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Abstract 
Scheduling of multiple parallel machines in the face of sequence 
dependent setups and downstream considerations is a hard 
problem. No single efficient algorithm is guaranteed to produce 
optimal results. We describe a solution for an instance of this 
problem, in the domain of paper manufacturing. The problem has 
additional job machine restrictions and fixed costs of assigning 
jobs to machines. We consider multiple objectives such as 
minimizing (weighted) tardiness, minimizing job-machine 
assignment costs. We solve the problem using a simple agent 
architecture called the Asynchronous team (A-team), in which 
agents cooperate by exchanging results. We have built agents 
each of which encapsulates a different problem solving strategy 
for solving the multi-machine scheduling problem. The A-team 
framework enables the agents to cooperate to produce better 
results than those of any individual agent. In this paper we define 
the problem, describe the individual agents, and show with 
experimental results that the A-team produces very good results 
compared to schedulers alone. 

Introduction 
Effective production scheduling is at the heart of an 
efficient manufacturing process, and can result in improved 
on-time delivery of products, reduced inventory costs, 
increased productivity, and fewer setups. However, 
scheduling is a very complex task due to the need to 
optimize multiple competing objectives such as customer 
satisfaction, production efficiency, and profitability. In this 
paper, we present an effective way of addressing the multi- 
machine scheduling problem for non-identical, parallel 
machines subject to sequence dependent setups, job- 
machine restrictions, batch size preferences, and 
downstream scheduling consequences, considering multiple 
objectives simultaneously. To the best of our knowledge, 
this problem (especially with multiple objectives) has not 
been considered earlier. We developed a novel application 
of an agent-based architecture, called A-Teams, to solve this 
complex multi-criteria optimization problem. 
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We consider a set of jobs that must be run and there is a set 
of machines available to execute the jobs. Jobs may be 
classified into groups of similar job types. Each machine 
can run only one job type at a time, and each machine may 
have some unique characteristics, such as production rate. 
Each job has a due date, on which production should have 
been completed, and certain jobs may be restricted to a 
subset of the available machines. When a machine changes 
from one job type to another, there may be some setup time 
which depends on the similarity of the job types. To avoid 
frequent setups, schedulers’ form batches of jobs of the 
same type to be run on a machine in sequence. Machine 
characteristics may also dictate batch size preferences if, for 
example, very small batches result in higher defect rates. 
When the machines are not located in the same facility, the 
cost of transporting the product to its’” destination is 
machine-dependent, which implies a job-machine 
assignment cost. In many applications, there are 
downstream consequences of scheduling that strongly 
influence the goodness of a schedule. In such complex 
scheduling problems, performance measures to be 
minimized include: tardiness, setup cost and time, inventory 
cost, job-machine assignment cost, batch size violations, 
and downstream bottlenecks or inefficiencies. 

Armed with an understanding of the realities of 
manufacturing scheduling, one can see that a solution that 
deals only with a subset of the objectives and constraints is 
of limited usefblness. On the other hand, a monolithic 
solution that considers all the aspects of scheduling for a 
given domain would be impractical and unwieldy. What is 
needed is a modular architecture in which each component 
can be concerned with a subset of the objectives and 
constraints, and a framework that allows the components to 
work together to solve the entire problem. In our work,, we 
use an agent architecture called Asynchronous Teams (A- 
Teams) to address, this multi-criteria optimization problem 
of multi-machine scheduling. A-Teams is a simple 
framework wherein multiple problem solving methods 

’ In this paper, we use the term ‘scheduler’ to refer to the 
human scheduler. 
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(agents) cooperate with each other by exchanging results. In 
the next section, we briefly discuss this agent architecture 
and our solution approach in detail. 

Several related problems have been extensively studied in 
the literature (Pinedo 1995). Scheduling jobs on a single 
machine to minimize (weighted) tardiness is studied in 
(Abdul-Razaq et. al. 1990), (Koulamas 1994), (Panwalkar 
and Iskander 1977), (Panwalkar, Smith and Kouhnas 1993) 
(Potts and Van Vassenhove 199 l), (Russell and Holsenback 
1997). The extension to multiple machines is considered in 
(At-km and Roundy 1989), (Barnes and Brennan 1977), (Ho 
and Chang 1991). Scheduling subject to sequence 
dependent setup times is considered in (Lee, Bhaskaran and 
Pinedo 1997) for single machine; in (Lee and Pinedo 1997) 
and (Clements et.al. 1997) for parallel identical machines. 
Du and Leung (1990) proved that minimizing the total 
tardiness on one machine is NP-hard. Further complexity 
results on machine scheduling problems can be found in 
(Lenstra and Rinnoy Kan 1997). Most of these papers 
consider only one scheduling objective, e.g. minimizing 
total tardiness. To the best of our knowledge, there are no 
models that address the complex problem of job scheduling 
on parallel non-identical machines with sequence dependent 
setup times and job-machine restrictions, considering 
multiple objectives (such as the total weighted tardiness and 
job-machine assignment cost). In many manufacturing 
environments these types of restrictions and different 
objectives are important and are part of the scheduling 
problem the planners and schedulers face every day. 

