
TurbineZngine Diagnostics (TED): An Expert Diagnostic System t
for the Ml Abrams Turbine Engine

Richard Helfman, Ed Baur, John Dumer, Tim Hanratty, and Holly Ingham

U.S. Army Research Laboratory
AMSRL-IS-C1

Aberdeen Proving Ground, MD 2 1005

helfman@arl.mil, baur@arl.mil, dumer@arl.mil, hanratty@arl.mil, hollyo@arl.mil

tAbstract

Turbine Engine Diagnostics (TED) is a diagnostic expert system
to aid the Ml Abrams tank mechanic find and fix problems in
the AGT-1500 turbine engine. TED was designed to provide the
apprentice mechanic the’ability to diagnose and repair the
turbine engine like an expert mechanic. The expert system was
designed and built by the U.S. Army Research Laboratory ,I_. \
~HKLJ and the U.S. Army Ordnance Center and Schooi
(OC&S). This paper discusses the relevant background,
development issues, reasoning method, system overview, test
results, return on investment, and fielding history of the project.
Limited fielding began in 1994 to select Army National Guard
units, and complete fielding to all Ml Abrams tank maintenance
units started in 1997 and will finish by the end of 1998. The
Army estimates that TED will save roughly $10 million per year
through improved diagnostic accuracy and reduced waste. The
development and fielding of the TED program represents the
Army’s first successful fielded maintenance system in the area
of AI. There are several reasons associated with the success of
the TED program: an appropriate domain with proper scope, a
close relationship with the expert, extensive user involvement,
plus others that are discussed in this paper.

Problem desari@Bon

The U. S. Army holds title to one of the most envied weapon
systems developed- the Ml Abrams tank. The Gulf War
confirmed that the Abrams tank epitomizes lethality and
survivability on today’s battlefield. Logistically, on the other
hand, the negative corollary is that the Abrams is expensive
to operate, support, and maintain. Central to these costs is
the maintenance for its turbine engine.

Maintenance on the Abrams engine is accomplished at three
levels: organizational, direct support (DS), and depot. Depot
is usually in the United States. Items that cannot be fixed at
one level are sent to the next higher level. See Figure 1.

Figure l:‘Maintenance-Level Military Structure

For thi TED program, Abrams tank maintenance was quickly
identified as the proper domain with special focus on the
engine. Several factors contributed to the selection of tank
maintenance as an appropriate domain for expert system
development. First and foremost, the cost associated with
maintaining the engine of the Abrams tank represented the
largest portion of its operation and support costs. An engine
that cannot be fixed at DS is shipped back to depot for repair
and rebuild. One study determined that in one year, out of
360 turbine engines returned to depot for repair, 40 percent
were reported as “no evidence of failure” (NEOF). This
means 40 percent of the engines returned for repair were
actually in running condition and should not have been
removed from the tank (Textron 1988, 1989). The
unnecessary cost related to NEOF conditions was estimated
at $18 miiiion per year for tihe fleet of M i turbine engines
before TED. One of the main goals of the TED program was
to substantially reduce the $18 million NEOF waste per year
(Johnson 1997)].

1032 Deployed Applications

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The Army had tried for years to reduce the high incidence of
NEOF. By 1991, there had been three failed attempts at
building a diagnostic expert system for the Ml engine.

Application description

System overview

Early into the project, the turbine subject matter experts
(SMEs) and the knowledge engineers at ARL established
several design goals. These goals were based primarily on
the SMEs’ extensive experience as mechanics and instructors
for engine maintenance classes. The SMEs had extensive
experience with soldier mechanics--their likes and their
dislikes. The following lists the main design goals for the
TED software. The software should:

- be accurate,
- be easy to use,
- be flexible,
- be task oriented,
- be able to support multiple levels of expertise.

