
to Support Grou

Adriana Santarosa Vivacqua and Ana Cristina Bicharra Garcia

ADDLabs - Department0 de CiCncia da Computacao
Universidade Federal Fluminense - Praca do Valonguinho, s/n

Niteroi, RJ, 242 lo- 130, Brasil
e-mail: avivacqua@ax.apc.org, bicharra@dcc.uff.br

Abstract
In this paper we discuss the use of multiagent systems to
assist the design task of engineering artifacts. We
augmented the active design document approach to assist
the design activity when done by a group. Task division,
information flow and conflict management are the main
issues when working in a group. This paper reports initial
results on applying our multiagent active design document
system (MultiADD) to support conflict mitigation in group
design. The discussion focuses mainly on the questions
related to information flow: what, when and to whom to
inform while in a conflict situation. We present our model
and an example taken from our implemented system, which
uses this technology to support process plant design of
offshore oil platform. The system has been used by the
Brazilian Oil Company. In addition to speeding up the
process due to the design support tool, meetings and
scheduling times have been greatly reduced. Consistency
among the design pieces and an increase of alternative
checking have also been noticed. Most importantly we
expect that the environment encourages cooperation among
design participants.

Introduction
Design of complex systems generally involves a group of
people developing different parts of the artifact. The
group can behave in a cooperative or competitive mode
depending on the social structure involving them. In this
paper we focus on groups that works in the same company
sharing the same overall criterion-the best for the
company; in other words, cooperative design. For
instance, the design of an oil process plant involves a team
of about ten engineers. Each one of them is responsible
for developing one or more subsystems such as the oil
separation, the gas compression and the oil transference
subsystems. The design subsystems must be integrated to
become a process plant. There are many conflicts among
the subsystems’ decisions that are usually discussed and
solved eventually in meetings.

In earlier days, designers worked in standalone
computers, sharing their work in meetings using paper

documents as the media to support their arguments.
Disagreements always occur based on conflicting
decisions done by different participants or misconceptions
over the other participants’ decisions.

The lone worker is no more. The dissemination of
communication and networking technologies has created a
new work method. Nowadays, workers have the means to
work together over a computer network. The time required
for meetings can be significantly reduced if designers are
already connected by a tool which can aid them in
resolving their differences and provide them with the
necessary information at the correct time.

We combine the computer network availability to
spread information, the active design document system to
support individual design work, and multiagent systems to
combine the individual design parts. In this paper we
present our multiagent active design document model
(MultiADD) to support group design. We illustrate our
discussion presenting an implemented version of
MultiADD for the domain process plant design of offshore
oil platform (ADDProc) that has been used for over a year.

In the following section we discuss the main issue on
group work, conflict mitigation. In the following section,
we introduce background information to settle the grounds
for presenting next our model. After presenting
MultiADD, we illustrate it with a working example. We
conclude with promising results showing the impact on the
design process time.

The Conflict Mitigation Problem
Whenever a number of people have to work together,
conflicts are bound to appear. Even if these people have a
common goal, they often have conflicting local goals.

Usually, designers work individually in their own task,
and in group to discuss their decisions and settle down
their differences. In addition to the enormous amount of
time spent scheduling meetings, it has been noticed [Olson
et al., 921 that most of the time consumed in group design
meetings is spent with clarification; i.e., designers
explaining what they did and why. Consequently, we claim

Copyright 0 1997, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.

1066 INNOVATIVE APPLICATIONS

From: IAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

that clarification is the basis of cooperative behavior.
However important information may not be presented

during a design meeting either because the issue has not
been thought or even questioned yet, or the issue was
closed a long ago. In addition to these timing problems,
getting the entire group’s attention all the time is hardly
achieved. Parallel conversation may cause relevant
discussions to be overlooked. Besides, although in a
cooperative environment, designers are evaluated by their
individual design work. Consequently, they tend to resist
to changes in their own design part.

