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Abstract 
This paper describes ANSWER, the expert system 
responsible for monitoring AT&T’s 4ESS switches. These 
switches are extremely important, since they handle virtually 
all of AT&T’s long distance traffic. ANSWER is 
implemented in R++, a rule-based extension to the C++ 
object-oriented programming language, and is innovative 
because it employs both rule-based and object-oriented 
programming paradigms. The use of object technology in 
ANSWER has provided a principled way of modeling the 
4ESS and of reasoning about failures withm the 4ESS. This 
has resulted in an expert system that is more clearly 
organized, easily understood and maintainable than its 
predecessor, which was implemented using the rule-based 
paradigm alone. ANSWER has been deployed for more 
than c, . ,PQ~ anrl honrllnc 011 l,ifi nf ATsQ,T’c LFCI’? E&t,-hoc Lllcul ” ywll CII‘U IIcuA”l~O cl,‘ I-r” “1 -1-I 0 TU”” C1”.ICIB.“Y 
and processes over 100,000 4ESS alarms per week. 

Introduction 
Network reliability is of critical concern to AT&T, since its 
reputation for network reliability has taken many years to 
establish and is one of its most valuable resources. 
Nonetheless, in today’s fiercely competitive environment, 
high levels of reliability must be achieved in a cost- 
effective manner. This paper will focus on the problem of 
off;,Gnntl.r mnnitnvinm the 1 An AECP rwitrhc.r in the AT&T VlllUlVllLlJ ‘A~“x,Lr”~l,‘g CLIV 17” 7-v” 0 VW lLIllV.7 ‘aa Cl&Y 1 . A a A 

network, which collectively handle virtually all of AT&T’s 
long distance traffic. 

Problem Description 
Upon detecting a problem or experiencing an anomalous 
event, a 4ESS switch will generate an alarm and send it to 
one of AT&T’s two technical control centers for further 
processing. At these sites, an expert human “analyst” 
examines the alarm, possibly runs diagnostics on the switch 
and then determines if human intervention is required. If 
. ..A..._.... AT-.. :- ..--..:--2 *I__ inrervenrlon is reyuireu, tnt: analjisi Crea23s a %XtiGle 
ticket” and electronically dispatches it to a technician at the 
site housing the switch. This maintenance process requires 
the analysts at the technical control centers to monitor over 
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100,000 alarms per week. Many of these alarms indicate a 
transient problem-a problem that requires further 
monitoring but does not require immediate human 
intervention. Thus, a maintenance process <hat requires 
each alarm to be handled by an analyst will be extremely 
time-consuming, costly and wasteful. Nonetheless, for 
many years the maintenance process operated in such a 
manner. 

The problem is to provide a monitoring system that 
partially assumes the role of the analyst, so that only those 
problems that require further analysis are brought to the 
analysts’ attention. Such a system will reduce staffing 
costs and allow the analysts to focus their attention on the 
more difficult problems. Specifically, such a monitoring 
“..nl;,.ot;r\” “ll.-.I.lrl r7r\m.nlotn n,“rmo “r\m;nm fmm rl;ffm%.nt app~L&L’“” Dll”U,” Lz”IIbILLLti LL,ul,,,J ~“Llllll~ ‘.“lll UII-IVIVIXC 
components, ignore transient problems, identify chronic 
problems, and run diagnostics when appropriate. If a 
problem is isolated that can only be fixed by a technician, 
then a trouble ticket should be autonomously generated and 
electronically dispatched to a field technician. Only when 
further analysis of problem is required will an “alert” be 
generated and sent to an analyst at one of the technical 
control centers. Thus, the monitoring system must provide 
filtering of the 4ESS alarms and intelligent work delivery. 
In addition, the monitoring application must operate in a 
manner that allows for changes and updates to be handled 
easily and quickly as the AT&T network continues to 
evolve. This objective became a priority due to 
deficiencies in previous solutions, and is a key focus of this 
paper. Finally, one overriding requirement on any solution 
is that it must be capable of processing the alarm messages 
in real-time. 

