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Abstract

We describe an arti�cial intelligence (AI) system
(CTSHIV) that connects the scienti�c AIDS liter-
ature describing speci�c HIV drug resistances di-
rectly to the Customized Treatment Strategy of a
speci�c HIV patient. Rules in the CTSHIV knowl-
edge base encode knowledge about sequence mu-
tations in the HIV genome that have been found
to result in drug resistance in the HIV virus. Rules
are applied to the actual HIV sequences of the
virus strains infecting the speci�c patient under-
going clinical treatment in order to infer current
drug resistance. A search through mutation se-
quence space identi�es nearby drug resistant mu-
tant strains that might arise. The possible drug
treatment regimens currently approved by the US
Food and Drug Administration (FDA) are consid-
ered and ranked by their estimated ability to avoid
identi�ed current and nearby drug resistant mu-
tants. The highest-ranked treatments are recom-
mended to the attending physician. The result is
more precise treatment of individual HIV patients,
and a decreased tendency to select for drug resis-
tant genes in the global HIV gene pool. The appli-
cation is currently in use in human clinical trials
on HIV patients. Initial results from a small clini-
cal trial are encouraging and further clinical trials
are planned. From an AI viewpoint the case study
demonstrates the extensibility of knowledge-based
systems because it illustrates how existing en-
coded knowledge can be used to support new ap-
plications that were unanticipated when the orig-
inal knowledge was encoded.

Problem Description
Human immunode�ciency virus (HIV) causes progres-
sive deterioration of the immune system leading almost
invariably to AIDS and death from opportunistic can-
cers and infections. Currently in the USA it is esti-
mated to infect 3{5 million persons, is the leading cause
of death in adults from age 14 to 35, and is the nation's
leading cause of productive years of life lost aggregated
over all age groups. HIV is estimated to infect 40{50
million persons worldwide (CDC 1997).
The high rate of HIV viral mutation both makes de-

velopment of a vaccine di�cult and results in rapid pos-
itive selection for drug resistant mutant strains. Recent
multi-drug combination therapies are encouraging, but
in most cases ultimately fail due to the development of
drug resistance (O'Brian et al. 1996). A general theory
of HIV drug resistance still is not in hand, but a number
of speci�c sequence mutations in the HIV genome have
been described in the scienti�c literature and associated
with increased resistance to certain drugs.
In this paper we describe an AI system intended to

improve the clinical treatment of individual HIV pa-
tients by identifying drug resistance in advance and
avoiding it in treatment. This is done by �rst identify-
ing drug resistant HIV mutant strains that already exist
in the patient or are likely to be positively selected for
by certain treatments, and then recommending a cus-
tomized treatment designed to avoid selection of such
mutants. The result is more precise treatment of indi-
vidual HIV patients, and a decreased tendency to select
for drug resistant genes in the global HIV gene pool.
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Project Goals

The project goals are:

1. Connect knowledge contained in the scienti�c litera-
ture about HIV drug resistance directly to the treat-
ment of individual HIV patients;

2. Enable customized treatment strategies to be based
on the HIV genotype that currently infects an indi-
vidual HIV patient;

3. Identify the nature and extent of drug resistance cur-
rently present in an individual HIV patient;

4. Identify nearby drug resistant mutant strains that
could be positively selected for by some treatments;

5. Rank the possible FDA-approved treatments by an
estimate of their ability to avoid both current and
nearby drug resistant mutants;