We address these problems by creating an environment
for group design that assists the individual design work,
group coordination and design integration. This
environment stimulates cooperation by making available
the rationale for any decision done by each design
participant. It saves meeting time and rework necessity by
distributing relevant information to each designer at the
appropriate moment. Thus, each designer receives only
information that affects his work whenever needed.
Design time decreases, designers get more focused in their
job and meetings become objective.

a&ground Technologies
In this section we present the two technologies involved in
our work, the Active Design Documents (ADD) model and
Multiagent Systems (MAS). The ADD model is
particularly useful as a design and documentation support
system, while MAS provides the framework for group
design and information sharing.

ADD
In the design activity, documentation is very important.
However, it is expensive, extensive, generally incomplete,
inconsistent or inaccessible. During the design process,
most of the designer’s rationale for an artifact is lost.
Many design rationale tools have been developed based on
hypertext technology. It’s use, however, implies a high
document construction time and difficult rationale
retrieval. Active Design Documents [Garcia, 921 is a
model-based approach that integrates design and
documentation activities. It provides a design support
system while documenting a project. By documentation we
mean both data and rationale able to fully explain a
specific design developed by a designer. As the project is
developed, ADD documents the project decisions, with
little or no overhead for the designer.

An ADD agent contains a domain model that enables it
to generate expectations about designers’ decisions. It
follows, records and criticizes the designer’s actions in
order to generate explanations for them. Whenever the
documentation agent cannot explain the designer’s
decisions, it requires the designer to change its domain
knowledge base. As a consequence, ADD’s domain model
always reflects the designer’s domain model.

ADD acts as an assistant and apprentice to the designer.

Whenever the designer proposes a design action that
differs from the apprentice’s expectations, the interface
will ask for the designer for justifications to explain the
differences. Subsequent queries for design rationale are
answered using a combination of the interface’s domain
knowledge and the designer-supplied justifications. It is
important to notice that ADD acts as an auxiliary and not
as substitute for the designer. So, the designer still plays an
important part in the project. In addition, ADD offers the
possibility of making design simulations in order to
evaluate different solutions. Even though efficient, ADD
was developed to assist a sole designer in a singular
domain. To deal with group design, we expanded ADD
importing Multiagent technology.

MuBtiagent Systems
In multiagent environments, various specialist systems
work together to reach a solution. To accomplish their
tasks, they need to interact and cooperate with each other.
There are two main types of cooperation between agents:
information exchange and service exchange [Oliveira &
Qiegang, 9 l]. In the first, the agents distribute their results
so that others may use them and in the second the agents
contract one another to perform tasks. We concern
ourselves exclusively with information sharing, since each
designer has a specific task that cannot be performed by
another.

Blackboard and Contract Net architectures [Wellman,
951 were studied to deal with the communication problems
inherent to the environment. In the first, there is a central
agent that controls communication, monitors conflicts and
assigns tasks when necessary [Bobrow, 911. The
knowledge about the agent’s needs and abilities is
centralized in one sole agent. This core agent may become
a bottleneck with communication growth. However, it has
the advantage of knowing the agents’ intersection models
and of managing the information flow thus leaving the
other agents to their own tasks and models (freeing them
from these tasks). In the second architecture,
communication is performed by all agents [Edmonds et al.,
941 [Genesereth & Ketchpel, 941. This architecture
requires each agent to have knowledge about the others
and negotiation abilities. Consequently, the growth in the
number of agents implies an overload of information
processing needs by each agent, hindering the work it was
originally supposed to do [Bobrow, 911.

As in any society, there is a need to identify each agent’s
group behavior. Benevolent, malicious, cooperative and
competitive were some of the terms coined to refer to the
agent’s social behavior [Rosenschein & Zlotkin, 941.
These issues have been studied in highly distributed
environments (such as the Internet) where, more often than
not, the real intentions of the agents are unknown.

