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Abstract

TacAir-Soar is an intelligent, rule-based system
that generates believable \human-like" behavior
for military simulations. The innovation of the
application is primarily a matter of scale and inte-
gration. The system is capable of executing most
of the airborne missions that the United States
military ies in �xed-wing aircraft. It accom-
plishes this by integrating a wide variety of intel-
ligent capabilities, including reasoning about in-
teracting goals, reacting to rapid changes in real
time (or faster), communicating and coordinat-
ing with other agents (including humans), main-
taining situational awareness, and accepting new
orders while in ight. The system is currently
deployed at the Oceana Naval Air Station WIS-
SARD, and its most dramatic use to date was in
the Synthetic Theater Of War 1997, an opera-
tional training exercise consisting of 48 straight
hours and approximately 700 �xed-wing aircraft
ights, all own by instances of the TacAir-Soar
system.

In 1992 we began development of a software system
that emulates the behavior of military personnel per-
forming missions in �xed-wing aircraft (Tambe et al,
1995). The general goal is to generate behavior that
\looks human", when viewed by a training audience
participating in operational military exercises. The re-
sulting rule-based system, called TacAir-Soar, is cur-
rently deployed at the WISSARD training facility in
the Oceana Naval Air Station, which is administered
by BMH Associates, a collection of active and retired
military aviators who also served as our primary sources
of subject-matter expertise. As the system has devel-
oped, it has taken part in a number of tests, technology
demonstrations, and operational training exercises. Its
most dramatic use to date was in the Synthetic The-
ater Of War 1997 (STOW '97)/United Endeavor Ad-
vanced Concept Technology Demonstration, held at the
end of October, 1997. STOW '97 was an operational
training exercise consisting of 48 straight hours and ap-
proximately 700 �xed-wing aircraft ights, all own by
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instances of the TacAir-Soar system.
TacAir-Soar relies on mature intelligent systems tech-

nology, including a rule-based, hierarchical representa-
tion of goals and situation descriptions. The innovation
of the system lies in the large-scale integration of a num-
ber of intelligent capabilities in a complex domain. The
system does not just model a small set of tasks pertinent
to military �xed-wing missions; it generates appropri-
ate behavior for every such mission routinely used by
the the US Navy, Air Force, and Marines; the UK Royal
Air Force; and \opponent forces" in full-scale exercises.
In addition to reasoning about complex sets of goals,
the system co�ordinates and communicates with humans
and other automated entities. The system must gener-
ate its behavior in real time (and sometimes faster).
It must also integrate seamlessly into current military
training exercises, and be able to cover unanticipated
situations, so it does not interrupt the ow of training.
Finally, all of the task requirements are set by existing
military needs, and we were thus not able to tailor or
simplify the domain to suit our purposes.

Simulated Tactical Air Combat

The application domain for TacAir-Soar is military
training simulations. The United States military uses a
wide range of tools to create simulated training environ-
ments. These include networked manned simulators for
various vehicles (such as tanks, �ghters, and bombers);
digitized maps of world-wide terrain; software systems
to simulate the dynamics of vehicles, weapons, and sen-
sors; technology to link real soldiers and vehicles into a
virtual environment; and software systems to simulate
the results of interactions between various participants
(human and automated) in the simulation.
The military uses simulation environments because

they are cheaper, more exible, and safer than live
training maneuvers. Such training is particularly im-
portant in the post-cold war era, with general reduc-
tions in the defense budget. The tradeo� is that the
military wants to \train as they �ght". The concern is
that some aspects of current simulation environments
are not realistic enough to provide e�ective training.
Our task was to improve the behavior of individ-

ual, automated entities participating in simulation ex-
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ercises. Before TacAir-Soar was developed, the state of
the art for entity-level behavior used software systems
called Semi-Automated Forces (SAFORs). SAFORs
consist of high-�delity models of vehicle dynamics (for
example, using di�erential equations to model the con-
trol surfaces of an aircraft) together with relatively sim-
ple automated behaviors for controlling the vehicle, us-
ing �nite-state machines. For example, a SAFOR air-
craft can be told to circle a particular point at a certain
altitude. Similarly, it can be told to shoot its air-to-air
missiles at any airborne target that is detected within
a speci�c \commit" range by its simulated radar. How-
ever, a human controller makes tactical decisions and
uses a graphical tool to give the SAFOR new orders.
The number of SAFORs that a single human can con-
trol depends on the type of platform being simulated,
the expertise of the controller, the desired �delity of the
simulation, and other factors. In any event, a number of
highly trained humans are required to oversee and ad-
just the runtime behavior of such entities. Aside from
the expense of having humans in the loop, realism of
the simulation su�ers when these controllers must de-
vote close attention to more than one entity at a time.
There is a desire to increase the quality and autonomy
of force behavior in order to increase realism and de-
crease the cost of training. To complicate matters fur-
ther, there are additional goals to run as many forces on
a single machine as possible, and to be able to run the
simulation faster than real time for some applications.
In response, DARPA funded a project to create In-