6. Estimate the costs of the higest-ranked treatments;

7. Recommend treatments that are estimated to be
most likely to avoid known HIV drug resistance.

Related Work

An expert system based on experimental data from
HIV patients (immunologic markers) has been used
to diagnose the opportunistic non-Hodgkin's lym-
phomas which often develop (Diamond et al. 1994).
Knowledge-based systems have been applied to HIV
patient medical record systems (Musen et al. 1995;
Safran et al. 1996), monitoring ongoing HIV pa-
tient protocols (Musen et al. 1996; Tu et al. 1995;
Sonnenberg, Hagerty, & Kulikowski 1994; Sobesky et
al. 1994), and HIV patient assessment (Xu 1996;
Ohno-Machado et al. 1993). Less closely related are
knowledge-based systems that apply qualitative mod-
eling and process simulation to HIV laboratory sys-
tems (Sieburg 1994; Ruggiero et al. 1994). To our
knowledge CTSHIV is the �rst system to use HIV se-
quence data from HIV patients to estimate current and
nearby drug resistant mutants and recommend treat-
ment combinations to avoid both.

Domain Background

The information content of an HIV virus is contained
in a set of genes encoded in its genome. Each gene
is a sequence of bases or nucleotides of four varieties.
A gene can be represented as a string over an alpha-
bet of four characters, one character representing each
nucleotide. The HIV genome ultimately causes the pro-
duction of gene products, often proteins, important in
the virus life cycle. A protein is a sequence of amino
acids of twenty varieties, and can be represented as
a string over an alphabet of twenty characters. Each
amino acid in the protein is encoded by a block of three
adjacent nucleotides in the genome, called a codon. The
two proteins targeted by current FDA-approved drugs
are called \reverse transcriptase" (RT) and \protease"
(PRO). An example RT protein structure (Hsiou et al.
to be published) is shown in Figure 1.

Figure 1: The 3D structure of the HIV reverse tran-
scriptase protein (PDB code 1DLO). Each sphere rep-
resents an atom. The structure is encoded in the HIV
reverse transcriptase sequence (see Figure 3). Muta-
tions in the sequence cause changes in the number, type,
or spatial arrangement of atoms in the structure.

The genome string must be copied from one gener-
ation to the next during the virus life cycle. Copying
errors occur frequently, and are called mutations. Mu-
tations can change the structure or function of the virus,
and thus alter how it interacts with its environment.
Mutant strains with genome sequences very similar to
the patient's current strain (close in Hamming or edit
distance) appear spontaneously and continuously. In a
full-blown case of AIDS, it is estimated that every sin-
gle point mutation appears every day, every coordinated
pair of point mutations appears once or more during the
course of the infection, and even coordinated triples of
point mutations may appear (Condra et al. 1995).
A drug typically works by blocking a key part of the

virus life cycle. A drug resistant mutation occurs when
a copying error in the viral genome so alters the virus
that it can perform the targeted step of its life cycle
even in the presence of the drug. In the continued pres-
ence of the drug the mutant strain may out-compete
the dominant strain, and thereby may itself become the
dominant stain in the patient. This is often called se-
lective drug resistance, because the resistant mutant is
selected for by the drug's presence. If unrecognized, the
current treatment may lose its e�ect and the patient's
condition may deteriorate. The resulting strain is more
challenging to treat because the treatment options have
been reduced. If the drug treatment is changed in re-
sponse, the potential for a new drug resistant mutation
to develop is present. The use of an increasing variety
of drugs has led to virus strains increasingly resistant to
multiple drugs simultaneously. Sadly, increasing preva-
lence of drug resistant strains in the HIV global gene
pool means that new patients may be infected by mu-



tant strains that already have accrued resistance from
previous hosts (Gu et al. 1994). Consequently it is im-
portant to avoid selecting for drug resistant mutants.
Combination treatments involving multiple drugs are

one approach to avoiding drug resistance (Lange 1995).
If the virus mutates to resist one drug but still is inhib-
ited by another, it may be suppressed or unviable. In
this case the mutation may not be positively selected
for. Combinationsmay contain up to four simultaneous
drugs, but usually do not exceed three due to the po-
tential for intolerable side-e�ects and toxicity. Severe
side-e�ects often induce a patient to stop one or more
drugs without knowledge of their physician, called non-
adherence (formerly non-compliance). Non-adherence
negates combination therapy and increases the likeli-
hood of selecting for drug resistant mutants.
Combinations containing at least one protease in-

