
ANSWER: Network Monitoring Using Object-Oriented Rules

Gary M. WeisstF Johannes P. Ros and Anoop Singhal

AT&T Labs
480 Red Hill Road

Middletown, NJ 07748
(gmweiss, hros, anoopsinghal} @att.com

Abstract
This paper describes ANSWER, the expert system
responsible for monitoring AT&T’s 4ESS switches. These
switches are extremely important, since they handle virtually
all of AT&T’s long distance traffic. ANSWER is
implemented in R++, a rule-based extension to the C++
object-oriented programming language, and is innovative
because it employs both rule-based and object-oriented
programming paradigms. The use of object technology in
ANSWER has provided a principled way of modeling the
4ESS and of reasoning about failures withm the 4ESS. This
has resulted in an expert system that is more clearly
organized, easily understood and maintainable than its
predecessor, which was implemented using the rule-based
paradigm alone. ANSWER has been deployed for more
than c, . ,PQ~ anrl honrllnc 011 l,ifi nf ATsQ,T’c LFCI’? E&t,-hoc Lllcul ” ywll CII‘U IIcuA”l~O cl,‘ I-r” “1 -1-I 0 TU”” C1”.ICIB.“Y
and processes over 100,000 4ESS alarms per week.

Introduction
Network reliability is of critical concern to AT&T, since its
reputation for network reliability has taken many years to
establish and is one of its most valuable resources.
Nonetheless, in today’s fiercely competitive environment,
high levels of reliability must be achieved in a cost-
effective manner. This paper will focus on the problem of
off;,Gnntl.r mnnitnvinm the 1 An AECP rwitrhc.r in the AT&T VlllUlVllLlJ ‘A~“x,Lr”~l,‘g CLIV 17” 7-v” 0 VW lLIllV.7 ‘aa Cl&Y 1 . A a A

network, which collectively handle virtually all of AT&T’s
long distance traffic.

Problem Description
Upon detecting a problem or experiencing an anomalous
event, a 4ESS switch will generate an alarm and send it to
one of AT&T’s two technical control centers for further
processing. At these sites, an expert human “analyst”
examines the alarm, possibly runs diagnostics on the switch
and then determines if human intervention is required. If
. ..A..._.... AT-.. :- ..--..:--2 *I__ inrervenrlon is reyuireu, tnt: analjisi Crea23s a %XtiGle
ticket” and electronically dispatches it to a technician at the
site housing the switch. This maintenance process requires
the analysts at the technical control centers to monitor over

TAlso Rutgers University
Copyright 0 1998, American Association for Artificial Intelhgence

(www.aaai.org). All rights reserved

100,000 alarms per week. Many of these alarms indicate a
transient problem-a problem that requires further
monitoring but does not require immediate human
intervention. Thus, a maintenance process <hat requires
each alarm to be handled by an analyst will be extremely
time-consuming, costly and wasteful. Nonetheless, for
many years the maintenance process operated in such a
manner.

The problem is to provide a monitoring system that
partially assumes the role of the analyst, so that only those
problems that require further analysis are brought to the
analysts’ attention. Such a system will reduce staffing
costs and allow the analysts to focus their attention on the
more difficult problems. Specifically, such a monitoring
“..nl;,.ot;r\” “ll.-.I.lrl r7r\m.nlotn n,“rmo “r\m;nm fmm rl;ffm%.nt app~L&L’“” Dll”U,” Lz”IIbILLLti LL,ul,,,J ~“Llllll~ ‘.“lll UII-IVIVIXC
components, ignore transient problems, identify chronic
problems, and run diagnostics when appropriate. If a
problem is isolated that can only be fixed by a technician,
then a trouble ticket should be autonomously generated and
electronically dispatched to a field technician. Only when
further analysis of problem is required will an “alert” be
generated and sent to an analyst at one of the technical
control centers. Thus, the monitoring system must provide
filtering of the 4ESS alarms and intelligent work delivery.
In addition, the monitoring application must operate in a
manner that allows for changes and updates to be handled
easily and quickly as the AT&T network continues to
evolve. This objective became a priority due to
deficiencies in previous solutions, and is a key focus of this
paper. Finally, one overriding requirement on any solution
is that it must be capable of processing the alarm messages
in real-time.