telligent Forces (IFORs), to use intelligent systems
technology to develop autonomous systems that gen-
erate \human-like" behavior. Our group at the Uni-
versity of Michigan (plus researchers at the University
of Southern California Information Sciences Institute,
and Carnegie Mellon University) created a prototype
system to generate behaviors for a small number of air-
to-air missions (Tambe et al., 1995). The initial work
combined the e�orts of two university professors, two
research scientists, and two programmers, with the re-
search scientists working full time on the implemen-
tation of intelligent behaviors, and the programmers
working full time on maintaining the software architec-
ture, infrastructure, and interfaces. Two years into the
project the groups divided, with the ISI group focusing
on behaviors for missions own by rotary-wing aircraft
(Hill et al., 1997). Our group at UM hired an additional
research scientist and programmer, and continued the
work on �xed-wing aircraft with a team of �ve. This
e�ort led to the development and deployment of TacAir-
Soar. The currently deployed version of the system was
completed in October, 1997.

The Simulation Environment
Before describing the details of the system that im-
plements behavior for tactical combat simulations, it
is worth discussing the details of the environment in
which the system operates. We have already presented
a general overview of military simulations. This section

focuses on the details of the simulation structure with
which TacAir-Soar currently interacts.
The core of the simulation environment is a net-

work attached to a number of simulation systems (see
Figure 1). Some systems are manned vehicle simula-
tors (for tanks, aircraft, etc.). Some are real vehicles,
equipped with hardware and software to interface with
the simulation network. Finally, some are workstations
running software to simulate various types of vehicles
and human forces. STOW '97 did not include the par-
ticipation of real vehicles or manned simulators, but
they have been part of other tests and exercises in which
TacAir-Soar was used.
In this simulation environment, each workstation

maintains its own copy of �xed aspects of the environ-
ment (such as a detailed terrain database). Individ-
ual machines simulate the entities and changeable envi-
ronmental features. In addition, each station predicts
position information for other entities, reckoning from
the last known entity state vector. Each workstation
broadcasts new information on the network when it is
simulating an entity that undergoes a change in state
that cannot be predicted by the other machines (like a
change in heading or velocity). Any other station on
the network can use the new information to change its
local knowledge of the entity, and then detect possible
interactions between entities or with environmental fea-
tures. Some of the distributed machines are devoted to
special-purpose needs. For example, ordnance servers
exclusively simulate the dynamics of guided weapons.
Weather servers simulatemeteorological features, some-
times using information from live feeds in the area of
the world in which the simulation takes place.
TacAir-Soar runs within a simulation system called

ModSAF (Calder et al., 1993). The ModSAF program
provides realistic simulation of a large variety of mil-
itary vehicles (including �xed-wing aircraft), weapons
systems, and sensors. The system also provides a graph-
ical interface for creating and controlling SAFORs,
but this portion of ModSAF was not used by TacAir-
Soar. Rather, we used additional code, called the Soar-
ModSAF Interface (SMI; Schwamb, Koss, & Keirsey,
1994), to translate simulated sensor and vehicle infor-
mation into the symbolic representation used by Soar
and to translate Soar's action representation into Mod-
SAF function calls (e.g., to control the vehicle and to
manipulate weapons, sensors, and radios). We designed
the SMI to provide a realistic interface to TacAir-Soar
agents. That is, the SMI only passes to TacAir-Soar in-
formation that a real pilot would normally receive in a
similar situation via cockpit readouts, the radar screen,
visually, etc. Likewise, TacAir-Soar can only send com-
mands to the interface that map onto the types of con-
trols that real pilots have to y the aircraft, employ
weapons, manipulate sensors, and communicate. Each
\instance" of TacAir-Soar controls a single entity.
We maintain a strong distinction between the code

that generates intelligent behavior and the code that
simulates physical systems. This distinction is not al-
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Figure 1: TacAir-Soar's niche in the simulation environment.