Why Use AI? 
The decision to use an expert system to perform network 
monitoring and alarm filtering was a very natural one, 
given the need to automate a task performed by human a 
expert within a limited domain. Furthermore, the fact that 
the task to be automated is essentially a diagnosis task 
lends even more support to this decision, since diagnosis is 
amenable to AI techniques and such problems have been 
widely solved using AI methods. In fact, there are many 
examples within the telecommunication industry of such 
systems. NYNEX uses the MAX expert system 
(Rabinowitz, Flamholz, Wolin & Euchner 1991) to locate 
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problems in the local loop (the segment connecting each 
subscriber to the central office), Pacific Bell uses the 
trouble locator system (Chen, Hollidge, & Sharma 1996) to 
locate troubles in a local cable network and AT&T uses the 
Scout system (Sasisekharan, Seshadri, & Weiss 1996) to 
identify recurring transient network faults. 

A variety of AI techniques could be used by an expert 
system to perform network monitoring and alarm filtering. 
Machine learning methods are of particular relevance for 
diagnosis and are the basis of the trouble locator system, 
which employs a causal network and the Scout system, 
which employs data mining techniques. However, a rule- 
based expert system was deemed most appropriate since it 
was believed that in some cases our problem required 
highly specific domain knowledge-knowledge available 
from the 4ESS analysts in the form of “rules”. It should be 
noted, however, that there have been several recent efforts 
to supplement the knowledge in the rule-based system with 
knowledge induced via machine learning methods (Weiss 
& Hirsh 1998; Weiss, Eddy, Weiss, & Dube 1998). 

Previous Approaches 
Originally, no alarm filtering was provided and the analysts 
had to operate on the raw alarms directly. A system to help .--- 
monitor the 4ESS switch was first implemented in C. Due 
to software maintenance problems with this approach, in 
1990 this system was redesigned and reimplemented using 
C5, a C version of the popular OPS5 rule-based 
programming language (Cooper & Wogrin 1988). 
However, as additional rules were added to this new 4ESS- 
ES (4ESS expert system) in response to changes in the 
network, this system became less maintainable. We 
believe this resulted due to the lack of a clearly defined 
domain model and the widespread use of fairly shallow, ad- 
hoc, rules. Similar problems have been observed in other 
“first-generation” expert systems. Thus, this system did 
not satisfy our ease of maintainability criterion. 

Application Description 
ANSWER (Automated Network Surveillance with Expert 
Rules) is a complete operation support system (OSS) for 
maintaining the 4ESS switches in the AT&T network. In 
this paper we focus on the expert system component, which 
is the central and most important part of the application. 
The remaining part of the application is primarily 
concerned with allowing the expert system to interface with 
its environment (e.g., collect messages from the 4ESS 
switches). For the purposes of this paper, ANSWER will 
refer to the 4ESS expert system component. Each 4ESS 
cwitrh ;c hcmrllwl hxr itr n,x,n inrtanre r\f AN’?UTFiR. thnr “..ACVIB I” l&U&fi”A”U Y, .LY “.,I, AfiIYLUZI”” “1 1 .I.U I, YI., CA,UU) 

since there are 140 4ESS switches, there are 140 instances 
of ANSWER. These instances of ANSWER run on a 
single HP T520 server with 4 GB of RAM. 

Functional Overview 
ANSWER is responsible for the operation support system’s 

intelligent behavior. The basic input/output functionality of 
ANSWER is shown in Figure 1. 
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Figure 1: Functional View of ANSWER 

The key inputs to ANSWER are alarm and non-alarm 
messages from the 4ESS switches. The alarm messages 
provide information about problems detected by a specific 
device within the 4ESS while non-alarm messages provide 
status information or the results of diagnostics previously 
requested by ANSWER. The key outputs of ANSWER are 
alerts to the analysts at the technical control centers and 
tickets to the on-site technicians. ANSWER can also send 
commands to the 4ESS to run diagnostics. Users can 
interact with ANSWER to retrieve information, such as the 
status of a 4ESS component, and to customize the behavior 
of ANSWER. A database provides long-term persistent 
information storage, so that users can examine the past 
history of the 4ESS switch. The database is also used to 
store information required by ANSWER, including 
information specific to each 4ESS. The rules in the expert 
system are responsible for determining ANSWER’s 
behavior when receiving a new alarm, 

The Object Model 
One of the key advantages and distinguishing 
characteristics of ANSWER is that, in addition to using 
rule-based programming, it also uses object-oriented 
technology-a technology now in widespread use in 
industrial applications. For object oriented technology to 
be useful in this context, there must be a way for ANSWER 
to model the 4ESS as a collection of objects. A simplified 
version of the object model is shown in Figure 2, using 
Rumbaugh’s Object Modeling Technique (Rumbaugh, 
Blaha, Premerlani & Eddy 1991). 