Why Use AI?
The decision to use an expert system to perform network
monitoring and alarm filtering was a very natural one,
given the need to automate a task performed by human a
expert within a limited domain. Furthermore, the fact that
the task to be automated is essentially a diagnosis task
lends even more support to this decision, since diagnosis is
amenable to AI techniques and such problems have been
widely solved using AI methods. In fact, there are many
examples within the telecommunication industry of such
systems. NYNEX uses the MAX expert system
(Rabinowitz, Flamholz, Wolin & Euchner 1991) to locate

Innovative Applications 1087

.

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

problems in the local loop (the segment connecting each
subscriber to the central office), Pacific Bell uses the
trouble locator system (Chen, Hollidge, & Sharma 1996) to
locate troubles in a local cable network and AT&T uses the
Scout system (Sasisekharan, Seshadri, & Weiss 1996) to
identify recurring transient network faults.

A variety of AI techniques could be used by an expert
system to perform network monitoring and alarm filtering.
Machine learning methods are of particular relevance for
diagnosis and are the basis of the trouble locator system,
which employs a causal network and the Scout system,
which employs data mining techniques. However, a rule-
based expert system was deemed most appropriate since it
was believed that in some cases our problem required
highly specific domain knowledge-knowledge available
from the 4ESS analysts in the form of “rules”. It should be
noted, however, that there have been several recent efforts
to supplement the knowledge in the rule-based system with
knowledge induced via machine learning methods (Weiss
& Hirsh 1998; Weiss, Eddy, Weiss, & Dube 1998).

Previous Approaches
Originally, no alarm filtering was provided and the analysts
had to operate on the raw alarms directly. A system to help .---
monitor the 4ESS switch was first implemented in C. Due
to software maintenance problems with this approach, in
1990 this system was redesigned and reimplemented using
C5, a C version of the popular OPS5 rule-based
programming language (Cooper & Wogrin 1988).
However, as additional rules were added to this new 4ESS-
ES (4ESS expert system) in response to changes in the
network, this system became less maintainable. We
believe this resulted due to the lack of a clearly defined
domain model and the widespread use of fairly shallow, ad-
hoc, rules. Similar problems have been observed in other
“first-generation” expert systems. Thus, this system did
not satisfy our ease of maintainability criterion.

Application Description
ANSWER (Automated Network Surveillance with Expert
Rules) is a complete operation support system (OSS) for
maintaining the 4ESS switches in the AT&T network. In
this paper we focus on the expert system component, which
is the central and most important part of the application.
The remaining part of the application is primarily
concerned with allowing the expert system to interface with
its environment (e.g., collect messages from the 4ESS
switches). For the purposes of this paper, ANSWER will
refer to the 4ESS expert system component. Each 4ESS
cwitrh ;c hcmrllwl hxr itr n,x,n inrtanre r\f AN’?UTFiR. thnr “..ACVIB I” l&U&fi”A”U Y, .LY “.,I, AfiIYLUZI”” “1 1 .I.U I, YI., CA,UU)

since there are 140 4ESS switches, there are 140 instances
of ANSWER. These instances of ANSWER run on a
single HP T520 server with 4 GB of RAM.

Functional Overview
ANSWER is responsible for the operation support system’s

intelligent behavior. The basic input/output functionality of
ANSWER is shown in Figure 1.

(7 User

/ t // Tickets
/

l ANSWER .

t

L Alerts

i”a Database

Figure 1: Functional View of ANSWER

The key inputs to ANSWER are alarm and non-alarm
messages from the 4ESS switches. The alarm messages
provide information about problems detected by a specific
device within the 4ESS while non-alarm messages provide
status information or the results of diagnostics previously
requested by ANSWER. The key outputs of ANSWER are
alerts to the analysts at the technical control centers and
tickets to the on-site technicians. ANSWER can also send
commands to the 4ESS to run diagnostics. Users can
interact with ANSWER to retrieve information, such as the
status of a 4ESS component, and to customize the behavior
of ANSWER. A database provides long-term persistent
information storage, so that users can examine the past
history of the 4ESS switch. The database is also used to
store information required by ANSWER, including
information specific to each 4ESS. The rules in the expert
system are responsible for determining ANSWER’s
behavior when receiving a new alarm,

The Object Model
One of the key advantages and distinguishing
characteristics of ANSWER is that, in addition to using
rule-based programming, it also uses object-oriented
technology-a technology now in widespread use in
industrial applications. For object oriented technology to
be useful in this context, there must be a way for ANSWER
to model the 4ESS as a collection of objects. A simplified
version of the object model is shown in Figure 2, using
Rumbaugh’s Object Modeling Technique (Rumbaugh,
Blaha, Premerlani & Eddy 1991).