The likeliness that conflicts will appear increases with
the difference between objectives, tasks and knowledge.
Conflict identification and resolution are an important part
of multiagent systems. Our focus is on cooperative

EMERGING APPLICATIONS 1067

multiagent systems, where human and computational
agents interact to reach a common goal. The instrument to
encourage cooperative behavior is the communication of
the rationale of the other agent when a conflict occurs.

We use the cognitive approach to MAS that deals with
complex intelligent agents in a society [Sichman,
Demazeau & Boissier, 921. In MAS, the metaphor is social
behavior and the emphasis is in the actions and
interactions between agents. Most research on MAS
considers purely computational agents, without the
interference of external users. Our approach contemplates
human participation in the multiagent environment. Social
interaction between agents may also influence the
resolution process of a conflict [Finger, Konda &
Subrahmanian, 951.

MultiADD Models
We extended ADD’s model to enable cooperative work,
using principles of Multiagent technology. We focus on
aiding conflict resolution through communicating design
rationale among users. We implemented a centralized
version of MultiADD in which the core agent (the
Controller) deals with the issues: what, when and to whom
to communicate an information. This agent is able to
identify the appearance of a conflict and determine the
importance of each information to each designer at a given
moment.

Since we are dealing with a mixed environment (one
with computers and human designers), the conflict
resolution process is much more complicated than in a
purely computational one. The environment we have
created assists them with the resolution, encouraging
negotiation and discussion, but does not resolve the
conflicts for them, instead letting them work it out for
themselves. The next stage of our research will be to
observe how conflicts are solved in this environment and
build some conflict resolution schemes to deal with them.

In this section we present our Multiagent Active Design
Document model (MultiADD) to support group design
activities. We start presenting the domain knowledge
representation used (parametric dependence networks)
followed by MultiADD architecture.

Knowledge Representation

Domain knowledge is represented by a parametric
dependency network, a graph on which parameters and
dependencies are described. There is one type of link
(depends on) and there are three types of parameters:
primitive, coming from user input; derived, obtained
through a formula; and decided, obtained through a
rational decision making process (i.e., evaluation of
alternatives through a utility function).

The net is particularly useful to assist understanding the
complexity and impact of a requested change in someone’s
work. The instantiated net nodes represent the designer’s
work done. The net connectivity degree indicates the
domain complexity. For instance, if a change is requested
in a highly connected area that has been all instantiated,
the time spent changing the design will be higher than in a
place where no commitments were taken yet. Besides
technical issues, the net may indicate the agents social
behavior. For instance, it can track if an agent never yields
indicating a non-cooperative behavior (assuming all agents
equally technically prepared).

ADD Agent

In our application domain, the task is subdivided in In MultiADD, an agent is the tuple <assistant system,
nineteen subtasks, each requiring a specific expertise to be user>, called Design Team. The Design Team develops its
accomplished. The domain and the expertise required to design and documentation part to be shared and discussed
solve problems relating to the subtasks are represented in a by the design group following ADD’s model. Each agent is

parametric dependency network. Fortunately, the
application domain is not a highly connected graph.
Consequently, we can map the domain into subgraphs
(representing the subsystems), were the parameters are
clustered. Even so, there are still parameters connecting
these subgraphs (which are usually part of both
subsystems), which we consider to be the intersection
between the domain areas and the source of conflicts.

For example, designing an oil separation subsystem of a
process plant involves selecting and configuring a set of
equipment such as oil heaters, and oil separation vessels.
There is a set of criteria ruling the process and a number of
input data (primitive parameters) constraining it. Figure 1
illustrates the parametric dependency net for this domain.
A subsystem’s complete network has around 1000
parameters.

In MultiADD, each agent has a parametric dependency
net for its own domain. In addition, there is a net
containing the domain intersection. Depending on the type
of coordinating schema this model becomes available to
one or more agents. In the centralized version of
MultiADD, only the Controller agent has access to it.

of Oil
’ Separation

Vessels

Oil
Separation

’ Vessel
Length

Legend

PrImWe
Parameter

Oil Flow k
Oil’

Dependence

1 Dewed
Parameter

Figure 1: Partial parametric net
subsystem

for the Oil Separation

1068 INNOVATIVE APPLICATIONS

an independent ADD system with a specific knowledge
base represented by a parametric dependency network We
emphasize the existence of human agents because they are
the main source of conflicts, as well as, the main reason for
building a support system. Were we working with merely
computational agents, it would be easier to predict their
behavior and guide them to a solution for the problem.