State Has 
Standby 

Subparts 

ISNEJ pq 61 
Figure 2: The 4ESS Object Model 
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The 4ESS is readily viewed as a collection of devices and 
consequently device is the central ObJect in the 4ESS object 
model. The object model is described by the following: 

l subparts: an aggregation relation on device that allows 
any device (including the 4ESS itself) to be viewed as 
a hierarchical collection of devices 

l standby: a one to many relation on device that 
specifies the devices able to take over for a device if it 
fails 

l state: the state of a device (e.g., in-service) and the 
t;mn ;+ PmtP..aTI thn+ ntntc. LIUICI IL ClllCcllclU CIICLL JLCLI.~ 

l alarm: each device has an ordered list of alarms, which 
contains the alarms generated by the 4ESS on behalf of 
the device 

l alert: alerts are associated with a device and are 
created when ANSWER decides the device requires 
further analysis, by a human 

In addition, Figure 2 specifies an inheritance hierarchy 
for the device class. Device is intended to represent a 
relatively abstract object. The device class has a subclass 
nmnc=.rl l,mit whirh rpnrerantc 2 nonmb AFCC rlmrir~ IRUIII”” “r,,I”,L ‘Vp”YV’,w 6V’LVL1” 7-Y” “V .1”V. 

Finally, the unit class has many subclasses, of which only 
three are shown. These subclasses represent either a very 
specific 4ESS hardware component (e.g., PROC represents 
the main processor) or a specific class of equipment that 
shares many common characteristics. Inheritance allows us 
to share and/or specialize device behavior, as appropriate. 
By having an object-oriented language integrated with a 
rule-based language, we inherit not only methods and data 
members (i.e., functions and variables), but also rule-driven 
behavior. For example, ANSWER’s PROC class contains 
only rules which specify behavior unique to processor 
devices-generic device behavior is inherited from the unit 
and device classes. 

The Device Model and Model Instantiation 
Devices are the key object in our model and therefore it is 
important to understand how these objects are used, and in 
particular, how they are created. A key requirement for our 
model is that it be dynamically built from the information 
sent to it from the 4ESS. There are two reasons for this 
requirement: flexibility and efficiency. The flexibility of a 
dynamic model arises from the fact that no up-front 
configuration information is required-which is essential 
since each 4ESS switch is unique and components are 
continually added and removed. The second advantage of a 
dynamic model is that it permits us to model only the 
components which have abnormal activity, thereby 
reducing the size of the model and thus realizing time and 
space savings. 

The expert system is primarily driven by two types of 
events: 4ESS (alarm and non-alarm) messages and one- 
second timer ticks. Each 4ESS message refers to a device 
by specifying up to three levels of device information (i.e., 
the 4ESS device hierarchy is at most 3 levels deep, 

excluding the 4ESS itself). At each level in the hierarchy, 
a device type is specified, along with an integer-valued 
device identifier, to ensure that each device within a 4ESS 
switch is unique. The timer ticks update the expert 
system’s internal clock and drives all of its time-based 
behavior. A device model, which is a “snapshot” of the 
devices in the object model, is shown in Figure 3. This 
figure will be used to describe the device creation process. 

I 4ESS I 

,. . . . . . 
standby 

Figure 3: A Device Model 
When the ewnert cvctwm rm-eivec an alarm and the device . . . . . . -..- . . . . . . ..-.. . ..- -“yw” ‘,“.-“’ .---1, .,- .+.. . 

specified in the alarm doesn’t already exist in the model, 
then it is created. The class of the device object is 
determined by a table lookup. For example, when a TSI:3 
device is created, an object of class SNE is created. The 
model requires that all “ancestors” of this device (Le., 
devices that contain this device) be present in the model, so 
if they do not already exist in the model, they are created. 
For example, when ANSWER receives an alarm for the 
device “DIF:5 DIU:l DG:2” it will first attempt to create 
the DG:2 object. However, if the DIU:l or DIF:5 of which 
this DG:2 is a part do not already exist in the model, then 
they will be created first. When devices are created, data 
driven rules check for “invariant” relations and create them 
in the model. For example, if “TSI:3 CONTR: 1” is created 
and “TSI:3 CONTR:O” already exists in the model, then a 
standby relation will be formed between these two objects 
(controllers for the same device can take over for one 
another). Device deletion is driven by timer events; a 
device is deleted if it is in the “in-service” state and has 
remained in that state, without experiencing any problems, 
for a specified period of time. 