hibitor are referred to as Highly Active Anti-Retroviral
Therapy (HAART). HAART typically results in a dra-
matic drop in viral load within two weeks, often sus-
tained for long periods of time. Enthusiasm for the
potential of HAART to eradicate HIV has been tem-
pered by the inevitable failure of these regimens due
to the eventual development of drug resistance (Car-
penter et al. 1996). The virus appears to remain in a
proviral state in resting memory T-cells, where it is in-
accessible to antiretroviral drugs (Wong et al. 1997;
Finzi et al. 1997). Mutations still can occur un-
der HAART, though the mutation rate is greatly de-
creased (Jacobsen et al. 1996).
There are important limitations of the approach be-

low. Sequence-based rules capture only part of the do-
main knowledge about drug resistance, albeit a clini-
cally useful part. Drug resistance may arise for other
domain-speci�c reasons that cannot be represented eas-
ily as rules. Current sequencing techniques may provide
only partial or no information about minority strains.
The rule set is only as complete as current scienti�c
knowledge allows. Currently it may be possible to infer
when resistance is likely to occur, based on genome se-
quences actually seen in the patient that correspond to
resistance-conferring mutations described in the scien-
ti�c literature. However, it is impossible to guarantee
the non-existence of an unsuspected resistant mutant.
Nonetheless, knowledge of current or nearby mutants

putatively resistant to one or more drugs is valuable to a
physician treating an HIV patient. In conjunction with
HAART, such knowledge may help select a combination
of drugs less likely to be resisted. Currently there are 11
drugs approved by the FDA for HIV, plus one available
for compassionate use. These 12 result in 407 di�erent
combination treatments of four or fewer drugs, as some
drugs should not be used together. A physician may
�nd it tedious to scan many sequences, be unfamiliar
with the latest HIV drug resistant mutations reported,
or have di�culty ranking the hundreds of treatment
choices for each patient. CTSHIV mediates between the
scienti�c literature and the patient's current infection
to help a physician avoid HIV drug resistance.

Application Description
The application (1) accepts as input experimentally de-
termined HIV sequences extracted from the patient;
(2) extracts the relevant codons and constructs vir-
tual genomes; (3) estimates current resistance by apply-
ing knowledge base rules; (4) searches nearby mutation
sequence space to identify nearby putatively resistant
mutants; (5) ranks the possible FDA-approved treat-
ment regimens according to their ability to avoid selec-
tive drug resistance; and (6) recommends the highest-
ranked treatment regimens to the attending physician.
See the application overview owchart in Figure 2.

Patient's Experimental Data

The reverse transcriptase and protease portions of the
POL gene are ampli�ed from each patient. Clones are
produced, plasmid DNA is extracted, and the sequence
is determined using a commercially available ABI se-
quencer. The reverse transcriptase sequence contains
1,299 letters (433 codons) and the protease sequence
contains 297 letters (99 codons). Figure 3 shows an
example HIV sequence from an HIV patient.
The sequences are pre-aligned to a standard refer-

ence HIV sequence (HXB2) using standard sequence
alignment algorithms. Deviations from the reference
sequence correspond to mutations in the virus infect-
ing the patient. Typically �ve reverse transcriptase se-
quences and �ve protease sequences, a total of 7,980
letters of HIV genomic information, are the input ex-
perimental data on the patient's current infection.

Extract Features, Objects

Processing in this step is routine. The features ex-
tracted are exactly those codons in positions referred
to by the antecedent of some rule. Other positions are
not yet associated with known drug resistance. Cur-
rently 55 rules mention 31 di�erent codon positions, 20
in RT and 11 in PRO. HIV sequences are replaced by
abstract objects consisting of only those codon posi-
tions. All possible virtual genomes are formed consis-
tent with the experimental sequences.