ways made in the development of SAFORs, but we
found that it eased development, knowledge acquisition,
and veri�cation. This design will also ease the transi-
tion of TacAir-Soar to other simulation platforms. In
the current deployment, ModSAF performs the simula-
tion of the physical world; TacAir-Soar represents the
mind that senses, reasons, and creates intentions; and
the SMI represents an idealization of the perceptual-
motor processes that allow the mind to interact with
the world. We have also developed additional tools to
translate orders from existing military tools into mis-
sion speci�cations for TacAir-Soar (Coulter & Laird,
1996; Kenny et al., 1998), and for commanders to up-
date an entity's orders dynamically during execution
(Jones, 1998). These tools allow us to present TacAir-
Soar to the training audience as a \seamless" partici-
pant in the overall exercise. Laird et al. (1998) provide
a more thorough discussion of this integration.

The TacAir-Soar System

TacAir-Soar is a rule-based system, built within the
Soar architecture for cognition (Laird, Newell, & Rosen-
bloom, 1991). Soar uses production rules as the basic
unit of long-term knowledge (or the \program"). Soar
also provides architectural support for objects called
\operators" and \goals". Each operator and goal can
be viewed as a grouping of one or more production
rules. TacAir-Soar currently contains approximately
5200 production rules, organized into about 450 oper-
ators and 130 goals. The rules represent the sum total
of the system's knowledge about all of the missions it
can y. Each agent loads all of the rules, but does not
usually use them all over the course of a single mission.
There are signi�cant numbers of general rules that are
used in many di�erent missions, and some rules that
only apply in very speci�c situations.
Operators in Soar generally represent discrete, rela-

tively �ne-grained steps in a chain of reasoning. In the
tactical air domain, some example operators are \De-
termine the identity of a radar blip", \Select a missile
to �re", \Push the �re button", and \Set the aircraft
to y a particular heading". Unlike many other pro-

duction system architectures, Soar requires a uniform
representation for both selecting which operator to ex-
ecute and implementing its functions. All production
systems use the conditions of rules to determine candi-
date operators, but when there are multiple candidates
many architectures use a �xed, implicit algorithm for
selecting between the candidates, and then explicitly
execute a list of operator actions. In contrast, Soar
systems use rules to suggest choices between the can-
didate operators, and then use more rules to execute
the set of actions for each operator. Thus, individual
rules comprise a set of fairly simple conjunctive condi-
tions (that are e�cient to match) plus a set of discrete
actions. However, these rules can �re in parallel and in
sequence in order to implement complex conditional or
iterative actions for each operator.
In our representation, explicit goals are a proper sub-

set of operators. The Soar architecture generates a
new goal structure when an operator takes more than
a small, discrete unit of time (one decision cycle, in
Soar parlance) to execute. The new goal provides a
context for the system to apply more operators. For
example, one of TacAir-Soar's operators is \Intercept
an aircraft". This is not a discrete action that the sys-
tem can \just do", so Soar creates a new goal structure.
In the context of the new goal, the system proposes ad-
ditional operators, such as \Achieve proximity to the
aircraft", \Lock my radar on the aircraft", or \Employ
weapons against the aircraft". The Soar architecture
strongly supports hierarchical reasoning and execution,
which is one of the reasons we used it. This support
turned out to be important for a number of reasons.
Hierarchical reasoning and execution directly address
the requirements of the task.

The Advantages of Execution Hierarchies

One obvious advantage to a hierarchical knowledge rep-
resentation is that the military structures nearly every-
thing it does hierarchically. In particular, command
and control hierarchies delegate di�erent tasks to dif-
ferent levels of forces. Even small groups of 2 or 4
aircraft use a hierarchical command structure. One



of TacAir-Soar's requirements is to interact with other
forces within the command structure, so it is clear that
the system must reason about and with hierarchies for
at least part of its behavior. In the interests of a uni-
form integration, we extended the hierarchy into all of
the reasoning that the system performs. In addition to
interacting with others, this includes breaking personal
goals into further decomposable subgoals and actions.
Additionally, a hierarchical representation enhances the
extendibility and maintainability of the system, by al-
lowing us to compartmentalize knowledge, so it can be
reused across appropriate contexts.
The hierarchical representation is also important to

