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Abstract

In recent times, improvements in imaging technology
have made available an incredible array of informa-
tion in image format. While powerful and sophisti-
cated image processing software tools are available to
prepare and analyze the data, these tools are com-
plex and cumbersome, requiring signi�cant expertise
to properly operate. Thus, in order to extract (e.g.,
mine or analyze) useful information from the data, a
user (in our case a scientist) often must possess both
signi�cant science and image processing expertise.

This paper describes the use of AI planning techniques
to represent scienti�c, image processing, and software
tool knowledge to automate elements of science data
preparation and analysis of synthetic aperture radar
(SAR) imagery for planetary geology. In particular,
we describe the Automated SAR Image Processing
system (ASIP) which is currently in use by the Dept.
of Geology at ASU supporting aeolian science analysis
of synthetic aperture radar images. ASIP reduces the
number of manual inputs in science product genera-
tion by 10-fold, decreases the CPU time to produce
images by 30%, and allows scientists to directly pro-
duce certain science products.

Introduction

Recent breakthroughs in imaging technology have led
to an explosion of available data in image format.
However, these advances in imaging technology have
brought with them a commensurate increase in the
complexity of image processing and analysis technol-
ogy. When analyzing newly available image data to
discover patterns or to con�rm scienti�c theories, a
complex set of operations is often required. First, be-
fore the data can be used it must often be reformatted,
cleaned, and many correction steps must be applied.
Then, in order to perform the actual data analysis, the
user must manage all of the analysis software packages
and their requirements on format, required informa-
tion, etc.
Furthermore, this data analysis process is not a one-

shot process. Typically a scientist will set up some sort

of analysis, study the results, and then use the results
of this analysis to modify the analysis to improve it.
This analysis and re�nement cycle may occur many
times - thus any reduction in the scientist e�ort or
cycle time can dramatically improve scientist produc-
tivity. Consider the goal of studying the soil sediment
transport (wind erosion patterns). In order to do this
the scientist uses a z0map (described later) to analyze
the surface wind velocities using SAR data. In order
to generate the z0map the scientist must go through a
number of processes:

� data acquisition: getting the data from a proprietary
tape format using the CEOS reader software package

� data conversion: the data must be decompressed us-
ing yet another software package

� pre-processing: header and label �les must be added
to the date �les

� processing: using the z0map software package a z0
map image is created and

� post processing: depending on the desired data for-
mat the z0 map image �les may need to be converted
to VICAR format (yet another proprietary format).

Unfortunately, this data preparation and analysis pro-
cess is both knowledge and labor intensive.
In order to correctly be able to produce this sci-

ence product for analysis, requires knowledge of a wide
range of sources including:

� the particular science discipline of interest (e.g., at-
mospheric science, planetary geology),

� image processing and the image processing libraries
available,

� where and how the images and associated informa-
tion are stored (e.g., calibration �les), and
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� the overall image processing environment to know
how to link together libraries and pass information
from one program to another.

It takes many years of training and experience to ac-
quire the knowledge necessary to perform these anal-
yses. Needless to say, these experts are in high de-
mand. One factor which exacerbates this shortage of
experts is the extreme breadth of knowledge required.
Many users might be knowledgable in one or more of
the above areas but not in all the areas. In addition,
the status quo requires that users possess consider-
able knowledge about software infrastructure. Users
must know how to specify input parameters (format,
type, and options) for each software package that they
are using and must often expend considerable e�ort in
translating information from one package to another.
Using automated planning technology to represent

and automate many of these data analysis functions
(Fayyad96) p. 50 (Chien96) and enables novice users
to utilize the software libraries to prepare and analyze
data. It also allows users who may be expert in some
areas but less knowledgable in other to use the software
tools.
The remainder of this article is organized as follows.

First, we provide a brief overview of the key elements
of AI planning. We then describe the ASIP system
- which automates elements of image processing for
science data analysis of synthetic aperture radar (SAR)
images.