Alternative Solutions 
By 1992 it became clear that object-oriented technology 
would improve the maintainability of our rule-based expert 
systems. In 1993 a formal process was defined for 
evaluating existing object-oriented languages that provided 
data-driven rules. This process involved defining required 
and desired language features1 and then creating a 
“representational benchmark”, a set of mini-problems 

‘Reqwed features included the ability to represent a taxonomy of 
objects and to have typed slots: dewed features included the ability to 
put procedural code m the left-hand side of a rule. 
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similar to those we encounter when constructing systenis 
that must represent large, physical models (like a model of 
a telecommunication network element). The evaluation 
process involved requesting vendors of 10 object-oriented 
languages with data-driven rules to implement these 
benchmarks. These 10 languages could be classified into 
three categories: “rules in C++” (Ilog rules, CLIPS++, 
Rete++, RAL), other “rules + objects” languages (Kappa, 
ART Enterprise, G2, Nexpert Object) and AT&T internal 
languages (C.5, MCL). The vendor’s returned the 
implementations and the languages were evaluated based 
on the implementations and the language features. 
Subsequently, however, the importance of integration with 
C++ was raised in priority and the focus then became 
limited to the “rules in C++” languages. Only one 
language came close to satisfying all requirements, but this 
ruie language iacked the required abiiity to handie inter- 
object pointers. The vendor of the language was requested 
to enhance the language, but stated that the language could 
not be easily extended to add this capability. As a 
consequence, a decision was made to develop a rule-based 
extension to C++. 

R++: A Rule-Based Extension to C++ 
R++ is a relatively small extension to the C++ language 
which adds object-oriented rules. R++ rules are simply 
another type of C++ member function and share the object- 
oriented properties of C++ member functions: inheritance, 
polymorphism and dynamic binding. R++ is implemented 
as a preprocessor which runs before the C++ compiler is 
invoked. Figure 4 shows a partial declaration of 
ANSWER’s Device class. Note that each device’s 
sub-parts and standby devices are represented as a set. 
The optional monitored keyword in the class declaration 
identifies data members which may trigger rule evaluation. 
The declaration also includes the declaration of the 
link-standbys rule, which ensures that the standby relation 
ic nlwnvc tent In,-tn-rlate II ctanrlhv wlsltinn ev;rtr h~t.zr~~n .Y ““‘..,” “WyL “y I” ..UL” \u YsU’n..“J I”IUC‘“n. “AILILLI UVC”“UUII 
two devices if one is capable of taking over for the other). 

class Device ( 
protected: 

String type; N type of device(e.g., TSI) 
int number; II uniquely identifies device 
monitored State *state; N ptr. to device’s state info. 
monitored Alarm *new-alarm; // ptr. to newest alarm 
monitored Device *part-of; N ptr. to containing device 
monitored SetcDevice> sub-parts; // set of sub-parts devices 
monitored Set<Device> standby; if set of standby devices 

rule link-standbys; 
1; 

Figure 4: Declaration of Class “Device” 

Rules have a special if-then syntax, where the if 
(antecedent) and then (consequent) parts are separated by 
an arrow (3). The rule in figure 5 can be translated as: zx 
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for this device, there is a new alarm and the state of a 
standby of this device is out-of-service, then send an alert. 

// alert if get alarm and standby out of service 
rule Device::alert-if-standby-out-service 
I 

new-alarm && 
Device *stby = standby && 
State *st = stby+state && 
st+name == “out-of-service” 

a 
send-alert(“standby_oos, this, stby); 

1. 

Figure 5: Alert if Standby Out of Service R++ Rule 

R++ also provides the ability to write rules which operate 
on container ciasses, iike sets and iists. Using an R++ 
feature called “branch binding”, a rule can be applied to 
each element of the container (the at-sign “@” is the 
branch-binding operator). The rule in Figure 6 relies on the 
fact that the list called Devices contains all of the devices in 
the model. For those not familiar with C++, the variable 
this always refers to the object itself-in the case of the 
rule in Figure 6, the device on whom link-standbys is 
being performed. The antecedent of the rule in Figure 6 
can be translated as: for each device dev in the set Devices, 
check if dev is the standby of this device. The consequent 
then mdatec the ctnnrlhv fblrl nf r=.slrh rL=vLv tn rdbrt the -=-” “-- . ..- “‘-“-“, I.“... VI YUW11 .a”, *WV L” l”llVYL L‘l” 
new standby relationship. 