Controller

In the centralized MultiADD version, Design Teams
communicate changes through the Controller agent. The
Controller’s roles are to filter the information to be
“heard,” as well as, to select its “listeners.” The Controller
spreads the minimum information to keep designers up to
what may interest them This piece of information may
trigger designers to open each others’ explanation system
(a component of any ADD system) to better understand the
situation.

The Controller may communicate: conflicting
parameters, values, rationale and involved agents; before,
after or while informing something else, at a design stage,
in a specific time, always or never; to everybody, nobody,
to the coordinator, or to involved agents.

The Controller deals with potential pieces of conflict
information mapped to parameters and their respective
domain. Anytime different values are assigned to the same
parameter, a potential conflict is detected, and the involved
agents may be alerted. However, not to become too
intrusive the Controller also decides when to communicate
the potential problems.

The Controller has a global the domain independent
knowledge base (also represented in parametric nets)
containing the following parameters used for its decision-
making process.

Agent’s State: whether active, inactive or inexistent

Conflicting Parameters List

Degree of work done: how much work has already been
done by the agent

Local impact: number of parameters impacted by each
parameter on the subsystem as a whole

Parameter Exploration Degree: how many alternatives
the designer has tried

Variable State: whether a parameter is in conflict.

Conflict Duration: how long the conflict has persisted.
There are other parameters, which we use for the

purposes of group coordination and do not mention here.

Conflict Identification

Conflicts occur due to differences on points of view
caused by differences on backgrounds, decision
abstraction, vocabulary, understanding, goals, criteria
evaluation, and personal attitudes [Oh & Sharpe, 951. In
any case, understanding is the key to solve any conflict.

Identifying a conflict is the first step to solve it. In the
MultiADD environment, a Design team is always setting

parameter values. Consider two Design Teams, A and B
deciding over a common parameter X. There are three
possible situations diagnosed by the Controller illustrated
in Table I.

A’s value B’s value Conflict?
80 80 NO
80 70 YES
80 -- NO

Table 1: Possible situations diagnosed by the controller

Even when an agent is not participating on a conflicting
situation, it may be notified to prevent the situation from
worsening.

Conflict Communication

The conflict information consists on the values proposed
for the parameter by each of the subsystems plus the
rationale explanations and any notes and observations the
other designers might have made. We believe that the
designers will act rationally and, with the understanding of
the conflicts, global objectives and each other’s reasoning,
will be in a position to negotiate and spontaneously reach a
solution.

There are three types of information to be sent:

1. A list of the Conflicting Parameters;

2. A list of the Conflicting Parameters, Values and Agents;

3. A list of the Conflicting Parameters, Values, Agents and
Rationale.
At the beginning only type 1 information is

communicated. When a conflict still remains, type 2
information is sent. In deadlock cases or upon request,
type 3 information is provided.

All agents involved in a conflict are potential receivers.
The communication moment depends on the agent’s task at
the time and the transmitted information importance for
the agent’s domain.

The Controller uses the aforementioned parameters to
decide when is the right moment to send a piece of
information. Some heuristic rules have been used to guide
the Controller’s behavior, such as:

Agents working on a conflicting parameter’s
neighborhood (parameters three or fewer steps distant
from the given parameter), must be warned immediately.

Agents working on areas not affected by a conflict
should not be disturbed.

High impact changes should be avoided. The Controller
warns the low impact subsystems first, trying to
minimize the overall rework.

Completed subsystems should be the last ones to be
disturbed.

High duration conflicts (defined by the number of
cycles) must be informed to coordinator.
Always send immediately to inactive agents.