State Has
Standby

Subparts

ISNEJ pq 61
Figure 2: The 4ESS Object Model

1088 Deployed Applications

The 4ESS is readily viewed as a collection of devices and
consequently device is the central ObJect in the 4ESS object
model. The object model is described by the following:

l subparts: an aggregation relation on device that allows
any device (including the 4ESS itself) to be viewed as
a hierarchical collection of devices

l standby: a one to many relation on device that
specifies the devices able to take over for a device if it
fails

l state: the state of a device (e.g., in-service) and the
t;mn ;+ PmtP..aTI thn+ ntntc. LIUICI IL ClllCcllclU CIICLL JLCLI.~

l alarm: each device has an ordered list of alarms, which
contains the alarms generated by the 4ESS on behalf of
the device

l alert: alerts are associated with a device and are
created when ANSWER decides the device requires
further analysis, by a human

In addition, Figure 2 specifies an inheritance hierarchy
for the device class. Device is intended to represent a
relatively abstract object. The device class has a subclass
nmnc=.rl l,mit whirh rpnrerantc 2 nonmb AFCC rlmrir~ IRUIII”” “r,,I”,L ‘Vp”YV’,w 6V’LVL1” 7-Y” “V .1”V.

Finally, the unit class has many subclasses, of which only
three are shown. These subclasses represent either a very
specific 4ESS hardware component (e.g., PROC represents
the main processor) or a specific class of equipment that
shares many common characteristics. Inheritance allows us
to share and/or specialize device behavior, as appropriate.
By having an object-oriented language integrated with a
rule-based language, we inherit not only methods and data
members (i.e., functions and variables), but also rule-driven
behavior. For example, ANSWER’s PROC class contains
only rules which specify behavior unique to processor
devices-generic device behavior is inherited from the unit
and device classes.

The Device Model and Model Instantiation
Devices are the key object in our model and therefore it is
important to understand how these objects are used, and in
particular, how they are created. A key requirement for our
model is that it be dynamically built from the information
sent to it from the 4ESS. There are two reasons for this
requirement: flexibility and efficiency. The flexibility of a
dynamic model arises from the fact that no up-front
configuration information is required-which is essential
since each 4ESS switch is unique and components are
continually added and removed. The second advantage of a
dynamic model is that it permits us to model only the
components which have abnormal activity, thereby
reducing the size of the model and thus realizing time and
space savings.

The expert system is primarily driven by two types of
events: 4ESS (alarm and non-alarm) messages and one-
second timer ticks. Each 4ESS message refers to a device
by specifying up to three levels of device information (i.e.,
the 4ESS device hierarchy is at most 3 levels deep,

excluding the 4ESS itself). At each level in the hierarchy,
a device type is specified, along with an integer-valued
device identifier, to ensure that each device within a 4ESS
switch is unique. The timer ticks update the expert
system’s internal clock and drives all of its time-based
behavior. A device model, which is a “snapshot” of the
devices in the object model, is shown in Figure 3. This
figure will be used to describe the device creation process.

I 4ESS I

,.
standby

Figure 3: A Device Model
When the ewnert cvctwm rm-eivec an alarm and the device -..--.. . ..- -“yw” ‘,“.-“’ .---1, .,- .+.. .

specified in the alarm doesn’t already exist in the model,
then it is created. The class of the device object is
determined by a table lookup. For example, when a TSI:3
device is created, an object of class SNE is created. The
model requires that all “ancestors” of this device (Le.,
devices that contain this device) be present in the model, so
if they do not already exist in the model, they are created.
For example, when ANSWER receives an alarm for the
device “DIF:5 DIU:l DG:2” it will first attempt to create
the DG:2 object. However, if the DIU:l or DIF:5 of which
this DG:2 is a part do not already exist in the model, then
they will be created first. When devices are created, data
driven rules check for “invariant” relations and create them
in the model. For example, if “TSI:3 CONTR: 1” is created
and “TSI:3 CONTR:O” already exists in the model, then a
standby relation will be formed between these two objects
(controllers for the same device can take over for one
another). Device deletion is driven by timer events; a
device is deleted if it is in the “in-service” state and has
remained in that state, without experiencing any problems,
for a specified period of time.

