
Chris Price an 

Department of Computer Science 
University of Wales, Aberystwyth 

Dyfed, SY23 3DB, United Kingdom 
cjp{ nst} @aber.ac.uk 

Abstract 
The Failure Mode and Effects Analysis (FMEA) 
design discipline involves the examination at design 
time of the consequences of potential component 
failures on the functionality of a system. It is clear 
that this type of information could also prove useful 
for diagnostic purposes. Unfortunately, this 
information cannot be fully utilised for diagnosis 
when FMEA has been performed by human 
engineers, because of inconsistencies in effect 
descriptions. The FMEA process is also very time 
consuming, with the consequence that the engineer 
can only deal with single point failures. Automation 
of the electrical FMEA process facilitates information 
reuse for diagnosis by providing consistent 
descriptions of failure effects, and by speeding up the 
FMEA process to such an extent that it becomes 
feasible to examine multiple failures. This paper 
introduces the advantages that automated FMEA 
provides for diagnosis, and describes its use for 
generating fault trees from the FMEA report. The 
paper examines the current limitations of FMEA use 
for diagnosis, and reports on how these limitations 
may be overcome. 

Introduction 
Failure mode and effects analysis (FMEA) is a design 
discipline where an engineer examines and records the 
consequences of any (usually only single point) failure on 
the operation of a system. The purpose of the analysis is to 
highlight any significant problems with a design and, if 
possible, to change the design to avoid those problems. 
Intuitively, the results of such an exercise should be useful 
for diagnosis, but in practice they are only used as a source 
of ideas for the kinds of faults that could occur. 

Two of the main reasons why FMEA results are under- 
utilized are: 

Inconsistency of failure effects. An engineer might write 
down different descriptions for different occurrences 

Copyright 0 1997, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

1052 INNOVATIVE APPLICATIONS 

of exactly the same effect, or the same description for 
two slightly different effects. This lack of consistency 
makes it difficult to arrange all of the failures which 
could manifest a particular set of fault symptoms for 
use in a diagnostic investigation. 

Lack of multiple fault information. FMEA is usually 
only carried out for single faults. If the results of such 
an FMEA were used to build a diagnostic system, then 
they would be equivalent to using a model based 
diagnostic system with the single fault assumption, as 
discussed in (Genesereth 1985). Such diagnostic 
systems are insufficiently powerful to deal with real 
world problems (de Kleer and Williams 1987). 

Using results from an automatically generated FMEA can 
address both of these problems. The consistency of the 
results from an automated FMEA enables the reordering of 
failures into a tree according to symptom, providing 
effective ordering of the diagnostic investigation. 
Automated FMEA also makes the problem of multiple 
fault information more tractable. While no engineer could 
be expected to generate effects even for all pairs of failures 
in a system, an automated FMEA can explore many more 
possible failures. 

This paper describes the use of output from an 
automated FMEA for generating diagnostic trees, showing 
how the results of the FMEA can be organised for 
maximum diagnostic benefit. This explanation is grounded 
in an example from the automotive domain: fault-finding 
on the lighting system of a typical family car. 

Automated Failure MO e and Effects Analysis 

AutoSteve, a C++ reimplementation of the FLAME system 
for performing automated FMEA (Price et al. 1995), is in 
regular use at several automotive manufacturers and 
generates reports that are comparable with those produced 
by an engineer without automated help. Its major benefit as 
a design tool is that it significantly reduces the engineer 
time needed to perform an FMEA analysis, turning a task 

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



that might have taken an engineer several 
months into one that can be performed 
within a day. This makes it possible to 
perform an FMEA much earlier in the 
design lifecycle while design changes are 
comparatively cheap to make. Repeated 
analysis of a changed design using such a 
tool has even higher levels of time saving 
(Price 1996). 

AutoSteve uses qualitative reasoning on 
electrical circuits (Pugh and Snooke 1996) 
and knowledge of intended system 
functions (Price and Pugh 1996) to 
generate electrical FMEA reports. It 
imports circuits directly from electrical 
CAD tools and generates a textual report 
on the effects of each failure mode. The 
report includes estimates of the severity, 
likelihood of detection and likelihood of 
occurrence for a particular failure. 