Arti�cial Intelligence Planning
Techniques

We have applied and extended techniques from Arti-
�cial Intelligence Planning to address the knowledge-
based software recon�guration problem in general, and
science data analysis in speci�c. In order to describe
this work, we �rst provide a brief overview of the key
concepts from planning technology 1.
Planning technology relies on an encoding of possible

actions in the domain. In this encoding, one speci�es
for each action in the domain: preconditions, postcon-
ditions, and subactivities. Preconditions are require-
ments which must be met before the action can be
taken. These may be pieces of information which are
required to correctly apply a software package (such
as the image format, availability of calibration data,
etc.) Postconditions are things that are made true by
the execution of the actions, such as the fact that the
data has been photometrically corrected (corrected for
the relative location of the lighting source) or that

1For Further details on planning the user is referred to
(Pemberthy92; Erol94)

3-dimensional topography information has been ex-
tracted from an image. Subactivities are lower level
activities which comprise the higher level activity. For
instance, returning to our previous example of analyz-
ing soil sediment transport using SAR data. The di�er-
ent tasks (e.g., data acquisition, data conversion, etc.)
are considered subtasks of the overall product genera-
tion process. The planner begins with the process of
"determining parameters". This in turn is driven by
the type of data format or mode of the SAR during
data collection. Through this decomposition process
parameters to be used in the z0map calculation are
initialized. Given this encoding of actions, a planner is
able to solve individual problems, where each problem
is a current state and a set of goals. The planner uses
its action models to synthesize a plan (a set of actions)
to achieve the goals from the current state.
Planning consists of three main mechanisms: sub-

goaling, task decomposition, and conict analysis. In
subgoaling, a planner ensures that all of the precon-
ditions of actions in the plan are met. This can be
done by ensuring that they are true in the initial state
or by adding appropriate actions to the plan. In task
decomposition, the planner ensures that all high level
(abstract) activities are expanded so that the lower
level (subactivities) are present in the plan. This en-
sures that the plan consists of executable activities.
Conict analysis ensures that di�erent portions of the
plan do not interfere with each other.

The Automated SAR Image Processing
(ASIP) System

ASIP automates synthetic aperture radar (SAR) im-
age processing based on user request and a knowledge-
base model of SAR image processing using AI au-
tomated planning techniques (Fisher97). SAR oper-
ates simultaneously in multipolarizations2 and multi-
frequencies to produce di�erent images consisting of
radar backscatter coe�cients (s0) through di�erent po-
larizations at di�erent frequencies. ASIP enables con-
struction of an aerodynamic roughness image/map (z0
map) from raw SAR data - thus enabling studies of
Aeolian processes.

Studies of Aeolian Processes

The aerodynamic roughness length (z0) is the height
above a surface at which a wind pro�le assumes zero
velocity. z0 is an important parameter in studies of at-
mospheric circulation and aeolian sediment transport
(in layman's terms: wind patterns, wind erosion pat-
terns, and sand/soil drift caused by wind) (Greeley87;

2There are four combinations of polarization: HH, HV,
VH, and VV, where H = Horizontal and V= Verticial.



Greeley87; Greeley91). Estimating z0 with radar is
important because it enables large areas to be mapped
quickly to study aeolian processes, as opposed to the
slow painstaking process of manually taking �eld mea-
surements (Blumberg95). The �nal science product is
a VICAR image called a z0 map that the scientists use
to study the aeolian processes.

Planning to Generate Aerodynamic
Roughness Maps

ASIP is an end-to-end image processing system au-
tomating data abstraction, decompression, and (radar)
image processing sub-systems, that integrates a num-
ber of SAR and z0 image processing sub-systems. Us-
ing a knowledge base of SAR processing actions and a
general-purpose planning engine, ASIP reasons about
the parameter and sub-system constraints and require-
ments: extracting needed parameters from image for-
mat and header �les as appropriate (freeing the user
from these issues). These parameters, in conjunction
with the knowledge-base of SAR processing steps(see
Figure 1), and a minimal set of required user inputs
(entered through a graphical user interface (GUI)), are
then used to determine the processing plan. ASIP
represents a number of processing constraints (e.g.,
that only some subset of all possible combinations
of polarizations are legal as dependent on the input
data). ASIP also represents image processing knowl-
edge about how to use polarization and frequency band
information to compute parameters used for later pro-
cessing of backscatter to aerodynamic roughness length
conversions - thus freeing the user from having to un-
derstand these processes (see Figure 1).