First, the software should be accurate. It need not be perfect,
but it should be significantly better at diagnosing faults than
the system it is replacing. Otherwise, it will lose soldier
respect and will not be used. Second, it must be easy to use;
otherwise, it will sit on the shelf. Mechanics have favorite
stories of diagnostic equipment that does nothing but occupy
lots of storage space. Third, it must be flexible enough to
support a variety of diagnostic styles. For example, some
mechanics are thorough and methodical, and a structured
step-by-step approach is best for them. A few have a sixth
sense and “know” what is wrong with an engine. They have
only limited need for the information in TED and will only
use it as an occasional reference. Other soldiers have a
mixture of styles. They may know a lot about some parts of
the engine but need guidance in other areas. Fourth, TED
must be task structured in a way that is natural for the soldier.
The current technical manuals (TMs) have a structure that is
difficult to use and to follow. Experts can navigate the TMs,
but others find the structure confusing. Finally, the last goal
recognizes that mechanics come with different skill levels.
Experts need little or no help from TED. Beginners need
extensive step-by-step instructions. A system aimed at just
one level of expertise would bore the expert or baffle the
beginner.

Svstem orPanizatinn .I ------ --b -___ --__--_

TED is organized into five functional areas that represent the
various actions performed by Ml mechanics:

- Diagnostics,
- Repair parts,
- Maintenance,
- Bookkeeping,
- Training.

The software allows multimode access, either menu-driven
or data-driven. The choice is made by the soldier.

Diagnostics. This functional area represents the major share
of the code in TED. It contains 14 modules that find out
what is wrong with the engine. The modules organize DS
diagnostic logic by terms easily recognized by mechanics,
regardless of experience. Troubleshooting areas include: No
Start, Low Power, High Oil Consumption, Engine Smokes,
Metal Contamination, Quick Coast Down, Idle Faults,
Engine Shutdown, Fault Finder, and Protective Modes. Each
of the submodules contains diagnostic logic to first determine
the cause of the faulty symptom and, once the cause has been
detected, to link the appropriate maintenance and repair parts
modules.

Repair Parts. After a fault has been diagnosed, parts often
need to be ordered. The second main module of TED is the
repair parts and special tools list (RSPTL) module. This
module greatly enhances the mechanics ability to interrogate
the parts-ordering information for every aspect of the
Abrams engine and transmission. Provided to the mechanic
is the ability to search for items of interest in a variety of
ways. In addition to being automatically linked from a
diagnostic procedure, the mechanic can peruse the system
from a general table of contents or choose to search on
specific part number, national stock number, or
nomenclature.

Figure 2: Typical Parts Ordering Screen

Innovative Applications 1033

Displayed in Figure 2 is a typical ordering selection form.
For each figure, its associated parts list is displayed on the
right side while its drawing is detailed on the left. Items are
selected from the parts list by buttoning the particular order
box. When necessary, portions of a drawing may be
magnified to highlight areas of interest, Information from the
RPSTL is automatically associated with its corresponding
work order.

Maintenance. Maintenance actions for any component
include adjust, repair, remove, and replace. The procedures
can be invoked in either browse mode or data-driven mode.
When in browse mode, maintenance procedures are manually
selected through menus and submenus. This provides
experienced mechanics the flexibility of viewing only the
procedures that they need, while bypassing familiar or
routine tasks. When in the data- driven mode, TED
automatically establishes the correct links to all pertinent
maintenance procedures and to sections of the repair parts
manual.

Bookkeeping. All work done on an engine must be
documented, and this is done automatically in TED. Found
under the System Administration module are the report
writing and database maintenance functions. In addition to
allowing the mechanic the ability to print the necessary DA
2404 Technical Inspection Form, the system provides
numerous work order and statistical summaries. For the
database maintenance, routines to update and delete
information are also available.

Training. The first of the special applications is the
Diagnostic Intelligent Tutoring System (DITS). DITS is an
embedded tutorial system that covers basic maintenance
procedures, theory of engine operations, and guidance on
such tasks as hooking up the Ground Hop Support Set and
using a multimeter. Using interactive review and
troubleshooting modules, mechanics can hone their skills in
a field environment. DITS, a diagnostic trainer,
complements TED, a diagnostic tool, by providing mechanics
a complete system.

cost, the user’s environment, available software, and
connectivity.