Alternative Solutions
By 1992 it became clear that object-oriented technology
would improve the maintainability of our rule-based expert
systems. In 1993 a formal process was defined for
evaluating existing object-oriented languages that provided
data-driven rules. This process involved defining required
and desired language features1 and then creating a
“representational benchmark”, a set of mini-problems

‘Reqwed features included the ability to represent a taxonomy of
objects and to have typed slots: dewed features included the ability to
put procedural code m the left-hand side of a rule.

Innovative Applications 1089

similar to those we encounter when constructing systenis
that must represent large, physical models (like a model of
a telecommunication network element). The evaluation
process involved requesting vendors of 10 object-oriented
languages with data-driven rules to implement these
benchmarks. These 10 languages could be classified into
three categories: “rules in C++” (Ilog rules, CLIPS++,
Rete++, RAL), other “rules + objects” languages (Kappa,
ART Enterprise, G2, Nexpert Object) and AT&T internal
languages (C.5, MCL). The vendor’s returned the
implementations and the languages were evaluated based
on the implementations and the language features.
Subsequently, however, the importance of integration with
C++ was raised in priority and the focus then became
limited to the “rules in C++” languages. Only one
language came close to satisfying all requirements, but this
ruie language iacked the required abiiity to handie inter-
object pointers. The vendor of the language was requested
to enhance the language, but stated that the language could
not be easily extended to add this capability. As a
consequence, a decision was made to develop a rule-based
extension to C++.

R++: A Rule-Based Extension to C++
R++ is a relatively small extension to the C++ language
which adds object-oriented rules. R++ rules are simply
another type of C++ member function and share the object-
oriented properties of C++ member functions: inheritance,
polymorphism and dynamic binding. R++ is implemented
as a preprocessor which runs before the C++ compiler is
invoked. Figure 4 shows a partial declaration of
ANSWER’s Device class. Note that each device’s
sub-parts and standby devices are represented as a set.
The optional monitored keyword in the class declaration
identifies data members which may trigger rule evaluation.
The declaration also includes the declaration of the
link-standbys rule, which ensures that the standby relation
ic nlwnvc tent In,-tn-rlate II ctanrlhv wlsltinn ev;rtr h~t.zr~~n .Y ““‘..,” “WyL “y I” ..UL” \u YsU’n..“J I”IUC‘“n. “AILILLI UVC”“UUII
two devices if one is capable of taking over for the other).

class Device (
protected:

String type; N type of device(e.g., TSI)
int number; II uniquely identifies device
monitored State *state; N ptr. to device’s state info.
monitored Alarm *new-alarm; // ptr. to newest alarm
monitored Device *part-of; N ptr. to containing device
monitored SetcDevice> sub-parts; // set of sub-parts devices
monitored Set<Device> standby; if set of standby devices

rule link-standbys;
1;

Figure 4: Declaration of Class “Device”

Rules have a special if-then syntax, where the if
(antecedent) and then (consequent) parts are separated by
an arrow (3). The rule in figure 5 can be translated as: zx

1090 Deployed Applications

for this device, there is a new alarm and the state of a
standby of this device is out-of-service, then send an alert.

// alert if get alarm and standby out of service
rule Device::alert-if-standby-out-service
I

new-alarm &&
Device *stby = standby &&
State *st = stby+state &&
st+name == “out-of-service”

a
send-alert(“standby_oos, this, stby);

1.