Recently it has been shown that agent-based architectures 
hold promise for solving complex multi-objective 
optimization problems. Liu and Sycara (1996) have shown 
the benefits of a tightly-coupled agent architecture in 
solving the job shop scheduling problem. Beck and Fox 
(1994) presented a mediated approach to multi-agent 
coordination in the context of a supply chain management 
system. A model of the supply chain in which each of the 
key players in the chain is encapsulated in an autonomous 
agent is described in (Swaminathan Smith and Sadeh 
1996). A blackboard-style architecture is used in Smith 
et.al. (1990) for generating and revising factory schedules, 
wherein a set of distinct methods are selectively employed 
to generate, revise or analyze specific components of the 
overall schedule. 

As an example of the problem studied in this paper, we 
consider the enterprise wide scheduling” problem in paper 
manufacturing, which was one of the prime motivations for 
this study. A typical large paper manufacturing enterprise 
has a number of paper mills in various locations and one or 
more paper machines in each mill. Each paper machine is 
capable of producing some subset of the company’s 
products (job-machine restrictions) at different production 

rates. Paper production is a continuous process in which a 
machine can make only one type, or “grade” of paper at a 
time (Bierman 1993). When the grade being made on a 
machine is changed, the machine continues to operate, but 
the paper it produces is of poor quality for some time after 
the change is initiated. The length of this ‘ctransition time” 
depends on the composition of the grades before and after 
the transition; transitions between similar grades are shorter 
than transitions between very different grades (sequence- 
dependent setup times). The transition times between grades 
can also be machine dependent. Often there is a 
manufacturing policy that bounds the length of a production 
batch, or “run.” A lower bound on run length is typically 
set because very short runs are likely to produce paper with 
quality problems. 

Each customer of the paper company orders a number of 
rolls of a grade of paper of specified dimensions to be 
delivered on the due date to a specified location. The paper 
manufacturer is responsible for the freight cost from its mill 
to the customer’s location, which can constitute as much as 
15% of its total costs. Minimizing tardiness and 
transportation costs cjob-machine assignment cost) are 
important objectives in scheduling paper production. 

Scheduling of production on paper machines has major 
downstream implications that must be taken into account. 
One of the key downstream processes is known as 
“trimming.” The output of a paper machine is large rolls of 
paper of fared width (on modern machines this may be as 
large as 10 meters). Trimming is the process of cutting the 
large rolls into smaller rolls having widths ordered by the 
customers. A production run usually consists of many 
orders for different widths. Since it is important to utilize 
the full width of the reel efficiently, this is an example of the 
cutting stock problem. The best achievable trim efficiency 
is strongly dependent on the mix of order widths and 
quantities in the production run. Maximizing trim 
efficiency is an important scheduling objective that is 
determined by a downstream process. 

Solution Approach 

A-Team Agent Architecture 
An Asynchronous Team or A-Team (Talukdar, Souza, 
Murthy 1993), (Murthy 1992) is an agent based architecture 
that is well suited for multi-objective optimization problems 
(Souza 1993). In this architecture, multiple problem solving 
methods (agents) cooperate with each other in evolving a 
population of solutions towards what is called a Pareto- 
optimal frontier. The outcome is the non-dominated set of 
solutions from the population. 
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Agents communicate through a population of candidate 
solutions. There are three types of agents which create and 
modify this population. They are: 

1. Constructors that create initial solutions. 
2. Improvers that take existing solutions, and modify 

them to produce a new solution. Some of the solutions 
they create may not be better than existing solutions, 
but are valuable because they serve to explore the 
solution space and may discover a path to a good 
solution. 

3. Destroyers that keep the size of the population of 
solutions in check by deleting bad or redundant 
schedules. 

Figure 1 shows the essential features of the A-Team 
architecture. The A-Team architecture does not define the 
content of the agents, but only their possible roles. This 
gives us complete freedom to use a broad range of 
algorithms encapsulated as agents. Each agent is 
independent and can make its own decisions of when to 
work, how often to work, and what to work on. 