If link standby devices together 
rule Device::link-standbys 
1 

Device *dev @ Devices && 
is-standby(dev) 

=3 
thisdadd-standby(dev); 
dev+add-standby(this); 

Figure 6: Link Standby R++ Rule 

The key difference between rules and ordinary C++ 
member functions is that changes to data members in the 
antecedent of the rule automatically.causes the rule to be 
evaluated and, if the antecedent evaluates to TRUE, then 
the consequent is executed. Thus, rules are data-driven. In 
the example in Figure 5, whenever a new alarm is received 
on a device or the state of one of its standby devices 
changes, the rule will be automatically reevaluated. The 
key difference between R++ rules and rules in other rule- 
ha-ad IC.~R,,O.YPC ic that RLL n.lao a..~. .w-erh AnnnrJ “CL~UU IU,1~U~~“” li) LllcsL I\TT IUItiJ LIIG yu‘r‘-vuxx4. This 

means that the antecedent of an R++ rule can only include 
data members which the class has access to-typically 
through a pointer reference. Even though R++ rules are 
therefore less expressive than rules in other languages 
(because they cannot reference arbitrary objects), we 
consider this an advantage because it ensures that R++ 
rules respect the object model. Finally, R++ is very 



efficient and in most cases is far more efficient that other 
rule-based systems, due to the path-based nature of its 
rules. For those interested in a more in-depth 
understanding of R++ or in receiving a copy of R++, see 
the R++ home page (Patel-Schneider, 1998). 

lkec nf AT Terhnnlnrrv -L-L. -- --^ - --^----_- bJ 

AI technology plays a central role in ANSWER. R++ rules 
declaratively encode domain knowledge and C++‘s object- 
oriented language features allow the 4ESS switch to be 
modeled as a hierarchical collection of devices. Although 
object technology is not commonly associated with AI, it 
nonetheless can be considered an AI technology. In fact, 
most of the key ideas behind object-oriented languages 
have come from AI (e.g., frame-based languages). R++ 
integrates these two complementary technologies and thus 
allowed us to get the benefits of each. 

*T1-,-~,-l.-.,--.,,..-~ .-&- --r--l. -11~ ~1 nds always oeen mreresrea in promem solving. In our 
case, the problem is related to diagnosing 4ESS faults. The 
AI problem solving techniques we use include abstraction 
and a primitive form of model-based reasoning. 

Use of AI Techniques for Diagnostic Reasoning 
The 4ESS object model provides an abstract model of the 
4ESS and thus provides a framework for our diagnostic 
reasoning. This model implicitly contains information 
about the structure and behavior of the 4ESS. For example, 
if a standby relationship exists between two device objects, 
A and R, then device A’s standby field wiii point to device 
B, and vice-versa. Much of the reasoning in ANSWER is 
accomplished by using affective relations. Affective 
relations define a highly abstract, non-behavioral, 
representation for modeling devices and are named for the 
fact that one component affects another in a diagnostically 
important way (Crawford et al. 1995; Singhal, Weiss & 
Ros 1996; Mishra et al. 1996). These relations are too 
weak to simulate device behavior, but serve to organize the 
domain knowledge in a coherent way; ad-hoc heuristics are 
replaced by a smaller set of general principles based on 
affective relstinns. .A&c.tive r~i7lt;nr?s eqes xnects nf -__--__.- _-_- ______. --r---- 
the design at a level of abstraction that expert 
troubleshooters use to link symptoms to faults, and hence 
are easily acquired. 

Two important affective relations used by ANSWER are 
the standby and sub-part relations. These relations are very 
general and can potentially apply to any device. Rules 
which maintain and use the standby relation were shown 
earlier in Figures 5 and 6. The sub-part relation is very 
important for diagnosis, since it can be used to isolate 
faults. For example, ANSWER has a rule that states that if 
many of device A’s sub-parts fail, then the fault is most 
likely located in device A (not in its sub-parts). 

It is worthwhile to compare the reasoning in ANSWER 
with that of its CS-based predecessor, the 4ESS-ES. In the 
4ESS-ES, the reasoning was not based on affective 
relations, due to the lack of a general model of the 4ESS; 

instead, the reasoning in that system was based on many 
(overly) specialized ad-hoc rules. There were many cases 
where a single general rule was not quite adequate due to 
small differences in device behavior. The solution to this 
problem in the 4ESS-ES was to have a completely separate, 
nearly identical, rule for each device; the solution in 
ANSWER is to have a single general rule and specialize it 
nr;nm ;nhm.Gton~n oo ~P,.~ooo,..I U.ni”‘~ IIIIIU‘IICLI‘~“, LIU II”~“~ilcuJ. 