Figure 5: Alert if Standby Out of Service R++ Rule

R++ also provides the ability to write rules which operate
on container ciasses, iike sets and iists. Using an R++
feature called “branch binding”, a rule can be applied to
each element of the container (the at-sign “@” is the
branch-binding operator). The rule in Figure 6 relies on the
fact that the list called Devices contains all of the devices in
the model. For those not familiar with C++, the variable
this always refers to the object itself-in the case of the
rule in Figure 6, the device on whom link-standbys is
being performed. The antecedent of the rule in Figure 6
can be translated as: for each device dev in the set Devices,
check if dev is the standby of this device. The consequent
then mdatec the ctnnrlhv fblrl nf r=.slrh rL=vLv tn rdbrt the -=-” “-- . ..- “‘-“-“, I.“... VI YUW11 .a”, *WV L” l”llVYL L‘l”
new standby relationship.

If link standby devices together
rule Device::link-standbys
1

Device *dev @ Devices &&
is-standby(dev)

=3
thisdadd-standby(dev);
dev+add-standby(this);

Figure 6: Link Standby R++ Rule

The key difference between rules and ordinary C++
member functions is that changes to data members in the
antecedent of the rule automatically.causes the rule to be
evaluated and, if the antecedent evaluates to TRUE, then
the consequent is executed. Thus, rules are data-driven. In
the example in Figure 5, whenever a new alarm is received
on a device or the state of one of its standby devices
changes, the rule will be automatically reevaluated. The
key difference between R++ rules and rules in other rule-
ha-ad IC.~R,,O.YPC ic that RLL n.lao a..~. .w-erh AnnnrJ “CL~UU IU,1~U~~“” li) LllcsL I\TT IUItiJ LIIG yu‘r‘-vuxx4. This

means that the antecedent of an R++ rule can only include
data members which the class has access to-typically
through a pointer reference. Even though R++ rules are
therefore less expressive than rules in other languages
(because they cannot reference arbitrary objects), we
consider this an advantage because it ensures that R++
rules respect the object model. Finally, R++ is very

efficient and in most cases is far more efficient that other
rule-based systems, due to the path-based nature of its
rules. For those interested in a more in-depth
understanding of R++ or in receiving a copy of R++, see
the R++ home page (Patel-Schneider, 1998).

lkec nf AT Terhnnlnrrv -L-L. -- --^ - --^----_- bJ

AI technology plays a central role in ANSWER. R++ rules
declaratively encode domain knowledge and C++‘s object-
oriented language features allow the 4ESS switch to be
modeled as a hierarchical collection of devices. Although
object technology is not commonly associated with AI, it
nonetheless can be considered an AI technology. In fact,
most of the key ideas behind object-oriented languages
have come from AI (e.g., frame-based languages). R++
integrates these two complementary technologies and thus
allowed us to get the benefits of each.

*T1-,-~,-l.-.,--.,,..-~ .-&- --r--l. -11~ ~1 nds always oeen mreresrea in promem solving. In our
case, the problem is related to diagnosing 4ESS faults. The
AI problem solving techniques we use include abstraction
and a primitive form of model-based reasoning.

Use of AI Techniques for Diagnostic Reasoning
The 4ESS object model provides an abstract model of the
4ESS and thus provides a framework for our diagnostic
reasoning. This model implicitly contains information
about the structure and behavior of the 4ESS. For example,
if a standby relationship exists between two device objects,
A and R, then device A’s standby field wiii point to device
B, and vice-versa. Much of the reasoning in ANSWER is
accomplished by using affective relations. Affective
relations define a highly abstract, non-behavioral,
representation for modeling devices and are named for the
fact that one component affects another in a diagnostically
important way (Crawford et al. 1995; Singhal, Weiss &
Ros 1996; Mishra et al. 1996). These relations are too
weak to simulate device behavior, but serve to organize the
domain knowledge in a coherent way; ad-hoc heuristics are
replaced by a smaller set of general principles based on
affective relstinns. .A&c.tive r~i7lt;nr?s eqes xnects nf -__--__.- _-_- ______. --r----
the design at a level of abstraction that expert
troubleshooters use to link symptoms to faults, and hence
are easily acquired.

Two important affective relations used by ANSWER are
the standby and sub-part relations. These relations are very
general and can potentially apply to any device. Rules
which maintain and use the standby relation were shown
earlier in Figures 5 and 6. The sub-part relation is very
important for diagnosis, since it can be used to isolate
faults. For example, ANSWER has a rule that states that if
many of device A’s sub-parts fail, then the fault is most
likely located in device A (not in its sub-parts).