The design of ASIP focuses on automation to make a
variety of software tools function together. In the pro-
cess of accomplishing this goal, many of the interfaces
of the individual tools where modi�ed to provide auto-
mated interfaces. Through these new automated inter-
faces, considerable information, previously entered into
each tool through an interactive shell, is passed from
one tool to another. In many cases the same informa-
tion must be provided to many of the tools. In some
cases the information is the same but the required for-
mat may di�er from one tool to another. Many of the
parameters provided to the tools are interdependent on
as many as �ve other parameters. As the parameters
become more interdependent it becomes more di�cult
to understand the process. Through these new auto-
mated interfaces many of these parameters are passed
to the planning system and the knowledge base i sused
by the planner to reason about the interdependencies
to set the resulting parameters appropriately. Going
back to the ASIP design, ASIP actually calls the plan-

(decomprule get_z0map_coef_l-hv

lhs

(initialgoals ( (get_z0map_coef l-hv)

)

)

rhs

(newgoals ( (m0 -6.419)

(m1 9.957)

(r_chit 0)

(r_psit 90)

(r_chir 0)

(r_psir 0)

(i_polcode 2)

(polar l-hv)

)

)

doc [ ]

)

Figure 1: Sample Decomposition Rule from ASIP SAR
Domain

ner twice. In the �rst call the planner determines the
steps (tools) necessary to accomplish the processing
task (goals); and determines how to set parameters
needed in generating the header �les. Once the data
has been extracted and more data has been gathered
the planner is called a second time further reason about
the parameter settings needed to complete the remain-
der of the processing goals. The two knowledge bases
combined contain 29 rules.

Figure 1 shows an example of a task decomposition
rule. In the rule get z0map coef l-hv, we see that if
the preconditions spelled out in the lhs (left-hand side)
are meet then the parameters and coe�cients of the
rhs (right-hand side) are set for later use. Although
not shown, the lhs of the get z0map coef l-hv rule is
satis�ed by the application of other planning operators
and rules.

Figure 2 shows an aerodynamic roughness length
map of a site near Death Valley, California generated
using the ASIP system (the map uses the L band (24
cm) SAR with HV polarization). Each of the greyscale
bands indicated signi�es a di�erent approximate aero-
dynamic roughness length. This map is then used to
study aeolian processes at the Death Valley site.

Application Use and Payo�s

Since the ASIP system was �elded in January 1997, it
has proven to be very useful in the use of generating
aerodynamic roughness maps with three major bene-
�ts.



Figure 2: Aerodynamic Roughness Length Map Pro-
duced Using ASIP

� First, ASIP has enabled a 10 fold reduction in the
number of manual inputs required to produce an
aerodynamic roughness map.

� Second, ASIP has enabled a 30% reduction in CPU
processing time to produce such a map (by produc-
ing more e�cient plans).

� Third, and most signi�cantly ASIP has enabled sci-
entists to process their own data (previously pro-
gramming sta� were required).

By enabling scientists to directly manipulate that data
and reducing processing overhead and turnaround, sci-
ence is directly enhanced.

Application Development, Deployment
and Maintenance

The development of the ASIP system took approxi-
mately six months. During that time period the system
was developed and deployed using an iterative water-
fall development cycle containing three incremental de-
ployments. The development team consisted of one AI
Planning researcher from JPL and one SAR domain
expert from ASU, who later became one of the users
of the system after deployment to the ASU Planetary
Geology Department. The system was both developed
and deployed on a Sun UNIX workstation using a com-
bination of C, FORTRAN, and TCL/TK.
The maintenance of the ASIP system, is done by the

users of the system at ASU. Because of the nature of
the SAR domain modi�cations to the knowledge-base
are not expected to be frequent, but in the event that
through greater understanding of SAR data the values
of the coe�cients change this an easy modi�cation to
make.