Identify Current Resistance

Current drug resistance is identi�ed by applying the 55
rules in the knowledge base to the HIV sequences from
the patient. The rules represent knowledge about HIV
drug resistance as a set of if-then rules of the form:

IF h antecedent i THEN h consequent i [weight].

For example, one such rule in CTSHIV is:

IF Methionine is encoded by RT codon 151,
THEN do not use AZT, ddI, d4T, or ddC.
[weight= 1:0]
(Iversen et al. 1996)

The weight associated with a rule is not a con�dence
as in many expert systems. Rather, it reects the es-
timated level of resistance to a particular drug, and is
part of the consequent. Weights range from 0.1 (low)
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Figure 2: Application overview owchart.

to 1.0 (high) based upon expert advice and the level of
resistance reported in the literature.
To estimate current resistance, rule weight is multi-

plied by the fraction of viral sequences that trigger the
rule, and combined additively. As a summary metric
we use

CurrWt(D) =
X

r2Rules(D)

X
s2S

Apply(r; s)=jSj

where D is a set of drugs comprising a combination
therapy, Rules(D) are the rules that confer resistance to
a drug inD, S is the set of the HIV sequences extracted
from the patient, and Apply(r; s) yields the rule weight
of r if r �res on s and 0 if not. CurrWt is comparable
only between combinations with the same number of
drugs because any superset of a drug combination has
equal or greater current weight.
Under this model, the total current level of resistance

to a multi-drug combination is the sum of the current
resistances to each drug. The e�ect of this is to iden-
tify drug combinations that have little or no current
resistance and therefore attack the virus strongly.

Predict Nearby Resistant Mutants

Nearby resistant mutants are predicted by a backward-
chaining search through mutation sequence space, be-
ginning with the patient's current HIV sequences. At
each step, a sequence that does not �re a rule is used

to generate several new sequences that do. The new se-
quences are identical except that codon positions men-
tioned by the rule are modi�ed so that the rule does �re.
They represent mutants that are close in Hamming dis-
tance but resist the drugs mentioned by the rule. Con-
ceptually, every virtual mutant within a pre-determined
Hamming distance cut-o� is examined. Currently all
mutants up to and including Hamming distance three
are considered. Branch-and-bound techniques speed
the search by pruning unnecessary examinations. Cur-
rently CTSHIV runs in about a minute per patient,
which is acceptable for now.
To predict nearby mutants, rule weights are combined

by taking the maximum across all mutants of the min-
imum across all drugs in the combination. As a sum-
mary metric we use

m dist(D)

= minfhj9x 2M (S; h); 8d 2 D;

0 <
X

r2Rules(d)

Apply(r; x)g

m wt(D)

= max
x2M(S;m dist(D))

min
d2D

X
r2Rules(d)

Apply(r; x)

MutScore(D)