It is worthwhile to compare the reasoning in ANSWER
with that of its CS-based predecessor, the 4ESS-ES. In the
4ESS-ES, the reasoning was not based on affective
relations, due to the lack of a general model of the 4ESS;

instead, the reasoning in that system was based on many
(overly) specialized ad-hoc rules. There were many cases
where a single general rule was not quite adequate due to
small differences in device behavior. The solution to this
problem in the 4ESS-ES was to have a completely separate,
nearly identical, rule for each device; the solution in
ANSWER is to have a single general rule and specialize it
nr;nm ;nhm.Gton~n oo ~P,.~ooo,..I U.ni”‘~ IIIIIU‘IICLI‘~“, LIU II”~“~ilcuJ.

Application Development, Use and Payoff

Application Development
The requirements for the expert system were available,
having been written by system engineers for the 4ESS-ES.
The design and implementation of ANSWER began with
an object-oriented analysis of the 4ESS. Next, the design
phase led to an object model, similar to what was shown
earlier in Figure 2. Then, R++ code was written to
implement some very basic functionality, to show the
viability of combining rules and objects. Three developers
then worked full-time over a one year period to complete
the design, implementation and testing of the ANSWER
expert system. The expert system contains 218 rules
distributed over 23 object classes. Much of the basic
functionality, or “building blocks” of the expert system
(e.g., the code to query the database for information) are
written as procedural functions using C++. These functions
are then used within the declarative R++ rules that define
AilY3Y”CR b *hTDxrl?l3*^ :-.-II:---. I--L-.2-- TL.... for ---I- 111Ltm1gwl U~lliiVIUl-. 1 IlUS, (;ilLU
programming task we were able to use the programming
paradigm we felt was most appropriate. The expert system
contains 3000 lines of R++ source code and 8000 lines of
hand-written C++ source code. The 3000 lines of R++
source code were subsequently translated by the R++
preprocessor into 17,000 lines of C++ code, yielding a total
of 25,000 lines of C++ source code.

The construction of the expert system progressed
smoothly, with the majority of the problems resulting from
outdated documentation. Several bugs were found with the
implementation of the R++ language, but this was expected
since we were the first serious application to use R++.
However, these bugs were fixed quickly and they actually
affected our productivity less than problems in our
commercial development tools. Overall, our experiences
with R++ were very favorable.

Application Deployment
Deployment of ANSWER began toward the end of 1996
and the system has been fully deployed since July of 1997.
ANSWER handles 140 4ESS switches and approximately
100,000 alarms per week. The svstem executes 24 hours a -,------
day, 7 days a week (a disaster recovery machine ensures
availability). Although initially there were a few problems
with the overall operation support system, very few
problems have been found with the expert system
component.

Innovative Applications 109 1

Payoff and Benefits
We begin this section by describing the most visible
benefits of ANSWER. ANSWER is able to intelligently
filter the 4ESS alarms so that a much smaller number of
alerts is generated. Experience has shown that the number
of alerts is typically one-tenth the number of alarms. It is
also important to note that these alerts are more meaningful
than the alarms. The deployment of the expert systems
(4ESS-ES and then ANSWER) have enabled the total
number of analysts in the technical control centers to be
reduced from 48 to 18 (this includes all 3 work shifts).
Furthermore, ANSWER also saves a great deal of human
effort by autonomously generating tickets, propagated with
detailed relevant information, for those problems it can
isolate-it takes on average one hour for an analyst to
manually create a ticket containing the same information.
ANSWER is also able to fix certain problems simply by
sending a “restore” command to the 4ESS switch2. This
use of ANSWER’s “auto-ticketing” and “auto-restore”
capabilities are expected to further reduce the number of
analysts from 18 to 12.