In an A-Team, agents can cooperate since one agent can In any complex scheduling problem, there may be 
work on the output of another. In general, agents may take considerations and constraints that are not known to the 
as input any number of existing solutions and produce as scheduling system. The system may not know of them 
output any number of solutions. For example, in the job because they are highly dynamic, or because they exist only 
allocation and sequencing problem a solution may consist in the minds of the schedulers. For example, a customer 
of a set of machine schedules, each schedule containing a may have expressed some willingness to take part of an 
particular sequence of jobs. Imagine two agents A and B. order late as long as one truckload is ready on time. 
Agent A moves a job fiom.one machine to another in order Because such contingencies arise very often, a scheduling 
to balance the load on the machines but might have delayed system should be designed to allow the schedulers to 
the production of the job, while agent B moves a job ahead interact with the system and to modify schedules easily. If 
of the time on to another machine to reduce it tardiness. It is the system meets these criteria, then it is truly a decision- 
thus possible to achieve cooperation between agents in a support system, and not a decision-making system. 

way that reveals potential tradeoffs between cost and on- 
time delivery. 

In order for an A-Team to achieve a balanced population of 
solutions that approach the Pareto-optimal frontier, it is 
important that the agents be well balanced as a collection. 
No single agent need have the ability to optimize or even 
improve a solution with regard to all the objectives. 
However, the collection should have at least one agent 
which can address each of the objectives, This provides 
assurance that any damage done to a solution by an agent 
with regard to one objective can be repaired or more than 
overcome by another, possibly on the path toward a solution 
that is improved in all respects. 

In addition to enhanced optimization performance, A- 
Teams also provide an intrinsically modular, scalable and 
fault-tolerant computing environment. If a new algorithm is 
discovered for solving a particular problem, its capability 
can be readily assimilated without requiring fundamental 
changes to the underlying software. 

Decision Support Using A-Teams 

A gents A gents Solutions Solutions 

x = Bad Schedule 
0 = Dominated Schedule 

= Non-Dominated Schedule 
xx x Bad Schedules 

xx Removed by 
Destroyers 

Figure I. The Essential Features of the A-Team architecture employed by our scheduling system 
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completion time of job j; tardiness of job j; the absolute 
difference between the due date of job j and its completion 
time on machine k; slack of jobj; the weighted combination 
of any of these items with the transition time. 

Improvement Heuristics: Improvement agents take the 
existing schedules from tbe population and improve them in 
several different dimensions. For example they move 
a a single job in order to improve tardiness, 
l batches in order to decrease the number of small 

batches (if we move a batch next to a batch of the same 
type, i.e. if no setup is required in between, those two 
batches can be combined into a single larger batch), 

0 a subset of jobs in a batch to improve the soiution of a 
downstream problem (e.g. moving a set of jobs to a 
different run to improve trim efficiency), 

l jobs/batches to improve transportation cost or machine 
load balance, 

l jobs/batches to improve any combination of the 
measures above. 

The jobs can be moved to a new position on the same 
machine, or on a different machine. The goal of any 
exchange may be to improve a single objective only, such as 
tardiness: or a combination of objectives such as minimizing 
transportation cost and load balancing on the machines. 
Each agent selectively picks a solution to work on based on 
certain criteria. For instance, a tardiness improvement agent 
picks a schedule from the population that needs 
improvement in tardiness. A load balancing agent picks a 
schedule whose load is unevenly balanced and attempts to 
fur it and so on. 

Since multiple agents work on each others’ results, these 
agents together attain results that may not be achieved by 
any smgie agent on its 0.wii. Tllese iterative refmements to 
the set of schedules in the population drive them towards 
the optimal frontier in the search space. 

Experimental Results 
We have applied our model to a real-world scheduling 
problem in paper industry, with multiple mills and 
machines. The problem consists of more than 5000 orders 
(jobs) to be scheduled on the 9 machines which are part of 4 
different mills. The given set of orders constitute about 8 
WPP~C nf nmrhw+inn l7rrr.h nrrlnr ic fnr nma nf the 15 nr.aAec ““VVIL.J “I yI”UUwU”Y. YUYY VlUYl IU IVI VllV “I cy” Id ~CaAV” 

of paper that the company produces. Each of these machines 
has a different production capacity and can only produce 
certain grades of paper. The geographical location of a 
particular machine plays a significant role in allocating a 

job to a machine as it has significant impact on the 
transportation cost of the schedule. There is a setup time to 
switch from one grade of paper to another on each paper * _ 
machine and smooth cycles of grades is desired to reduce 
the setup times. The goal is to allocate the orders to the 
machines and sequence them for production such that: 
1) The overall transportation cost is minimized. 
2) The tardiness and earliness of the orders is minimized. 
3) The total setup time is minimized. 
4) The number of batches (grade runs) that violate the 
minimum batch size requirements is minimized. 
5) The composition of the orders within each batch does not 
negatively affect the downstream processes. (Each grade 
. . ..- “1. ,,., A t, -1-1,. c,. A...:- __.^ 11 .-L&l. -I-:-..- ----:Ll- lull Dll"UlU "G sL"lG L" Ull‘l WGII WlUl IIJllllliuuI1 y0ss101r; 

waste of paper.) 
6) The load is evenly balanced on all the machines. 