exibly using default behaviors. When we began the
TacAir-Soar project, our attitude was that we would
not (initially) build a \complete" agent. The entire
domain of tactical air combat is certainly huge, so we
expected to spell out clearly which subset our system
would address, and engineer the knowledge necessary
to support those behaviors. While this initial assump-
tion has held to some extent, it eventually became clear
that we needed much broader coverage of behavior.
The training audience (the military commanders and
soldiers interacting with the simulation) found it un-
acceptable for a simulated entity not to do something
in response to any situation, even if the behavior was
not 100% correct, and even if our subject-matter ex-
perts had decided those situations were not worth our
e�ort. This suggested a need for TacAir-Soar to in-
clude default behaviors, in order to perform reasonably
in those situations for which we had not speci�cally en-
gineered knowledge. The hierarchical representation of
knowledge made it possible to create default actions for
di�erent levels of goals. Thus, rather than having only
one or two brittle default behaviors, the defaults are
sensitive to di�erent types of situations and goals, so
the system will generally do something reasonable.
As an example, when the system is trying to employ

weapons against a target, there are many di�erent tac-
tics and ight patterns to use, based on the current
situation. However, a generally good default action is
to y a collision course to the target, in order to ap-
proach it as rapidly as possible. In contrast, once the
system has maneuvered the target into weapons range,
its next action (a subgoal of employing weapons) is to
�re a missile at the target. Once again, there are cer-
tain good actions to take in order to get o� the best
shot possible. But if something goes wrong, in this case
a good default action is to point straight at the target
(rather than ying a collision course). Thus, the appro-
priate default behaviors are dependent on the current
reasoning context imposed by the knowledge hierarchy.

Opportunistic Operators

At execution time, the goal hierarchy generates top
down. Most of the time every TacAir-Soar agent has
one general active goal, called Execute-Mission. De-
pending on the mission type and the current situa-
tion, the agent will select one of a number of sub-

goals, including Fly-Route, Intercept-Target, or
Follow-Leader. These in turn will have subgoals. De-
pending on the situation, the system creates more spe-
ci�c goals until it reaches a level where it can manip-
ulate the environment directly, such as to issue a com-
mand to y the aircraft to a new heading or altitude.
There are also a number of important actions that do

not �t nicely into a strict goal hierarchy. These include
relatively context-insensitive actions, such as \Deter-
mine threat of unknown contacts", and actions in the
service of sweeping, general goals, such as \Evade a
missile", which serves the general goal of survival. Op-
erators for these actions are not part of the explicit
goal hierarchy. Rather, they are represented as oppor-
tunistic operators, which can be selected independently
of the currently active, explicit goals. This mixture
of goal-driven and opportunistic behaviors is crucial to
capturing the ways in which humans interleave com-
plex sequences of actions in the service of multiple goals
(Jones et al., 1994).

Situation-Representation Hierarchy

These two classes of operators play key roles in gen-
erating the rich variety of behaviors required by the
task. In each case, operators and goals activate at exe-
cution time based on the current situation. This raises
the question of how that situation is represented. Cer-
tainly, one important part of the agent's situation is the
current set of active goals. A great deal of the situation
is also provided by symbols describing the current state
of the external environment, as seen through the vehi-
cle's sensors. This is where a second representational
hierarchy comes into play.
There are usually a number of di�erent ways to de-

scribe an air combat situation, based on the di�erent
types of decisions that need to be made. Consider the
case where an aircraft has a potential target contact on
its radar screen. In some cases, it is important to reason
about the heading or bearing of the contact. In others,
it is important to notice whether the target is ying
to the left or the right (which can be computed from
a combination of the target's heading and the agent's
heading). It is also often important to reason about
the target's position relative to other contacts that may
be ying with the target. In general, it is di�cult to
restrict the agent to reasoning about the primitive at-
tributes that describe the situation. It is preferable to
combine these attributes based on the current context,
in order to make di�erent types of decisions.
Thus, many of TacAir-Soar's rules are not associated

directly with an operator. They are instead part of
a data-driven, situation-interpretation hierarchy, which
generates descriptions of the situation from the bottom
up. The bene�ts of the interaction between the top-
down and bottom-up hierarchies are illustrated by the
example shown in Figures 2 and 3. Assume Figure 2 de-
scribes an agent's current \mental state" at some point
in time. The boxes represent a subset of the agent's
active goals, and the other items are a subset of the
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Figure 2: A sample active goal hierarchy for TacAir-Soar.