For the TED program, hardware constraints were
predetermined. The delivery platform selected was a 80486
PC which was part of the Army common computer hardware.
The computer has now been upgraded to a Pentium laptop.

Software

In the past, computer systems were typically characterized by
the proprietary coupling of unique software to a specific
hardware platform. Today, contemporary computer systems
are breaking the sole-source syndrome and emphasizing
greater interoperability and portability. Increasing is the
number of systems adopting the “collection of components”
approach; better known as commercial off-the-shelf (COTS).

In general terms, COTS software supports a large
commercial following, is readily available, and easily meets
or extends a system’s capability requirements. Systems
developed using a COTS approach are generally less costly,
quicker to be fielded, and more flexible than products
developed with non-COTS methods. Limiting the COTS
approach is the careful examination that is required to
correctly match system requirements with the COTS model,
the potential for run-time fees, and the need for specialized
wrapper programs that could exist. While the true efficacy of
COTS products is not without bounds, the benefits outweigh
the costs.

For the TED program, the adoption of COTS software was
considered beneficial. Time was judged better spent on
knowledge acquisition and testing than on pure code
development. Chosen as the primary subsystem was the
commercially available procedural-based expert system shell,
Visual Expert, by Softsell. Additional features to the TED
program are provided by the COTS products from Visual
Basic, Access, Toolbook, and HyperWriter. In-house code
was developed with Microsoft C++ and Borland’s Delphi.

AI Technology
Hardware

An invariable factor associated with every software system
developed is its hardware constraints. From the onset,
careful consideration must be given to the delivery platform
(i.e. on what machine or machines will the system reside).
Where possible, the identification should occur immediately.
The earlier a target machine is identified the sooner the
program can capitalize on its strengths and minimize its
weaknesses. For many applications, selection of the delivery
platform is a moot point. Where selection is possible, dialog
with the user is paramount, giving special consideration to

The main diagnostic software in TED is a Windows-based
shell called Visual Expert from SoftSell. Visual Expert is
based on a reasoning paradigm called Procedural
Reasoning System (PRS) (Georgeff and Lansky, 1983,
1986). PRS is a visual method of encoding reasoning
strategies used by expert problem solvers. The knowledge is
represented graphically with semantics suited to the
procedural, goal oriented style of problem solving, and PRS
is best suited for problems that are both procedural and goal-
oriented. A procedural approach uses an ordered step-by-
step prescription to obtain a desired result, possibly including

1034 Deployed Applications

alternate paths in case of failure. Such an approach is also
goal oriented if some steps are goals to be achieved rather
than specific actions to be performed (ADS 1988). Army
TMs closely follow this paradigm. They are often graphical
in nature with decision trees displayed on the page. Some
nodes represent goals to be achieved; others represent
specific tasks to be performed. These tasks can themselves
become goals whose solution is to be given on another page
(or in another manual) (Ingham et al. 1997).

PRS is endowed with the attitudes of belief, desire, and
intention. (See Figure 3). The generalized system is
composed of a system database, a set of procedures or plans,
an interpreter or inference engine, and a process stack. The
database contains the current beliefs of the system. These
beliefs could be static properties of the domain or beliefs
derived by the system itself as it executes its plans. The plans
are descriptions of how to accomplish given goals or to react
to certain situations and are represented by declarative
procedure specifications. The body of these procedures is
represented as a graphical network with sequences of
subgoals to be achieved as well as primitive actions to be
accomplished. The interpreter runs the entire system,
executing active goals and deciding what course of action to
take based on the beliefs the system has at a point in time
@lock et al. 1994).

PRS combines features from several programming
paradigms. Like PROLOG, it has goal-directed inferencing
and depth-first search. Like expert system shells, it provides
a frame system for global objects. Like LISP, it is well suited
for rapid prototyping. SMEs quickly learned how to read
Visual Expert’s visual code, and some began writing their
own code or modifying code written by the knowledge
engineers.