= maxf0; hmax �m dist(D) +m wt(D)g

where hmax bounds the maximum Hamming distance



CCC/ATT/AGC/CCT/ATT/GAG/ACT/GTA/CCA/GTA/AAA/TTA/AAG/CCA/GGA/ATG/GAT/GGC/CCA/AAA/GTT/AAA/CAA/TGG/CCA/TTG/

ACA/GAA/GAA/AAA/ATA/AAA/GCA/TTA/GTA/GAA/ATT/TGT/ACA/GAG/ATG/GAA/AAG/GAA/GGG/*AA/ATT/TCA/AAA/ATT/GGG/CCT/

GAA/AAT/CCA/TAC/AAT/ACT/CCA/GTA/TTT/GCC/ATA/AAG/AAA/AAA/GAC/AGT/ACT/AAA/TGG/AGA/AAA/TTA/GTA/GAT/TTC/AGA/

GAA/CTT/AAT/AAG/AGA/ACT/CAA/GAC/TTC/TGG/GAA/GTT/CAA/TTA/GGA/ATA/CCA/CAT/CCC/GCA/GGG/TAA/AAA/AAG/AAA/AAA/

TCA/GTA/ACA/GTA/CTG/GAT/GTG/GGT/GAT/GCA/TAT/TTT/TCA/GTT/CCC/TTA/GAT/GAA/GAC/TTC/AGG/AAG/TAT/ACT/GCA/TTT/

ACC/ATA/CCT/AGT/ATA/AAC/AAT/GAG/ACA/CCA/GGG/ATT/AGA/TAT/CAG/TAC/AAT/GTG/CTT/CCA/CAG/GGA/TGG/AAA/GGA/TCA/

CCA/GCA/ATA/TTC/CAA/AGT/AGC/ATG/ACA/AAA/ATC/TTA/GAG/CCT/TTT/AGA/AAA/CAA/AAT/CCA/GAC/ATA/GTT/ATC/TAT/CAA/

TAC/ATG/GAT/GAT/TTG/TAT/GTA/GGA/TCT/GAC/TTA/GAA/ATA/GGG/GAG/CAT/AGA/ACA/AAA/ATA/GAG/GAG/CTG/AGA/CAA/CAT/

CTG/TTG/AGG/TGG/GGA/CTT/ACC/ACA/CCA/GAC/AAA/AAA/CAT/CAG/AAA/GAA/CCT/CCA/TTC/CTT/TGG/ATG/GGT/TAT/GAA/CTC/

CAT/CCT/GAT/AAA/TGG/ACA/GTA/CAG/CCT/ATA/GTG/CTG/CCA/GAA/AAA/GAC/AGC/TGG/ACT/GTC/AAT/GAC/ATA/CAG/AAG/TTA/

GTG/GGG/AAA/TTG/AAT/TGG/GCA/AGT/CAG/ATT/TAC/CCA/GGG/ATT/AAA/GTA/AGG/CAA/TTA/TGT/AAA/CTC/CTT/AGA/GGA/ACC/

AAA/GCA/CTA/ACA/GAA/GTA/ATA/CCA/CTA/ACA/GAA/GAA/GCA/GAG/CTA/GAA/CTG/GCA/GAA/AAC/AGA/GAG/ATT/CTA/TAA/GAA/

CAA/GTA/CAT/GGA/GTG/TAT/TAT/GAC/CCA/TCA/AAA/GAC/TTA/ATA/GCA/GAA/ATA/CAG/AAG/CAG/GGG/CAA/GGC/CAA/TGG/ACA/

TAT/CAA/ATT/TAT/CAA/GAG/CCA/TTT/AAA/AAT/CTG/AAA/ACA/GGA/AAA/TAT/GCA/AGA/ATG/AGG/GGT/GCC/CAC/ACT/AAT/GAT/

GTA/AAA/CAA/ATA/ACA/GAG/GCA/GTG/CAA/AAA/ATA/ACC/ACA/GAA/AGC/ATA/GTA/ATA/TGG/TGA/AAG/ACT/CCT/AAA/TTT/AAA/

CTG/CCC/ATA/CAA/AAG/GAA/ACA/TGG/GAA/ACA/TGG/TGG/ACA/GAG/TAT/TGG/CAA/GCC/ACC/TGG/ATT/CCT/GAG/TGG/GAG/TTT/

GTT/AAT/ACC/CCT/CCC/ATA/GTG/AAA/TTA/TGG/TAC/CAG/TTA/GAG/AAA/GAA/CCC

Figure 3: The genomic sequence of HIV reverse transcriptase extracted from HIV patient \AA." Each letter (A, C,
G, T) represents a nucleotide; * represents any nucleotide. Each group of three letters represents a codon, set apart
by slashes. This sequence encodes a 3D protein structure similar to that shown in Figure 1, but di�ering from it to
some extent as speci�ed by mutations in the sequence.