Currently AutoSteve has been integrated with 
PowerView, a commercial electrical CAD tool. From 
within the CAD tool the engineer can verify the behaviour 
of the circuit model by changing the state of switches and 
sensors. Reasoning about circuit behaviour is based on a 
path-finding algorithm through a resistive network (Lee 
and Ormsby 1993) at the lowest level. Resistances can take 
one of three values: 0 (no resistance), Load (finite 
resistance) and Inf (infinite resistance). The path finding 
algorithm enables each component in the circuit to be 
labelled ACTIVE or INACTIVE. Above the resistive 
network is a component centred representation with an 
algorithm for regeneration of the resistive network as the 
state of the circuit changes (e.g. when a relay closes). 
AutoSteve has definitions for common components but can 
be extended further by defining the qualitative behaviour 
of new components; these definitions include how the 
component behaves under its possible failure modes. 

In order to produce meaningful FMEA reports, 
functional states are employed to interpret the results of the 
qualitative reasoning. Figure 1 shows the tool that an 
engineer uses to describe how AutoSteve can identify 
when a function is being achieved. At the bottom of the 
window is the definition of four component states that need 
to be ACTIVE for the full-headlights-on function to be 
achieved. Functional states are reusable between different 
designs for the same automobile subsystem, and so the 
engineer only needs to check that the existing functions are 
appropriate for the new design, and add any extra functions 
that are needed. 

When the engineer has designed the circuit and linked it 
to the functional states, the AutoSteve system performs 
automated generation of an FMEA report in the following 
way: 

Figure ‘i : Functional States Expression Editor 

Obtain the correct behaviour. Simulate the circuit 
through its possible changes, operating switches and 
changing sensor states. The resultant behaviour of the 
circuit is abstracted by recognizing the operation of 
functions (e.g. that when the sidelight switch is 
thrown, the sidelight function and the licence light 
function operate). 

Make a list of failures that can QCCUF in the circuit. The 
possible failures modes of each type of component are 
defined. The complete list of possible failures for the 
circuit is made up of the possible failures of each 
component in the circuit. 

tain faulty behaviour of the circuit. For each possible 
single point failure, impose that failure upon the 
circuit and repeat the simulation and abstraction work 
done for the correct circuit. 

Compare the faulty and correct abstracted behavisur. 
Functions that occur when they should not, or which 
do not occur when they should, describe the 
significant incorrect behaviour of the circuit for a 
fault. Discrepancies of this kind form the basis of the 
textual report for the effects of the failure, shown in 
figure 2. 

For a typical car exterior lighting system, AutoSteve 
examines 214 single failures on 90 components, taking 
about a minute to complete on a Spare 20 computer. An 
engineer can use AutoSteve to produce an FMEA report 
for a system of this complexity within a day, where it 
might have taken several weeks to produce by hand. 

EMERGING APPLICATIONS 1053 



Figure 2 : Example FMEA results for mdtiple failures 

ultiple failure F 

The industrial use of AutoSteve for generating FMEA 
reports on electrical designs has only explored single 
failures so far. This has been because the primary aim was 
to be able to reproduce the process already being carried 
out by engineers and they mostly only consider single 
faults in FMEA. However, the qualitative simulator used in 
AutoSteve is not limited to analysis of single failures. 

The failure generation algorithm has been amended to 
generate any combination of failures with a likelihood 
greater than 1: lo”, where 10” gives some desired level of 
reliability; the default value of n is 9. The likelihood is 
computed by multiplying the occurrence ratios which are 
associated with each fault on a component. Some 
permutations are not possible because they are 
contradictory failures on the same component (e.g. a wire 
being both unconnected and shorted to ground). Such 
combinations are ignored, so reducing the overall number 
of permutations slightly. 

Having generated the combinations (including single 
failures) that match the above criteria, AutoSteve runs the 
simulation on each combination in order to calculate the 
effects. In the lighting circuit there are 90 different 
components with a total of 214 different single failures. 
The total possible number of permutations is 2*-l, where n 
is the number of different single failures, giving 
approximately 2.6e+64 possible multiple failures in this 
example. Only generating candidates with a likelihood 
greater than 1: lo9 reduces this to 6,735 failure 
combinations. 