current situation description. The generation of these
goals and features is fairly rapid, but it does take some
time. Thus, it is undesirable for the agent routinely
to expend signi�cant e�ort maintaining the hierarchies,
because it may run out of time to react.
However, because of the hierarchical representation,

the system can make incremental adjustments to its
current mental state as the situation warrants. In Fig-
ure 2, the agent has chosen a missile to employ against
a target, and is using the target's position information
to aim the aircraft for the best shot. If the target turns
a small amount, it may not lead to any change in the
active hierarchies at all. Rather, the change in target
heading will cause a rule to �re that computes a new
attack heading, and the agent will adjust the aircraft
heading in response. If the target turns by a larger
amount, the new geometry of the situation may take
the target out of the envelope of the currently selected
missile. This could cause the agent to delete its current
Launch-Missile goal, select a new missile to use, and
then create a new Launch-Missile goal. Finally, if the
target turns by an even larger amount (for example,
to run away), the agent may have to make signi�cant
adjustments, leading to the situation in Figure 3. In
this case, the agent determines that the target may be
running away, so there is no longer a need to shoot
it. Therefore, the agent deactivates the goal to launch
a missile against the target, and instead pursue's the
target, to observe its behavior for some time.
This example illustrates TacAir-Soar's solution to the

combined constraints of generating complex behavior in
an e�cient manner. The system's internal representa-
tion is extremely intricate at any point in time (the
�gures are highly simpli�ed). However, the interaction
of top-down and bottom-up hierarchies, together with
opportunistic operators, allows a smooth and e�cient
implementation of reactive, yet goal-driven, behavior.

The Problem of E�ciency

The representations above provide a framework for cre-
ating complex reactive behavior, but we needed further
work to address the real-time constraints on TacAir-
Soar. The system needs enough time to make appropri-
ate, human-like decisions, even when the environment
is changing quickly. Additionally, simulation must be
as inexpensive as possible, while meeting the training
goals. One way to keeps costs down is to execute as
many automated forces on a single computer as possi-
ble. Thus, there are multiple reasons for TacAir-Soar to
be e�cient. We increased the e�ciency of the system in
a number of ways, which can be categorized as enhanc-
ing the rule-based architecture, moving non-symbolic
computation into the SMI, improving the context sensi-
tivity of processing, and using fast but cheap hardware.

The �rst point to mention is the re��mplementation
of the Soar architecture. In the Summer of 1992, just
prior to the start of this project, Doorenbos (1993) com-
pleted a new version of Soar, which is written in C (pre-
vious versions were in Lisp) and contains a very e�cient
implementation of the RETE rule-matching algorithm
(Forgy, 1982). The new version of Soar was approx-
imately 15-20 times faster than the previous version.
This system provided the required infrastructure for us
to even hope to build systems for intelligent, real-time
control. It also gave us the speed to run our agents
faster than real time in some situations, and to run
multiple agents on a single machine.

As the project progressed, we discovered other archi-
tectural adjustments that address e�ciency. One ad-
justment arose from the fact that TacAir-Soar does not
currently make any use of the Soar architecture's built-
in learning mechanism. This is because the current sys-
tem models expert behavior, not the acquisition of ex-
pert behavior. The learning mechanism has some over-
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Figure 3: TacAir-Soar changes the goal hierarchy in response to changes in the situation-representation hierarchy
(and vice versa).

head associated with it, so we selectively disabled the
support for learning. We should stress that this does
not represent a change in the \Soar uni�ed theory of
cognition" (Newell, 1990), but is a departure based on
the pragmatic goal of increasing e�ciency when learn-
ing is not important. However, it is worth noting that
our experiences with TacAir-Soar have suggested some
potential adjustments to the theory, which are being
explored (Wray, Laird, & Jones, 1996).