Application use and payoff

Formal testing

During the week of 15 to 21 August 1993, an initial field test
of the TED program was conducted at Fort Stewart, GA.
Participating in the test were 30 soldiers from the Tennessee
Army National Guard. Keeping in mind the target audience
(DS mechanics), the test had two objectives: First, measure
how accurately and quickly mechanics could identify
randomly assigned faults on the engine using TED versus
using TMs; second, decide if the program was soldier-
friendly. For the test, the 30 mechanics were divided into 3
levels of 10 mechanics each based on their enlisted rank: El-
E4, E5, and E6-E7.

Each mechanic inspected two engines, one with TED and one
with the TMs. The engines had a random number of faults

*DstaOutputI--
Figure 3: PRS Architecture

installed from a randomized list of possible faults. There
was a l-hour time limit for each inspection. An observer,
with a score card, was present with each mechanic to log
faults and the times that each fault was located. The
conditions of the test approximated the actual working
environment of the mechanics. There were three types of
data collected during the field test: first, the observer’s score
card (mentioned previously), which served as the basis for
the statistical analysis; second, a questionnaire completed by
each mechanic, which allowed him to express his
impressions of TED; third, each observer recorded personal
comments, which served as an additional source of
information for further revisions.

E5 11% 42%

E6-E7 42% 56%

I Overall I 26% I 52% I

Table 1: Field Test Results

At each level, TED outperformed the current TM procedures
(see Table 1). TED assisted the junior enlisted (El - E4) and
the junior noncommissioned officers (E5) in finding at least
twice as many faults as compared to the TMs. Note that
even though TED is designed for junior mechanics, senior
mechanics (E6 - E7) were able to increase their efficiency by
using TED, Overall, the mechanics demonstrated a 96%
increase in their ability to efficiently diagnose the engine
(Taylor and Monyak 1994).

The ease of use became readily apparent to the observers
during the initial training session. Because many of the
mechanics had never used a computer, the observers
allocated a l-hour training block for each mechanic. In less
than 10 minutes, mechanics who had never used a computer

Innovative Applications 1035

,x,rP .affm.t:.,c.l.r mn..o...ra..:..m +L.,-...A. +L- ^^Ch...-..-
vvb1b s4l~ul”b‘y Illall~“YG~III~ Ull”Utj‘l LUG 3U1lWzllG aiid

hardware. Soldier acceptance was also unanimously
positive. Both computer- and non-computer-l i terate
mechanics readily accepted TED as the preferred tool for
ma intaining the engine (Baur et al. 1996).

Beta testing

Based on the success of the 1993 tests, the National Guard
agreed to become beta testers for TED. In 1994, two states,
Tennessee and Georgia, were given early copies of 2 TED
software modu les for testing. During 1995 and 1996, ARL
delivered TED software and training to a total of 66 National
Guard units in 29 states as follows:

Date:

Jan 1995

Mar 1995

State (# units within state)

T W ’), TN319 MO(l)

ID(41, Q-W), CO(l), OR(l), WA(l)

MS(7), LA(l), KS(l): KY(2)

Totals: 29 states 66 units

In early 1997, TED was sufficiently developed and tested to
be r&a& to units in the a&y -4m.y. Rv th,= pd nf 1 QOQ ‘J L.‘V Y.‘U “I I//“,
there will be a total of 200 copies of TED in use by the
National Guard, the Marines, and the active Army.

Payoff

The goal of the TED program is to save money by reducing
the diagnostic error rate. An 80% error reduction will save
roughly $10 m illion each year by avoiding unneeded repair.
The TED program is on its way to achieving this goal.