The FMEA simulation on this many failure 
combinations takes about 1.5 hours to run. It is impractical 
to expect the engineer to examine all of the produced 
report as is done with the single failure report. Fortunately, 
many of the multiple failure cases are uninteresting as they 

1054 INNOVATIVE APPLICATIONS 

provide no more information than the single failure reports, 
and so the final report can be pruned, without reducing 
significant information that is presented to the engineer, by 
the following method. 

For each multiple failure combination a comparison is 
made with the effects of each single failure that comprise 
the multiple failure. Only interesting multiple failure cases 
are retained according to the following test: 

Let the fault symptoms for a component failure f be a 
set of function differences D, where a function 
difference is either the unexpected operation of a 
function, or the absence of expected operation of a 
function. 

For two failures X and Y, the multiple failure X A Y is 
not interesting if: 

D XAY = ?I& or DXhY = D,, or DX,.,Y = H), u D, 

For example, if the effect of failure 1 is that the main 
headlights do not work when expected, and the 
consequence of failure 2 is that the dipped headlights do 
not work when expected, then the combination of the two 
failures being that neither the main nor the dipped 
headlights work when expected is not interesting. 

The criteria for interestingness show for pairs of failures 
can be extended from pairs to the general case. Pruning the 
results from the lighting circuit simulation on 
interestingness criteria resulted in 342 interesting failure 
combinations (214 single, 128 multiple) from the 6,735 
failure combinations that passed the likelihood criteria 

There are few enough interesting multiple failure items 
in the FMEA report that it is realistic to expect the 
engineer to examine them at the same time as examining 
the usual single failure FMEA details. 



ting fault trees from 

The automated FMEA report contains consistent failure 
mode and effect descriptions of the type shown in figure 2. 
Therefore, for each combination of component failures, we 
can determine the effect it has on the system in terms of its 
function differences (functions that failed to occur and 
functions that occurred unexpectedly). From such 
information it is possible to identify all failures in the 
FMEA report that have the same effect (e.g. all failures 
which can cause the car’s dipped beams to not light when 
they should, or all failures which cause both the main 
beams and the dipped beams to be lit when they should not 
be). 

The fact that the FMEA report has been checked by an 
engineer when the circuit was designed is attractive for 
diagnosis, as it means that the model-based information 
has undergone a degree of verification by engineers. 

Figure 3 : Selecting a subsystem 

Figure 4 : Identifying function differences 

Another significant advantage of using AutoSteve 
FMEA output as input to a diagnostic system is that the 
effect descriptions are based on the unexpected presence or 
absence of the intended functions of the design being 
analyzed, and so can be used to elicit a user-level 
description of the problem. In the car lighting circuit, for 
example, the intended functions of the circuit are at the 
level of user-identifiable symptoms (full headlights on, 
sidelights on etc.). Information about which functions 
operate as expected can then be used to focus on the 
candidate faults that fit the user’s description. The 
remaining candidates can be ordered by likelihood of 
occurrence (available from the FIvIEA report). No pair of 
failures is more likely than any single failure, so in practice 
this will place the single failures at the head of the 
candidate fault list. 

An apparent exception to the rule that multiple faults are 
less likely to occur is the case of dependentfaults, where 
one failure causes another (for example, a short circuit 
often causes a blown fuse). However, AutoSteve computes 
the consequences of each failure during its simulation (for 
example it would detect that the short circuit had caused a 
fuse to blow and record any effects this had on the system 
functions). As a result, dependent fault cases are covered 
by the relevant single fault cases and will be dealt with as 
single failure (high probability) cases. 

Once the failure has been localised using information 
about function, tests can be used to discover whether the 
most likely candidate fault is the actual fault. For example, 
if high beam relay stuck open is the most likely candidate 
fault, then testing the high beam relay will either blame or 
exonerate it. If high beam relay is not stuck open, then all 
multiple failure candidates that include that failure can also 
be deleted. In this way, the remaining possibilities can be 
addressed in a reasonable manner, and can be quickly 
pruned to select the right solution. 