Another technique to increase e�ciency was to mi-
grate processing from rule-based behaviors into the
SMI. Initial implementations restricted the agent's sen-
sory input from the SMI to sparse representations. For
example, for an active radar contact, the SMI would
pass only those numbers that are accessible on a real
radar display. To perform intercepts, however, a pi-
lot uses geometric and spatial reasoning, such as to
compute a collision course. Early versions of TacAir-
Soar contained rules to compute such values. The rules
�red for a new computation every time one of the rel-
evant input values changed. Combat aircraft often y
near the speed of sound, and they maneuver against
each other, so these situation-interpretation rules can
�re very often. However, such �xed, goal-independent
processing is much more e�ciently implemented in C
code than in the match-and-�re interpretation cycle
inherent in rules. We recovered signi�cant processing
time by moving such expensive, \non-intelligent" com-
putations into the SMI. The new version of the SMI
passes a contact's geometric information (such as the
collision course) along with the normal numeric infor-
mation. TacAir-Soar uses this information as before,
without the ine�cient computational overhead.

Another rather na��ve (in hindsight) early design de-

cision allowed the system to process more information
than is strictly necessary for decision making. For ex-
ample, early versions of the situation-interpretation hi-
erarchy processed primitive input information from the
SMI into as many di�erent representations as it could.
Also, the SMI would compute many di�erent geometric
quantities for every active radar contact. The motiva-
tion behind this approach was to make the system more
easily extendible. The \right" set of features would be
available any time we added new behaviors, because the
system would represent the situation in so many di�er-
ent ways. As a simple example, based on numeric sen-
sor information for a radar contact, we would compute
whether the contact is to our left or right, in front of
us or in back of us, pointing at us, turning, descending
or climbing, and so on.

This approach did make it easier to expand the ca-
pabilities of the system. However, we soon disovered
that TacAir-Soar was doing so much processing, it was
sometimes running out of time to make appropriate de-
cisions. Thus, we tempered our goals of software ex-
tendibility in the service of a more e�cient knowledge
representation. To this end, we only use situation-
interpretation rules to compute new features if those
features are relevant to the agent's current context.
Similarly, the SMI does not need to compute all the
possible geometric information for most contacts. If
the agent knows that a radar contact on its scope is
friendly, there is no reason to compute relational posi-
tion features, because friendly forces can often be ig-
nored. Similarly, there may be no reason to compute
whether an enemy aircraft is pointing at the agent's
aircraft if the enemy aircraft is known not to carry air-
to-air missiles. In response, we equipped the system



with methods to focus attention and interpret the sit-
uation based on the current context. These changes
were sometimes tedious, but the purely functional con-
cern of e�ciency forced us to create a more plausible
representation of human reasoning.
As a �nal point on e�ciency, we should not ignore

the power of brute-force solutions. Over the �ve years
that TacAir-Soar has been developed, computer system
speeds have continued their familiar dramatic improve-
ments. For STOW '97, we did not try to �nd the fastest
computers available, because low cost was also a goal.
We did try to �nd the best ratio of cycle time to system
cost, and ended up using Intel-based machines running
the Linux operating system. With these machines, and
our attention to e�ciency within TacAir-Soar's design,
we were able to run up to around 6 instances of TacAir-
Soar simultaneously on a single machine, without sig-
ni�cant degradation in the quality of behavior.

Details of Deployment
TacAir-Soar has taken part in a number of tests, tech-
nology demonstrations, and operational exercises (in-
volving real training of military personnel). The sys-
tem is ful�lling its role, providing an important part of
the environment for simulation training. TacAir-Soar's
is primarily used at the WISSARD Laboratory on the
Oceana Naval Air Station, in Virginia Beach. In early
tests, the system participated in simple engagements
(e.g., 1 vs. 1 air-to-air combat), �ghting against hu-
mans who were \ying" various types of ight simu-
lators. This type of test �t into the original role we
had envisioned for TacAir-Soar: providing intelligent
automated opponents to train small groups of combat
pilots in o�ensive and defensive tactics. However, there
are many di�erent potential applications of this tech-
nology, and the particular requirements for this system
changed as the project progressed.
In STOW '97, TacAir-Soar was used for commander

training, where the trainees receive reports from the
battle�eld, and task combat units to perform various
functions. The simulation runs concurrently, leading
to new battle�eld reports and an assessment of the ef-
fectiveness of the orders. Various types of simulators
play out these training scenarios, including entity-level
SAFOR simulations and aggregate-level \war game"
simulations. The military uses TacAir-Soar to increase
the realism of such simulations. In addition to generat-
ing more realistic general behavior, TacAir-Soar com-
municates (in simpli�ed English) and co�ordinates with
humans. Commanders actually observe and interact
with the forces as the simulation plays out, leading to
a much more realistic training scenario. TacAir-Soar is
primarily used for this type of theater-level command-
and-control training. However, there are plans to make
more frequent use of TacAir-Soar to train small groups
of pilots in adversarial and cooperative situations. A
number of active and retired military personnel have
expressed surprise and enthusiasm at the di�erence be-
tween TacAir-Soar's behavior and other simulations.