considered and M (S; h) is the set of mutants of S at
Hammingdistance h. m dist(D) is the minimumHam-
ming distance at which a mutant occurs that resists
every drug in D, and m wt(D) is the rule weight of
the least resisted drug in D by the most resistant such
mutant. MutScore is comparable between drug combi-
nations with di�erent numbers of drugs. MutScore(D)
is zero if no mutant within Hamming distance hmax of
S resists every drug in D. Otherwise, its integer part is
hmax minus the Hamming distance to such a mutant,
and its fractional part is the maximum minimum rule
weight of such mutants.
Under this model, a mutant resists a drug combina-

tion only as strongly as it resists the least-resisted drug
in the combination, and a drug combination suppresses
a virus population only as strongly as it suppresses the
most-resistant member of the population. The e�ect of
this is to identify nearby mutants that resist every drug
in a combination, and drug combinations such that no
nearby mutant resists every drug.

Rank Alternatives

CTSHIV ranks alternative drug combinations using the
current resistance weight (CurrWt) and the nearby mu-
tant resistances (MutScore). The best ranked com-
binations of 1, 2, 3, and 4 drugs are generated in-
dependently. This is done by sorting the combi-
nations by any monotonic function of CurrWt and
MutScore. Currently we use Euclidean distance,q
CurrWt2(D) +MutScore2(D), to rank drug combi-

nation D. Values near or at zero indicate little or no
resistance, and increasing positive values indicate in-
creasing resistance. The best ranked combinations rep-
resent a satis�cing compromise along both metrics si-
multaneously.

Suggest Clinical Treatment Protocols

The �nal result of application processing is to recom-
mend the �ve highest-ranked combinations of 1, 2, 3,
and 4 drugs. The next highest-ranked RT-only combi-
nation is shown for comparison. Figure 4 shows 3-drug
combinations recommended for an HIV patient. Fig-
ure 5 shows an example nearby resistant mutant.
It is hoped that the CTSHIV output will increase

patient adherence, by clearly showing the deleterious
e�ects of failing to take all medication. Figure 6 shows
the projected consequences of non-adherence to the
highest-ranked 3-drug combination of Figure 4.

Uses of AI Technology

The key enabling AI technology is knowledge represen-
tation of the relevant scienti�c literature about HIV
drug resistance as a set of sequence pattern rules on
the HIV genome. Rule-based expert systems declara-
tively represent knowledge of a specialized problem and
facts about a speci�c case, and from these draw infer-
ences about the case. Here, the rules encode informa-
tion on drug resistant mutations of HIV, the facts are
the sequences of HIV genome obtained from a speci�c
individual, and the inference to be drawn is a set of
drug combinations to be recommended for the patient.
Rule forward chaining from the patient's current HIV

sequences yields currently resistant HIV mutants. Rule
backward chaining through sequence space yields the
nearby putatively resistant mutants. Together, they
allow CTSHIV to avoid both sets of mutants.
The intelligent agent paradigmproved useful as an or-

ganizing principle. Except for the lowest level (domain-
speci�c), Figure 2 could represent any intelligent agent
connecting perception to action. Also, AI heuristic
search methods are used to search sequence space.



These protocols with 3 drugs are recommended: CurrWt MutScor 0 Mut 1 Mut 2 Mut 3 Mut
A5 SAQUINAVIR NELFINAVIR D4T: 0.06 0.1 0.0 0.0 0.0 0.1
B3 SAQUINAVIR DELAVIRDINE D4T: 0.00 0.2 0.0 0.0 0.0 0.2
C3 SAQUINAVIR NEVIRAPINE D4T: 0.00 0.4 0.0 0.0 0.0 0.4
D4 SAQUINAVIR DELAVIRDINE AZT: 0.00 0.6 0.0 0.0 0.0 0.6
E4 SAQUINAVIR NEVIRAPINE AZT: 0.00 0.6 0.0 0.0 0.0 0.6
RF3 DELAVIRDINE DDI AZT: 0.08 1.2 0.0 0.0 0.2 0.9

Figure 4: Example 3-drug output from HIV patient \AA," showing a favorable resistance pro�le. For the highest-
ranked treatment, current resistance (CurrWt) and nearby mutation score (MutScor) are small, and only a weakly-
resistant mutant appears even out to Hamming distance three (3 Mut). The letters A{F identify treatments. Treat-
ment F is the best RT-only treatment (indicated by the pre�xed letter R). Digits after the letters indicate cost codes
(0 = $0 to $200, . . . , 3 = $600 to $800, 4 = $800 to $1000, 5 = $1000 to $1200, . . . , per month estimated average
wholesale cost).