FMEA reports are generated for each major electrical 
subsystem in a car, and so this strategy cam be extended to 
form the basis for a diagnostic scheme covering the whole 
of the car electrical system, as shown in figure 3. This is a 
simple example diagnostic system using FMEA output. It 
shows a set of car subsystems that can be selected and 

Figure 5 : List of candidates 

facilitates fault localization on the basis of 
the subsystem where the problem is 
(exterior lights in this case). Next the set of 
functions within the chosen subsystem is 
shown to the user for indication of which 
symptoms are present. Figure 4 shows the 
set of functions available for the exterior 
lights subsystem. Selecting the functions 
which have either failed or occurred 
unexpectedly allows the system to determine 
a list of candidates for the given fault 
signature, ordered by likelihood (figure 5). 

EMERGING APPLICATIONS 1055 



Finally the diagnostic system would guide the user through 
the possible diagnoses. 

This is not a completely novel strategy and builds on 
previous work in generating fault dictionaries by 
simulation. Previous work which stands out in this area 
includes (Bratko et al. 1989) and (Mauss and Neumann 
1995). However, there are two significant differences 
between this work and those previous efforts to build 
diagnostic fault trees from a fault dictionary. 

Method of generating candidates. By constructing the 
candidates from verified FMEA output, the method 
described in this paper generates candidates whose 
behaviour has been verified by an engineer. This 
minimises model-building effort, and gives a much 
higher degree of confidence in using model-based 
reasoning. 

Method of constructing a tree. The two papers cited both 
generate all candidates and then form a tree using ID3 
to compress the tree and to order candidates merely by 
ordering tests on information gain grounds. The 
method described in this paper prunes the number of 
candidates where the candidate can be deduced by 
combining simpler candidates, leading to a significant 
reduction in the size of the tree. It then orders 
candidates primarily by the function they affect, 
allowing quick focusing by observed symptoms. The 
partitioning described here is on the basis of domain 
knowledge about partitioning of car functions at the 
top two levels, and by abduction at the lowest level. 
As the domain partitioning was originally done for 
design purposes, this is an efficient as well as effective 
use of the domain knowledge. 

Limitations of this work 

This paper describes a promising direction for practical 
model-based diagnostic reasoning. This section identifies 
where there are opportunities for further research, and 
suggests work that might be profitably pursued. 

It is impossible to generate all combinations of failures 
for large systems. This is a perennial problem of 
model-based diagnosis. However, in practice, many 
combinations of four or more failures have a 
vanishingly small probability of occurring. The 
strategy used here is to generate only combinations of 
failures with a higher likelihood of occurrence than a 
given threshold. This seems to work well for practical 
situations. 

Some problems go across subsystem boundaries. The 
scheme outlined in this paper assumes that there is a 
clear separation between subsystems. That assumption 
is false for some of the more challenging problems to 
diagnose, where a single failure in each of two 
subsystems will interact to cause a complex overall 
problem. This is also an issue for FMEA generation, 
because some of the worst design problems are caused 
by interactions between subsystems. We are 
developing methods of hierarchical reasoning about 
automotive circuits which may help with this problem 
by identifying which other subsystems may be 
affected by a particular failure. This would allow us to 
add such multiple subsystem candidate faults in the 
relevant fault trees. 

There is insufficient information in the tree to order 
candidates correctly. The leaf nodes of the tree are 
only ordered on likelihood of occurrence. Other 
information such as cost of test would be needed to 
produce an effective ordering of candidates. However, 
some commercial automotive diagnostic tools do not 
provide detailed ordering, leaving the fault 
identification decisions to the mechanic using the 
system. If detailed ordering was required, then a 
realistic prospect would be to link the work here to a 
diagnostic tool such as TestBench, and to order the 
candidates within the commercial tool. 

Tests are not always specific enough. The electrical 
qualitative simulator used to generate the FMEA 
report only reasons in terms of ACTIVE and 
INACTIVE parts of the circuit. In practice, faults can 
develop gradually, and so a wire might be active, but 
below the threshold for activating a relay, for example. 
In such cases, it might be necessary to have a more 
specific test to perform on the circuit. Work has been 
done by our collaborators at Ford Research Center, 
Dearborn (Montgomery et al.) into using a quantitative 
circuit simulator for generating the effects of failures. 
Linking the results of the two kinds of simulation 
should enable the generation of more specific tests. 