Related Work

Related work can be broadly classi�ed into: related
image processing languages, related automated im-
age processing work, and related AI planning work.
In terms of related image processing languages, there
are many commercial and academic image processing

packages - such as IDL, Aoips,and Merlyn. Generally,
these packages have only limited ability to automati-
cally determine how to use di�erent image processing
programs or algorithms based on the problem context
(e.g., other image processing goals and initial image
state). These packages only support such context sen-
sitivity for a few pre-anticipated cases.

However, there are several previous systems for au-
tomatic image processing that use a domain indepen-
dent mechanism. The work at the Canadian Cen-
tre for Remote Sensing (CCRS) (Charlebois91) di�ers
from ASIP in that they use a case-based reasoning ap-
proach in which a problem is solved by searching for
a previous problem and solution. Grimm and Bunke
(Grimm93) developed an expert system to assist in
image processing within the SPIDER library of image
processing routines. This system uses many similar ap-
proaches in that: 1. it classi�es problem types similar
to the fashion in which ASIP performs skeletal plan-
ning; and 2. it also decomposes larger problems into
subproblems which ASIP performs in decomposition
planning. This system is implemented in a combina-
tion of an expert system shell called TWAICE (which
includes both rules and frames) and Prolog. Previous
work on automating the use of the SPIDER library in-
cludes (Sakaue85) which performs constraint checking
and step ordering for a set of conceptual image process-
ing steps and generation of executable code. This work
di�ers from ASIP in that: 1. they do not infer missing
steps from step requirements; 2. they do not map from
a single abstract step to a context-dependent sequence
of image processing operations; and 3. they do not rea-
son about negative interactions between subproblems.
ASIP has the capability to represent and reason about
all 3 of these cases. Other work by Jiang and Bunke
(Jian94) involves generation of image processing pro-
cedures for robotics. This system performs subgoaling
to construct image processing plans. However their
algorithm does not appear to have a general way of
representing and dealing with negative interactions be-
tween di�erent subparts of the plans. In contrast, the
general Arti�cial Intelligence Planning techniques used
by ASIP use conict resolution methods to guarantee
correct handling of subproblem interactions.

Another piece of related work is the SATI sys-
tem (Capdevielle94) which uses an interactive dialogue
with the user to drive an automated programming ap-
proach to generating code to satisfy the user request.
OCAPI (Clement93), a semantically integrated auto-
mated image processing system, while being very gen-
eral provides no clear way to represent the large num-
ber of logical constraints associated with the problems
ASIP was designed to solve. Another image processing



system (Matsuyama89) provides a means for represent-
ing knowledge of image analysis strategies in an expert
system but does not use the more declarative AI plan-
ning representation. Perhaps the most similar plan-
ning and image processing system is COLLAGE (Lan-
sky95). The COLLAGE planning di�ers from ASIP
in that COLLAGE uses solely the decomposition ap-
proach to planning.
Finally, the most closely related system to ASIP is

MVP (Chien96). The greatest similarity being MVP
and ASIP use the same AI Planning techniques to cap-
ture and reason about the knowledge of image pro-
cessing. The primary di�erences lie in the domains
and in the packaging. MVP produces VICAR proce-
dure de�nition �les (PDFs) for VICAR image process-
ing (LaVoie89), while ASIP performs end-to-end closed
loop integration of all the tools for SAR image process-
ing.

Conclusions
This paper has described knowledge-based recon�gu-
ration of data analysis software using AI planning tech-
niques. In particular, we have described the ASIP
system which automates production of aerodynamic
roughness maps to support geological science analysis.
ASIP reduces the number of manual inputs in science
product generation by 10-fold, has reduced the CPU
processing time by 30%, and has enabled scientists to
directly produce certain science products.
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