_ ̂ ^_ in 1993, the University of Delaware conducted a
formal user test using 30 soldiers from the
Tennessee National Guard. The results showed that
TED cut the error rate by 50% _

In the summer of 1994, units from two different
state National Guards received early versions of the
TED software. Each state had three broken engines
slated for turn-in. Each state had diagnosed the bad
engines before TED arrived. On Saturday, 9 July,
TED was used on the three engines from one state,

and on Sunday, i0 Juiy, on the t’hree engines from
the other state. On all six engines, the pre-TED
diagnosis was wrong, and the TED diagnosis was
right. ‘Thus, in the first two days of fielding, TED
saved the Guard six incorrect engine repairs at
a cost savings of over $50K.

By the summer of 1996, TED diagnostics had error
rates well below 5 % .

Application development and deployment

History

The TED program started in 1991 at the OC&S as an effort
to seek solutions to some of the ma intenance problems the
Army was having with its equipment. ARL joined the
program in the summer of 1991 as knowledge engineers and
technicai advisors, with the OC&S supplying the SMEs to
provide the expert diagnostic knowledge and to guide the
development direction of the system. The OCXS also
supplied engines and soldiers as needed to test the new
software being developed.

The first TED prototype was ready by January 1992. For the
next 18 months, existing modu les were expanded and new
modu les were begun. In March of 1993, the TED program
was nominated and received the American Defense
Preparedness Association’s award for outstandinp histirs ~.. -... - --.----- D --p-I-‘-l
and AI application. By August of the same year, the program
was sufficiently developed to warrant formal field testing.
Preliminary results showed TED improved fault
identification by 96 % over the older manual methods.

In January 1994, Program Manager-Abrams (PM-Abrams),
the primary proponent for the Abrams tank, decided to field
TED to all active DS units with Abrams tanks. In addition,
further production of paper manuals for the AGTl500 engine
was halted. By March of the same year, the National Guard
la.,mn.. nnL.rl 6,. 1. ̂ _.^ Ipcn AT..- I&. I.l..r’---l n ..-.. 2 ~~ a.
UUIGQU (W&C” IV II~VC 10~ IUI ILS ~wwrm uuara uniw as
soon as possible. F ielding to the first two National Guard
units (Georgia and Tennessee) began in July 1994. The
National Guard Bureau continued to incrementally field TED
until 65 units in 29 states with Abrams tanks had the TED
software.

Development guidelines

The TED software engineers quickly established some
important guidelines that remain in effect today.

1036 Deployed Applications

Establish and Maintain Communication. Software
engineers and SMEs do not generally speak the same
language, Software engineers talk of frames and objects. The
SMEs for the TED program are Ml tank mechanics. Ml tank
mechanics talk of inlet guide vane (IGV) angles and of
rotational variable differential transformers (RVDTs). Each
needs to learn some of the other’s language, but the main
effort is on the software engineer to learn the language of the
mechanic.

The best way to learn what the user does is to observe the
user in his environment. The TED team attended and
videotaped classes for Ml mechanics. This produced three
important benefits. First, it quickly immersed the software
engineers into the language of the mechanic. The IGV is
located in front of the engine, and the angle determines how
much air gets through to the turbine blades. Second, it gave
an accurate picture of how a mechanic performs his job and
how software might improve that job. The TED team noticed
during that first session that the original scope of work was
too narrow. There was a whole suite of software that could
help the mechanic better perform his job. Third, it established
a bond between the software engineer and the soldier.
Soldiers could sense that the team was serious and that
soldier’s needs would be given serious attention. They were
thus eager to cooperate.

When the aim is to produce software that not only works as
planned, but also gets used by the mechanic, then user
participation in the development process is critical. The TED
team heard many stories from soldiers about equipment that
never gets used, and about equipment that is difficult to use,
but with a small change would have made the item soldier-
friendly. The TED SMEs were assigned full-time to the
project.

New technology is often met with resistance when it is
thrown at an unaware and/or ill-prepared user. Rarely can a
user, at the start of a project, envision how technology can
improve his job. A system based on initial user expectations
will at best be shallow, and may even be useless. The
software engineer and the SME are each constantly learning
about the other. The software engineer is continually learning
about the needs and duties of the mechanic, and the mechanic
is learning about the potential impact of new software on his
future.