CurrWt MutScor 0 Mut 1 Mut 2 Mut 3 Mut
A5 D4T NELFINAVIR SAQUINAVIR: 0.06 0.1 0.0 0.0 0.0 0.1

Current: (NELFINAVIR) RT 151:CAG->ATG by R11 (D4T) PRO 90:TTG->ATG by R28 (SAQUINAVIR)

Figure 5: Example output for HIV patient \AA" showing one example of the closest mutants inferred to most resist
every drug in the top-ranked 3 drug combination of Figure 4. Three letters must change simutaneously. Currently
Nel�navir is resisted; changing two letters at RT 151 resists D4T and changing one at PRO 90 resists Saquinavir.

CurrWt MutScor 0 Mut 1 Mut 2 Mut 3 Mut
A5 SAQUINAVIR NELFINAVIR D4T: 0.06 0.1 0.0 0.0 0.0 0.1

If stop NELFINAVIR: 0.6 0.0 0.0 0.0 0.6
If stop SAQUINAVIR: 1.1 0.0 0.0 0.1 1.0
If stop D4T: 2.1 0.0 0.1 0.6 1.1

Figure 6: Example output for HIV patient \AA" showing the projected result from stopping any single drug in
the top-ranked 3 drug combination of Figure 4 (Saquinavir, Nel�navir, D4T). Mutants are closer or worse or both.
Stopping Nel�navir is bad, stopping Saquinavir is worse, and stopping D4T is worst of all.

Application Use and Payo�

The �rst HIV patient data was run through the CTS-
HIV system in June, 1996. In February, 1997, the appli-
cation began its �rst round of human clinical trials on
15 HIV patients at the University of California, Irvine,
and at the Center for Special Immunology as a satel-
lite site. Informed consent was obtained using a form
approved by the UC Irvine Institutional Review Board.
All patients had detectable viral load at baseline (mean
log10 load of 4:67 � 2:16), weakened immune system
(CD4 counts < 500 cells/mm3), and failure of at least
one previous antiviral treatment regimen.
While these trials are still ongoing, initial results are

encouraging (See et al. 1998). At three months, 10 of
15 patients who had failed at least one prior treatment
regimen had an undetectable viral load (67% success).
This compares to about 20% in everyday practice in
the same patient population. Currently, at the midway
point of the study, 12 of 15 patients have undetectable
viral loads at six or nine months (80% success). The
other three subjects all have at least a 2-log reduction
in viral load compared to baseline. Note that in usual
clinical trials, the percentage of viral-load undetectable

patients diminishes over time. We expect and are seeing
improvement over time based upon CTSHIV suggested
treatment regimens. Further detailed results will be
presented in the domain literature.

Currently a total of 58 HIV patients have been run
through the CTSHIV system. A new round of phase II
clinical trials of CTSHIV involving 30 HIV patients who
previously failed multiple antiretroviral regimens has
been initiated at the University of California, Irvine,
and Stanford University, Santa Clara campus. The
control group will use plasma HIV RNA and CD4 cell
counts as in conventional therapy, while the test group
will be identical but also provide CTSHIV recommen-
dations to the primary care physician. Collaborations
with several other groups involved in the treatment
of HIV patients have begun and are expanding. An
A�ymetrix gene chip machine has been purchased and
sequencing throughput will increase dramatically when
it comes online. Because of the early encouraging re-
sults of the clinical trials, wide-spread recognition of the
drug resistance problem, and the high rate of HIV in-
fection in the general population, we expect use of the
application to increase sharply in the near future.