We will now focus on the benefits of ANSWER over the
previous (X-based expert system-that is, on the benefits
derived from using object-oriented technology and object-
oriented rules. The main benefits derived from using R++

, and

.

our object-oriented modeling approach are:

increased comprehensibility: the object model provides
an organizing framework for the expert system. Rules
associated with each object class are located in a
separate file. In the 4ESS-ES no such organizing
principle existed and the rules were located in a few
large files. Furthermore, in ANSWER the scope and
impact of rules are easily determined, since R++‘s
path-based rules cannot reference arbitrary objects-
they must obey the object model.
improved maintainability: the use of an abstract object
model, encapsulation as provided for by C++ objects,
the use of an inheritance hierarchy to organize and
share behavior, and the increased comprehensibility of
the code lead to a highly maintainable system.
speed and reduced hardware costs: our R++ based
expert system was much faster than the 4ESS-ES,
which was implemented in C5 (C5 is in turn faster
than most commercial rule-based languages). Partly as
a consequence of this, all 140 instances of ANSWER
are able to execute on a single server, greatly reducing
hardware costs.
reduced learning curve: since we were already familiar
with C++, learning R++ was quite simple. Learning a
new rule-based language would have taken
significantly more time.
easier integration with the rest of the OSS: Since R++
is a superset of C++, the expert system was trivially

2 Please note that while the 4ESS-ES did perform alarm filtering, the
auto-ticketing and auto-restore capabilitles are new to ANSWER.

able to interface to other Darts of the ouerational
support system. The 4ESS:ES, on the ot’her hand,
required a separate, hand-coded interface layer so that
information could flow between the CS-based expert
system and the remainder of the system, which was
coded in C++.

l use of procedural code within the expert system: for
some tasks, C++ code is clearly more effective than
rules; R++ allows the developer to choose the most
appropriate programming paradigm.

In addition to these benefits, the use of R++ and an
abstract object model have led to reusable groups of rules.
In fact, some of the rules from ANSWER have been
adapted to model and monitor the behavior of other
network elements. Another key insight is that we were
able to use rules not only to encode domain knowledge, but
to facilitate inter-object communication, For example, we
were able to use rules to trigger activity based on a value in
one object being greater than the value in another object;
implementing this without rules requires the programmer to
distribute code throughout both of the involved objects.
This is an awkward, time-consuming and error prone
process, which essentially requires the programmer to
hand-generate the code that would automatically be
generated by the R++ preprocessor. During the course of
the project it became clear that some of the more
complicated communication patterns (e.g., publish-
subscribe) we were using could also be implemented using
rules. Using the terminology of the object-oriented
nl.,3"l.ornn-.;"‘T ,wTmmr.n;t.r ,I,_ f,T,v~‘YnA ,.n L,L,-,.#:,""I rl,,:,.w p"~jlalllllllll~ ti"llLllluLrlry, vvb I"cILKlI;IU "I, U~,‘UY‘",U L4GJ‘~;r‘

patterns-pieces of reusable code that control how
cooperating objects interact and distribute responsibility
(Gamma, Helm, Johnson & Vlissides 1995). A description
of how we used R++‘s object-oriented rules to implement
behavioral design patterns in ANSWER is provided by
Weiss & Ros (1999).

Maintenance
Given the fact that maintainability was a key factor in the
A]^“:-- AC ̂ .._ .._.---A ̂ _.^.- - - ^-_. --z-r------ 1-- ._^_ I---.- uG;slgll VI UUI GqJGll SyYLGIII, Illany 11liilnLGnancG 1SSUGS rmvt:
already been discussed. To summarize, our use of an
abstract object model and general relations using that
model, along with certain features of object-oriented
languages (inheritance, encapsulation) have made
ANSWER easy to maintain. The expert system is being
maintained by one of the three original developers. Based
on his experience, we estimate that adding new
functionality to ANSWER takes only about one-half the
development time that would be required to add the same
functionality to the 4ESS-ES. In particular, based on our
use of a fairly generic device model, he frequently finds
that much of- the code necessary to implement the new
functionality is already present in the system. Finally, we
believe that this reuse has led to higher quality code, with
fewer bugs.

1092 Deployed Applications

Conclusion
The use of both rule-based and object-oriented technologies

- -?---- in ANSWEK has proven to be highiy effective. BY
providing an abstract device object with diagnostically
motivated affective relations, a simple form of model-
based reasoning was able to be applied to a domain
normally too complex for such methods. Thus, this
approach has led to a middle-ground between model-based
reasoning and heuristic (ad-hoc) first generation expert
systems. The use of object technology has also provided a
principled approach for designing, implementing and
organizing the expert system and is responsible for
ANSWER being a more comprehensible and maintainable
ar.rctnm thaw, ;tc v.~PAP~.PD~~T. the AlZ'Z‘G-EC JJOLUll LllLul &La p~uuLaci~"I, Lll" TJ2"U-Y".

