowledge Systems Laboratory.

Farquhar, A.; Fikes, R.; Pratt, W.; and Rice, J. 1995.
Collaborative ontology construction for information
integration. Technical Report KSL-95-63, Stanford
University, Knowledge Systems Laboratory.

Genesereth, M. R., and Fikes, R. E. 1992. Knowledge
Interchange Format, Version 3.0 Reference Manual.
Technical Report Logic-92-l) Computer Science De-
partment, Stanford University.

Gruber, T. 1993. A translation approach
to portable ontology specifications. Knowl-
edge Acquisition 5(2): 199-220. URL for On-
tolingua is http:// www-ksl.stanford.edu/knowledge-
sharing/ontolingua/README.html.

Guarino, N., and Giaretta, P. 1995. Ontologies and
knowledge bases towards a terminological clarifica-
tion. In Towards very large knowledge buses. Ams-
terdam: 10s Press. 25-32.

Karp, P., and Paley, S. 1995. Knowledge representa-
tion in the large. In Proc of the 1995 International
Joint Conference on Artificial Intelligence, 751-758.
See also
WWW URL ftp://ftp.ai.sri.com/pub/papers/
karp-perkobj95.ps.Z.

Karp, P.; Lowrance, J.; Strat, T.; and Wilkins, D.
1994. The Grasper-CL graph management system.
LISP and Symbolic Computation 7~245-282. See also
SRI Artificial Intelligence Center Technical Report
521.

Karp, P.; Riley, M.; Paley, S.; Pellegrini-Toole, A.;
and Krummenacker, M. 1997. EcoCyc: Electronic

encyclopedia of E. coli genes and metabolism. Nut.
Acids Res. 25(1).

Karp, P.; Myers, K.; and Gruber, T. 1995. The
generic frame protocol. In Proc of the 1995 Inter-
national Joint Conference on Artificial Intelligence,
768-774. See also
WWW URL ftp://ftp.ai.sri.com/pub/papers/
karp-gfp95.ps.Z.

Karp, P. 1992. The design space of frame knowledge
representation systems. Technical Report 520, SRI
International AI
Center. URL f tp : //www . ai. sri . corn/pub/papers/
karp-freview.ps.Z.

Kehler, T., and Clemenson, G. 1984. KEE the knowl-
edge engineering environment for industry. Systems
And Software 3(1):212-224.

Lenat, D., and Guha, R. 1990. Building Large
Knowledge-Based Systems: Representation and Infer-
ence in the CYC Project. Addison-Wesley.

MacGregor, R. 1991. The evolving technology
of classification-based knowledge representation sys-
tems. In Sowa, J., ed., Principles of semantic net-
works. Morgan Kaufmann Publishers. 385-400.

Mitchell, T.; Allen, J.; Chalasani, P.; Cheng, J.; Et-
zioni, E.; Ringuette, M.; and Schlimmer, J. 1989.
Theo: A framework for self-improving systems. In
Architectures for Intelligence. Erlbaum.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.;
Senator, T.; and Swartout, W. 1991. Enabling tech-
nology for knowledge sharing. AI Il4ugazine 12(3):36-
56.

Skuce, D., and Lethbridge, T. 1995. CODE4: A
unified system for managing conceptual knowledge.
International Journal of Human-Computer Studies.

Terveen, L., and Wroblewski, D. 1990. A collabo-
rative interface for editing large knowledge bases. In
Proc of the Eighth National Conference on Artificial
Intelligence.

Wilkins, D. 1990. Can AI planners solve practical
problems? Computational Intelligence 6(4):232-246.

EMERGING APPLICATIONS 1051