Application Development, Deployment

Three domain experts (Darryl See, Douglas Richman,
Edison Schroeder) began extracting rules from the sci-
enti�c literature in September, 1995. The �rst rule set
was completed in May, 1996.
The �rst rule-based system prototype was developed

to identify current resistance already present in the pa-
tient's HIV infection (Pazzani et al. 1997b). It was
coded in FOCL-1-2-3 (Pazzani & Kibler 1992), a LISP
based expert shell. It was begun in March, 1996, and
completed in June, 1996. It was re-coded in JAVA be-
tween April and June of 1997 (Pazzani et al. 1997a).
The ability to use the rules to search mutation se-

quence space for nearby drug resistant mutants was
unanticipated when the original knowledge was encoded
and the �rst prototype developed, and so demonstrates
the robustness and extensibility of knowledge-based
systems. A LISP based mutation space search engine
was begun in November, 1996, and completed in May,
1997. The two subsystems were integrated and re-coded
in LISP between October and December, 1997.
The application is deployed primarilyby the email ex-

change of input clinical data and output recommended
treatments. We have developed an automatic email
server, as well as a WWW-based graphical interface to
the email server. The server extracts patient data from
the body of an email message, automatically enqueues
the application to process it, and emails the results back
to the sender.
Deployment has been smooth largely because the ap-

plication end-users so far have been enthusiastic domain
experts who are currently treating HIV patients. For
cases where a treatment regimen has failed due to the
development of drug resistance, the application enables
them to base their next choice of treatment regimen
on scienti�c principles and experimental data. This re-
places the blind intuition and guess-work that formerly
guided treatment switches after treatment failure. They
are glad to see their patients improve, anxious to see the
application succeed, and tolerant of the few glitches.

Maintenance

It is doubtful that the knowledge base will be complete
until HIV is eradicated. Maintenance of CTSHIV is
equivalent to adding new rules from the scienti�c AIDS
literature. The rules are revised by three domain ex-
perts every three months by extracting new rules that
have appeared in the literature in the interim. Rele-
vant articles are retrieved by keyword-based literature
search, old rules revised as needed, and new rules com-
posed manually.
In the future we anticipate that the challenge of ex-

tending the knowledge base will provide fruitful oppor-
tunities for intelligent applications. An intelligent in-
formation retrieval system could monitor the literature,
retrieve papers that mention HIV drug resistant muta-
tions, extract candidate rules, and automatically en-
queue review by domain experts. Other AI approaches

could suggest when to test a patient strain for possible
resistance to a speci�c drug. Predicting when a pu-
tative mutant is unviable, and coping with resistance
that occurs outside the rule set, are further challenges
for intelligent systems. Machine learning and data min-
ing techniques could learn new rules, infer trends and
recognize regularities in resistance patterns.

Summary
We have described an AI application (CTSHIV) that
connects the scienti�c literature describing speci�c HIV
drug resistances directly to the HIV virus strain infect-
ing a speci�c HIV patient. The application identi�es
current and nearby drug resistant mutant strains, ranks
the current FDA-approved treatment regimens accord-
ing to their estimated ability to avoid the resistant mu-
tants, and recommends a Customized Treatment Strat-
egy for the individual patient involved. Thus the signif-
icance of the application is (1) a method for addressing
HIV drug resistance in the clinic, especially treatment
switches after treatment failure, based on scienti�c prin-
ciples and experimental data, (2) a decreased tendency
to select for drug resistance in the global HIV gene pool,
and (3) a possible model for the use of knowledge-based
systems in other drug resistant viruses.
This paper also illustrated the robustness and ex-

tensibility of knowledge-based systems. It showed
how knowledge originally encoded to perform one
knowledge-based task easily may be re-directed to per-
form another, even one not anticipated when the orig-
inal knowledge was encoded. This result supports
knowledge-base e�orts to encode knowledge in soci-
etally important areas.
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