Rapid Prototyping. A prototype is essential for two-way
communication. It allows the user to see and touch what the
software engineer envisions for the user. It gives the user the
earliest opportunity to comment on his system, and it gives
him some clue as to the potential of the project. The user
does not always know what technology is available, and the
hands-on experience of the prototype is often the best way to

educate the user. A prototype serves as a common reference
point. Without a piototy&, not much useful feedback can
occur. It also shows how well the software engineer
understands the user’s needs.

Spiral Model. Boehm’s spiral model (Boehm 1986)
incorporates an incremental development schema. Successive
prototypes are produced that expand upon user requirements.
In addition, the software engineer is able to break down
complex tasks into smaller components. As each component
is developed, it is evaluated against user requirements. The
user requirements are re-evaluated as each successive module
is developed. Consequently, the user is an integral part of the
development team, His input is essential. There are two
reasons behind selecting the spiral method for the TED
program: rapid changes in PC hardware and software and
the need to keep the user in the loop. In 1991, it was obvious
that hardware and software for the PC would continue to
improve and become more affordable. Computer memory
continues to expand and deflate in price. Hard drives
continue to get bigger and cheaper. Screen resolution
expands, and video cards improve. The price of a Pentium
system today rivals the price of a 386 system in 1991,

Software follows the same pattern outlined for hardware.
Every year, software improves, new products are announced,
and existing products offer upgrades at an astounding pace
and price. Goals that were impossible or difficult in the past
may now be relatively easy tasks. The TED team continues
to meet formally once a month to decide on the direction and
scope of the project. Unsatisfied goals are re-evaluated, and
some may be dropped from the list, while new goals may be
added.

Software Maintenance

The incremental design used for TED incorporates software
maintenance into the process. Early software modules have
been in use since 1994, and the last software was delivered
in September 1996. ARL continues to receive bug reports
and wish lists from the field, although these have diminished
significantly. ARL is now training other Army personnel to
take over the maintenance for the TED program.

TED WEB Site

For more information, visit the TED WEB site at
HTI’P://RPSTL.ARL.MIL/TED.HTML

References

Advanced Decision Systems. 1988. Procedural Reasoning
Systems. Working Paper, TR-ADS-0015

Innovative Applications 1037

Baur, Dumer, Hanratty, Helfman, and Ingham. 1996.
Technology and Tank Maintenance. Expert Systems with
Applications, 1 l(2): 99-107, Pergamon Press.

Boehm, B.W.. 1986. A Spiral Model of Software
Development and Enhancement. ACM Software Engineering
Notes.

Georgeff, M.P, and Lansky, A.L. 1983. Procedural Expert
Systems. In Proceedings of the Eighth International Joint
Conference on AI.

Georgeff, M.P, and Lansky, A.L. 1986. A System of
Reasoning in Dynamic Domains: Fault Diagnostics on the
Space Shuttle. Technical Notes # 375, SRI International.

Ingham, Helfman, Hanratty, Dumer, and Baur. 1997. TED -
A Practical Application of a Diagnostic Expert System. In
IEEE Proceedings of the Ninth International Conference on
Tools With Artificial Intelligence pp 438-445, Nov.

Johnson, C.J. 1997. Meet TED, The Army’s Computerized
Tank Mechanic. Program Manager Magazine, May/June: - _- Cover and pp 2-13.

Klock, M.; Rauch, B.; Sperry, S.; and Himes, A. 1994.
Visual Expert Guide. Visual Expert Manual, Version 2.21.

Taylor, M.S., and Monyak, J.T. 1994. Statistical Analysis
of Turbine Engine Diagnostic (TED) Field Test Data. ARL
Technical Report ARL-TR-6 14.

Textron Lycoming. 1988. Internal Memo.

Textron Lycoming. 1989. Internal Memo.

1038 Deployed Applications