In this implementation, the measures we used for evaluating 
the solutions are the following: tardiness and earliness (in 
ton-days), number of orders late and early, transportation 
cost (in dollars), number of run size violations (runs longer 
or shorter than the desired bounds) and the trim efficiency 
(paper lost due to trimming as a percentage of total 
production). (It is to be noted that these evaluation metrics 
are customer dependent and can change from one customer 
to another. We obtain this information during the design 
study and incorporate them into the system during the 
benchmarking process.) These measures are presented in the 
first 6 columns of Table 1 for each of the 10 non-dominated 
solutions generated by the system. 

We used the A-Team framework to enable the cooperation 
among various problem solving methods to address this 
multi-machine scheduling problem. Our A-Team consisted 
gf 15 r.gnsm~ct~yg and_ 4 imnrnverc Each rroent /mnctrwtnr I -e-r--. v-w. -w.,- ..a---. \-Y’.YY..“.“’ 

or an improver) is an embodiment of the algorithms 
described in the earlier sections (run with various parameter 
settings). For an A-Team invocation of 1 l/2 hours of CPU 
time on a single processor IBM RS/6000 Model 43P (64M 
of memory), the scheduling system generated 10 non- 
dominated solutions. (The termination criterion is set by the 
user by specifying the amount of time to run the A-Team.) 
As the A-Team approach aims toward monotonic 
improvement of the solutions, the longer we run the system 
the better the results would be. However, within the system 
we provide severai configuration settings for the users to 
choose to from. Table 1, given below, is a summary of the 
solutions. 
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Schedule Tardiness Earliness # of # of Transp. # of Run Trim Total Trim 
(ton-days) (ton-days) Orders Orders Cost ($) Size Efficiency Production Loss 

Late Early Violations % Tons Tons 

07 465,780 200,199 587 548 $6,505,511 10 97.741 243,260 5,623 
08 649,87 1 1,162,401 851 1859 $6,505,511 2 98.535 243,220 3,617 
09 656,482 1,094,900 856 1770 $6,510,074 2 98.556 243,277 3,565 
10 560,422 251,897 717 650 $6,511,978 9 98.862 243,204 2,801 

100 613,015 176,012 Not Not $6,565,750 Not given 98.84 243,405 2,967 
I given given 

Table 1. A summary of the experimental results obtained by the application ofA-Teams to an instance of 
multi-machine scheduling problem in paper domain. 

Analysis of Results 
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the above mentioned set of objectives. For comparison, we 
also show the evaluation of the actual schedule used by our 
client paper company (solution # 100). The client’s 
schedule was created manually, based on the experience and 
intelligence of the scheduling team. The schedulers have 
numerous rules of thumb and guidelines which they apply to 
all aspects of scheduling, from allocation of orders to mills 
and machines through run formation and sequencing. 
However, the process of scheduling by hand is so time 
consuming that it is not practical for the schedulers to 
explore a large number of alternate ways to schedule the 
orders; consequently they may not be considering some 
significantly better scheduling decisions. 

As can be seen from the table, the solutions created by the 
scheduling system reveal tradeoffs among the multiple 
objectives such as transportation cost vs. order tardiness and 
trim efficiency vs. order tardiness. For example, solutions 
03 and 04 have the same transportation cost, which suggests 
that they have almost the same allocation of orders to the 
mills. However, they differ significantly in their tardiness 
and trim efficiencies. Solution 03 sacrificed order tardiness 
for better trim while solution 04 sacrificed trim for better 
on-time order delivery. Comparison of a solution, such as 
,,.l,.+:,, 1~3 ..,:A +ha nl:nn+k nnhrnl onhc.Ar.ln nh,..rrrrrl +hn+ +hn D”IUU”U I”, WlCU LUG CIIIGUL J L(cIaulI J~ucjuu,~ JIIVWCXJ UIclL LIISZ 

scheduling system could provide significant reductions in 
costs (e.g. 6% savings in annual transportation costs) and 
improvements in customer satisfaction (reduced tardiness). 
Since our scheduling system is designed as a decision 
support system, the schedulers can modify the solutions 

provided by the system and improve them further by using 
their domain expertise. 

Conclusions 
In this paper we described an effective solution approach 
for scheduling jobs on multiple non-identical machines 
subject to sequence-dependent setups and job-machine 
restrictions with multiple objectives. The problem is of 
interest both to the academic community (it generalizes the 
problems studied earlier) and to scheduling practitioners (it 
captures additional constraints and objectives that exist in 
manufacturing environments). To the best of our 
knowledge, this is the first attempt to solve this general 
problem. 

We used the A-Team solution architecture, encapsulating 
multiple solution strategies as agents that cooperate with 
each other and the schedulers. Experimental results on a 
large sample of data from a paper manufacturer demonstrate 
the excellent performance of our approach. 

. 
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