Coordinator’s imposition is immediately sent to all
affected subsystems and the agents must obey.

EMERGING APPLICATIONS 1069

Domain Independent
Conflict

Management Model T Conflict Mitigation Task

Design Task

ADD ADD
Agent 1 Agent 2

. A

ADD
Agent 3

.

. . .

Figure 2: Centralized MultiADD Architecture

The conflict information should not be communicated
only once. If a designer has already been warned but
remains in conflict, he must be notified again. Thus, it
becomes important to establish the time between warnings,
to avoid disturbing the designer with continuous
interruptions (which could lead to him dismissing the
warnings). Communication is a sensitive issue and the
above rules are still being refined.

ADDProc: an Example of a Centralized
MultiADD System

In this section we present our system, ADDProc, which
implements MultiADD’s model to the domain of process
plant design of offshore oil platforms. ADDProc is an
intelligent design support tool for oil production processes.
We have implemented a centralized version of the
MultiADD system for the domain of process plant design
for offshore oil platforms. We chose to implement a
centralized architecture (as seen in Figure 2) because the
application domain itself was centralized.

The ADDProc system was implemented using C for the
decision making reasoning, Intellicorp’s Prokappa for AIX
for the knowledge bases, IUP and LUA libraries, from
PUC-Rio for the graphical user interfaces and Oracle
version 7.0 for the recording of data from previous cases.
It runs on IBM RISC 6000 machines and an Inter-graph
server 6700 hosts the database.

design - ’ y

suggestion
f

esgn

v

Design Team
-

The Example A kation Domain
The petroleum comes from the reservoir as a mixture of
oil, gas and water. This mixture needs to be separated and
treated before being exported to the refineries. A process
plant project contains the set of equipment that will
transform the incoming petroleum in the desired oil and
gas condition.

Typically, a process plant contains 19 different
subsystems (such as Oil Receiving, Oil Heating, Oil
Separation, Oil Treatment, Oil Transference, Gas
Compression, Gas Treatment, and Water Heating
subsystems). Designers of each discipline select and
configure equipment in compliance with a set of
requirements to achieve a final goal, which is the
production and exportation of gas and oil. Each project is
coordinated by a senior engineer, responsible for getting
the work done within the deadlines.

To illustrate the design process of each discipline and
the conflicts that appear among them, we develop an
example of the Oil Heating and Separation subsystems.
The oil comes from the reservoir in a low temperature.
Generally, this temperature is not sufficient to allow a
good separation of oil, water and gas. The Oil Heating
subsystem designer is responsible for selecting equipment
to increase this temperature. Often the cost-effective
equipment selection provides a close final temperature, but
not the one required for the Oil Separation system.

The Oil Separation system designer is responsible for

1070 INNOVATIVE APPLICATIONS

selecting a set of production separators that will actually
separate oil from water and gas. The dimensions of this
equipment are a function of the time the petroleum will
take to pass through the equipment and its temperature.
The higher the temperature or bigger the equipment, the
easier the separation. Since minimum platform area is an
overall requirement, the oil separation subsystem designer
tries to reduce the equipment length by increasing the
temperature. Of course the equipment’s material resistance
is another issue to be considered. The oil temperature
parameter is a good example of the conflicts that may
appear between design agents.

ADDProc

We mapped the 19 domains into parametric dependency
graphs. Each one represents the task involved in one
system. The global design model is also represented by a
parametric dependency graph. Each of the agents is an
independent ADD system with its specific domain
knowledge and designer (forming a Design Team). Thus,
each agent is, in its own, a design tool for a certain part of
the system. Additionally, there is a special agent, the
coordinator, which is responsible for the overall process
plant design, with the authority to solve any conflict. A
central Controller module takes care of the communication
among the agents, verifying when conflicts happen and
when they are resolved, so as to inform the agents as
necessary.