Conclusions 

Model-based diagnosis has been identified as a promising 
technology because it takes away the effort of building 
fault trees by hand, and provides a more complete 
coverage of possible faults. It has typically been portrayed 
as the execution-time generation and ordering of candidate 
faults. That approach is very flexible and powerful, but 
rarely results in practical diagnostic systems. The problems 
with that approach have been in model building, and in 

1056 INNOVATIVE APPLICATIONS 



providing the user with a sensible ordering of tests to be 
carried out. 

The work described in this paper presents an alternative 
strategy for building a model-based diagnostic system. 
Diagnostic trees can be compiled off-line from models 
originally intended for design analysis, rather than 
generated at run-time. This work has several significant 
positive features: 

It is not based on models built specially for diagnosis. 
Generation of the diagnostic tree reuses the models 
that were constructed in order to produce an FMEA 
report. This means that the effort of producing a first 
attempt at a diagnostic system is minimal. As the 
model has been developed for design analysis, the 
diagnostic system can be available very early in the 
product lifecycle. 

It provides fault localization. The design-time 
partitioning of a car into subsystems can be used to 
focus the diagnostic system on the area where the fault 
has occurred. 

It provides an appropriate vocabulary for symptom 
description. The design-time identification of the 
functions of each subsystem provides a vocabulary 
which the diagnostic system can use to focus the 
search for candidate faults. This is not provided by 
most model-based diagnostic systems, and would have 
to be another layer constructed on top of the 
diagnostic system. 

It is efficient at run-time. In many cases, it is impossible 
on performance grounds to execute models of the 
system at run-time in order to generate likely 
candidates. Because all likely candidates are generated 
earlier and then compressed, this scheme produces 
diagnoses efficiently. 

It allows user verification and adjustment of the tree. 
One of the practical worries about execution-time 
generation of candidates is that such a diagnostic 
system cannot be properly tested to ensure that it 
works. Examining an automatically generated 
diagnostic tree is much less effort than generating one 
by hand, but still allows the developers to decide 
whether tests are being done in the correct order. 

Bratko, I.; Mozetic, I.; Lavrac, N. 1989. KARDIO: a study 
in deep and qualitative knowledge for expert systems, MIT 
Press. 

Genesereth, M. 1985. The Use of Design Descriptions in 
Automated Diagnosis, in Qualitative Reasoning About 
Physical Systems, North-IIolland. 

de Kleer, J.; Williams, B. 1987. Diagnosing Multiple 
Faults, Artificial Intelligence 32,97-l 30. 

Lee, M. and Ormsby, A. 1993. Qualitative Modelling of 
the Effects of Electrical Circuit Faults. Artificial 
Intelligence in Engineering vol. 8, 293-300. 

Mauss, J. and Neumann, B. 1995. Diagnosis by Algebraic 
Modelling and Fault-Tree Induction. In Proceedings of 
DX-95, Goslar, Germany, 73-80. 

Montgomery, T.; Pugh, D.; Leedham, S.; and Twitchett, S. 
1996. FMEA Automation for the Complete Design 
Process. In Proceedings of Annual Reliability and 
Maintainability Symposium, 30-36, IEEE Press. 

Price, C. J. 1996. Effortless Incremental Design FLEA, 
Proc. Ann. Reliability and Maintainability Symp., 43-47, 
IEEE Press. 

Price, C. J.; Pugh, D. R. 1996. Interpreting Simulation with 
Functional Labels, Proc. 10th Annual Qualitative 
Reasoning Workshop, Stanford Sierra Camp, AAAI Press. 

Price, C. 9.; Pugh, D. R.; Wilson, M. S.; Snooke, N. 1995. 
The Flame System: Automating Electrical Failure Modes 
& Efsects Analysis (FMEA), Proc. Ann. Reliability and 
Maintainability Symp., 90-95, IEEE Press. 

Pugh, D. and Snooke, N. 1996. Dynamic Analysis of 
Qualitative Circuits. In Proceedings of Annual 
Reliability and Maintainability Symposium, 37-42, 
IEEE Press. 

The research described in this paper provides the basis for 
a cost effective way of building practical, powerful model- 
based diagnostic systems. 

EMERGING APPLICATIONS 1057 