As might be expected, expanded training require-
ments greatly increased the demands on the project.
The ultimate requirements were for the system to in-
clude appropriate behaviors for every mission that is
performed on a �xed-wing aircraft in the United States
military, as well as to provide behaviors for \oppo-
nent force" (OPFOR) aircraft and aircraft from the
United Kingdom's Royal Air Force. The missions
that TacAir-Soar ies include o�ensive and defensive
counter-air, close-air support, suppression of enemy
air defense (SEAD), strategic attack, escort, recon-
naissance/intelligence, airborne early warning, mid-air
tanking, and forward air control. In addition, the sys-
tem had to be resistant to generating anomalous be-
havior or software failures, so that it would not inter-
rupt the continuity of the training exercise. Finally,
the system had to integrate seamlessly with existing
military structure for exercises. Standard procedure in
the United States military is to generate an Air Task-
ing Order (ATO) every 24 hours. This order speci�es
airborne mission information for the next day, created
and distributed with a database tool. For live exercises,
the ATO is sent to wing commanders, who then cre-
ate speci�c orders for the details of each aircraft ight.
We developed additional tools for scenario management
(Coulter & Laird, 1996; Kenny et al., 1998), in order to
automate this process. These tools translate the ATO
into mission speci�cations for TacAir-Soar, so the in-
teractions between commanders and our system are as
similar as possible to their interactions with real wing
commanders and combatants.
TacAir-Soar's participation in STOW '97 took place

over 48 straight hours. In that time, the system gener-
ated behavior for 722 scheduled ights, including every
type of mission that TacAir-Soar is capable of ying.
There were up to 4000 total entities in the simulation
environment at a time, with TacAir-Soar controlling be-
tween 30 and 100 at a time on 28 di�erent machines.
Missions varied in length from 90 minutes to 8 hours.
After the missions had been entered into the computer,
the behaviors generated by TacAir-Soar were entirely
autonomous. The entities were sometimes re-tasked by
active-duty personnel, but this occurred within accept-
ably realistic interactions, using a speech recognition
system or a graphical tool to send the entities simu-
lated radio messages in semi-natural language. There
were generally one or two people monitoring all of the
entities to keep an eye out for incorrect behavior. Un-
fortunately, we do not have cost-estimate comparisons,
but this is signi�cantly less manpower than is required
to run a similar number of SAFOR aircraft.

Future Plans
STOW '97 was a complete technical success. Based on
this success, the system continues to be used for tech-
nology demonstrations at the Oceana Naval Air Station,
and there are plans to use the system in additional op-
erational training exercises in the coming year. Under
the auspices of a new company, Soar Technology, we



have installed the system at additional military train-
ing sites, and we are continuing its development in a
number of ways. One obvious area of development is
to expand and broaden the general behaviors and mis-
sions that TacAir-Soar performs, to increase its par-
ticipation and realism in theater-level simulations like
STOW '97. To address other types of training, we are
also putting signi�cant e�ort into engineering TacAir-
Soar for speci�c, individual training roles. Some exam-
ple roles are synthetic wingmen to provide partners to
individual lead �ghter pilots, synthetic �ghters to inter-
act closely with human AWACS controllers, and high-
�delity enemy aircraft to train �ghter pilots in air-to-air
engagements. These focused behavior areas require us
to emphasize the development of TacAir-Soar's ability
to communicate using natural language and speech, and
to engineer deeper knowledge of the targeted mission
areas. Additional development involves parameteriz-
ing the behavior model so it more realistically emulates
the di�erences in behavior between di�erent types of
pilots, and pilots in di�erent branches of the military
(each with their own standard operating procedures).
In the academic arena, we are using TacAir-Soar as

the basis for a variety of research projects in intelligent
systems and cognitive science. These projects includes
studies of how intelligent systems can use explanation-
based learning in situated domains (Wray, Laird, &
Jones, 1996), how systems can acquire expert-level com-
bat pilot knowledge through training (van Lent & Laird,
1998), and how we can use TacAir-Soar to make pre-
dictions about the e�ects of fatigue on pilot behavior
(Jones, Neville, & Laird, 1998).
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