Our experience with R++ and the modeling approach
described in this paper has been very positive. In fact, we
have been surprised at how few problems we have seen
since the application has been deployed. We attribute this
success to the benefits of our approach, which we have
already described in detail, as well as to the up-front work
in developing a good, comprehensive, object model.

ANSWER is fully deployed and is monitoring and
maintaining all of AT&T’s 4ESS switches. Additional
operation support systems are now being implemented
using R++ and the approach described in this paper-using
some design principles we have identified. Active
development is continuing on R++, in order to enhance its
capabilities. As mentioned earlier, R++ is now publicly
available.

The approach described in this paper is very important for
one additional reason-we believe it provides a way for
data-driven programming to enter the mainstream.
Currently, rule-based languages are considered “AI
languages” and are not used by the large number of
“mainstream” developers. As we showed earlier, in
addition to representing knowledge, rules can facilitate
. 1~ -,~.--a ~~ ~~~~~~~ -.L .~ inter-0oJecr communicauon. By adding rules to an
existing, popular language, these and other benefits of data-
driven programming, long known to AI programmers, can
be shared by a much larger population of developers.

References
Chen, C., Hollidge, T., and Sharma, D. 1996. Localization
of Troubles in Telephone Cable Networks, Innovative
Applications of Artiftcial Intelligence, Vol. 2, AAAI Press,
Menlo Park, CA., pp. 1461-1470.

Cooper T., and Wogrin, N. 1988. Rule-Based Programming
with OPS5, Morgan Kaufmann, San Mateo, CA.

Crawford, J., Dvorak, D., Litman, D., Mishra, A., and
Patel-Schneider, P. 1995. Device Representation and
Reasoning with Affective Relations, Proceedings of the
Fourteenth International Conference on Artificial
Intelligence (IJCAI-95), pp. 1814-1820, Montreal, Quebec,
Canada.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley.

Mishra, A., Ros, J., Singhal, A., Weiss, G., Litman, D.,
Patel-Schneider, P., Dvorak, and D., Crawford, J. 1996.
R++: Using Rules in Object-Oriented Designs, Addendum
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA).

Patel-Schneider, P. 1998. The R++ home page:
http://www.research.att.comlsw/tools/r++.

Rabinowitz, H., Flamholz, J., Wolin, E., and Euchner, J.
1991. NYNEX MAX: A Telephone Trouble Screening
Expert, Innovative Applications of Artificial Intelligence 3,
Smith, R. & Scott, C., eds., AAAI Press, Menlo Park, CA.,
pp. 213-230.

Rumbaugh, J., Blaha, M., Premerlani, W., and Eddy, F.
199 1. Object-Modeling and Design, Prentice Hall.

Sasisekharan, R., Seshadri, V., and Weiss, S. 1996. Data
Mining and Forecasting in Large-Scale Telecommunication
Networks, IEEE Expert, 1 l(1): 37-43.

Singhal, A., Weiss, G. M., and Ros, J. P. 1996. A Model
Based Reasoning Approach to Network Monitoring,
Proceedings of the ACM Workshop on Databases for
Active and Real Time Systems (DART ‘96), Rockviiie,
Maryland, pp. 41-44.

Weiss, G. M., and Ros, J. P. 1999. Implementing Design
Patterns with Object-Oriented Rules, JournaE of Object
Oriented Programming. To be published January, 1999.

Weiss, G. M., and Hirsh, H. 1998. Learning to Predict
Rare Events in Categorical Time-Series Data, Proceedings
of the 1998 AAAI/ICML Workshop on Time-Series
Analysis, Madison, Wisconsin.

Weiss, G., Eddy, J., Weiss, S., and Dube, R. 1998.
Inteiiigent Teiecommunication Technoiogies, Knowledge-
Based Intelligent Techniques in Industry (chapter 8), L.C.
Jain, ed., CRC press.

Innovative Applications 1093