Suppose the controller detected a conflict between the
Heating and Separation subsystems, over the oil
temperature parameter. The controller receives the updates
and verifies an inconsistency between the proposed values
for the oil temperature parameter. Consulting its domain
dependent and independent knowledge bases, it verifies
that this parameter has been in conflict for too long
(heuristically inferred by the number of cycles). In
addition, this has a high impact on both the Separation
system and the Separation designer’s work is almost
complete (900/). Moreover, the Separation designer agrees
with the formal ADD’s model, while the Heating designer
has imposed a value over ADD’s expected value. Both are
high credibility agents and hierarchically equal. For these
reasons, the controller first sends the conflict information
to the Heating system, trying to persuade the designer to
change the proposed value. If the conflict persists for more
n cycles (defined as seen fit by the project’s Coordinator),
the controller contacts both systems trying to persuade any
of them to do so. Finally, if they are still unable to reach an
agreement, the controller contacts the coordinator showing
the conflict. In this case, it suggests the Coordinator’s
support the Separation system’s solution. There is a
Coordination Interface where the Coordinator can study
and decide upon a conflict.

approach to MAS, using a “mixed” system, where human
and machine work together as one. Designers develop their
designed assisted by a design support system in a group
support environment. Design models are created
guaranteeing consistency within and among design pieces.

Initial results have shown a potential decrease on design
meetings and design meeting duration. The design support
system has allowed an increase on the number of
alternative designs. We expect that the greatest impact will
be on the overall work cycle. Time spent scheduling
meeting or gathering information can be drastically
reduced from days to minutes.

References
[Bobrow, 911 - Bobrow, Daniel G. - AAAI-90 Presidential
Address - Dimensions of Interaction - AI Magazine, Fall
1991
[Edmonds et al. 941 - Edmonds, E.; Candy, L.; Jones, R. &
Soul?, B. - Support for Collaborative Design: Agents and
Emergence - Communications of the ACM, July 1994
[Finger, Konda & Subrahmanian, 951 - Finger, S.; Konda,
S. & Subrahmanian, E. - Concurrent Design Happens at
the Interfaces - AIEDAM 9, 88-99 1995
[Garcia, 921 - Garcia, A.C. - Active Design Documents: A
New Approach for Supporting Documentation in
Preliminary Routine Design - Ph.D. Dissertation - Stanford
Univ., August 1992
[Genesereth & Ketchpel, 941 - Genesereth, M. & Ketchpel,
S. - Software Agents - Communications of the ACM - July,
1994
[Klein & Lu, 901 - Klein, M. & Lu, Stephen C.Y. -
Conflict Resolution in Cooperative Design - AIENG 4 (4),
168-180, 1990
[Oh & Sharpe, 951 - Oh, V. & Sharpe, J. - Conflict
Management in Interdisciplinary Design - AIEDAM 9,
247-258 - 1995
[Oliveira & Qiegang, 911 - Oliveira, E. & Quiegang, L. -
Towards a Generic Monitor for Cooperation in Workshop
on Blackboard Systems of the AAAI, Anaheim, California,
1991
[Olson et al. 921 - Olson, G.; Olson, J.; Carter, M. &
Storrosten, M. - Small Group Design Meetings: An
Analysis of Collaboration - HCI, Vol 7, 1992
[Rosenschein & Zlotkin, 941 - Rosenschein, J. & Zlotkin,
G. - Designing Conventions for Automated Negotiation -
AI Magazine, Fall 1994
[Sichman, Demazeau & Boissier, 921 - Sichman, J.,
Demazeau, Y. & Boissier, 0. - When can knowledge-
based systems be called agents? in Anais do 9” Simposio
Brasileiro de Inteligencia Artificial - SBIA’92, Rio de
Janeiro, Brasil, 1992
[Wellman, 951 - Wellman, M.P. - A Computational Market
Model for Distributed Configuration Design - AIEDAA4 9,
125-133, 1995.

Conclusions
In emphasizing the human designer, we proposed a new

EMERGING APPLICATIONS 1071