Application Development, Use and Payoff 

Application Development 
The requirements for the expert system were available, 
having been written by system engineers for the 4ESS-ES. 
The design and implementation of ANSWER began with 
an object-oriented analysis of the 4ESS. Next, the design 
phase led to an object model, similar to what was shown 
earlier in Figure 2. Then, R++ code was written to 
implement some very basic functionality, to show the 
viability of combining rules and objects. Three developers 
then worked full-time over a one year period to complete 
the design, implementation and testing of the ANSWER 
expert system. The expert system contains 218 rules 
distributed over 23 object classes. Much of the basic 
functionality, or “building blocks” of the expert system 
(e.g., the code to query the database for information) are 
written as procedural functions using C++. These functions 
are then used within the declarative R++ rules that define 
AilY3Y”CR b *hTDxrl?l3*^ :-.-II:---. I--L-.2-- TL.... for ---I- 111Ltm1gwl U~lliiVIUl-. 1 IlUS, (;ilLU 
programming task we were able to use the programming 
paradigm we felt was most appropriate. The expert system 
contains 3000 lines of R++ source code and 8000 lines of 
hand-written C++ source code. The 3000 lines of R++ 
source code were subsequently translated by the R++ 
preprocessor into 17,000 lines of C++ code, yielding a total 
of 25,000 lines of C++ source code. 

The construction of the expert system progressed 
smoothly, with the majority of the problems resulting from 
outdated documentation. Several bugs were found with the 
implementation of the R++ language, but this was expected 
since we were the first serious application to use R++. 
However, these bugs were fixed quickly and they actually 
affected our productivity less than problems in our 
commercial development tools. Overall, our experiences 
with R++ were very favorable. 

Application Deployment 
Deployment of ANSWER began toward the end of 1996 
and the system has been fully deployed since July of 1997. 
ANSWER handles 140 4ESS switches and approximately 
100,000 alarms per week. The svstem executes 24 hours a -,------ 
day, 7 days a week (a disaster recovery machine ensures 
availability). Although initially there were a few problems 
with the overall operation support system, very few 
problems have been found with the expert system 
component. 
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Payoff and Benefits 
We begin this section by describing the most visible 
benefits of ANSWER. ANSWER is able to intelligently 
filter the 4ESS alarms so that a much smaller number of 
alerts is generated. Experience has shown that the number 
of alerts is typically one-tenth the number of alarms. It is 
also important to note that these alerts are more meaningful 
than the alarms. The deployment of the expert systems 
(4ESS-ES and then ANSWER) have enabled the total 
number of analysts in the technical control centers to be 
reduced from 48 to 18 (this includes all 3 work shifts). 
Furthermore, ANSWER also saves a great deal of human 
effort by autonomously generating tickets, propagated with 
detailed relevant information, for those problems it can 
isolate-it takes on average one hour for an analyst to 
manually create a ticket containing the same information. 
ANSWER is also able to fix certain problems simply by 
sending a “restore” command to the 4ESS switch2. This 
use of ANSWER’s “auto-ticketing” and “auto-restore” 
capabilities are expected to further reduce the number of 
analysts from 18 to 12. 

We will now focus on the benefits of ANSWER over the 
previous (X-based expert system-that is, on the benefits 
derived from using object-oriented technology and object- 
oriented rules. The main benefits derived from using R++ 

, and 

. 

our object-oriented modeling approach are: 

increased comprehensibility: the object model provides 
an organizing framework for the expert system. Rules 
associated with each object class are located in a 
separate file. In the 4ESS-ES no such organizing 
principle existed and the rules were located in a few 
large files. Furthermore, in ANSWER the scope and 
impact of rules are easily determined, since R++‘s 
path-based rules cannot reference arbitrary objects- 
they must obey the object model. 
improved maintainability: the use of an abstract object 
model, encapsulation as provided for by C++ objects, 
the use of an inheritance hierarchy to organize and 
share behavior, and the increased comprehensibility of 
the code lead to a highly maintainable system. 
speed and reduced hardware costs: our R++ based 
expert system was much faster than the 4ESS-ES, 
which was implemented in C5 (C5 is in turn faster 
than most commercial rule-based languages). Partly as 
a consequence of this, all 140 instances of ANSWER 
are able to execute on a single server, greatly reducing 
hardware costs. 
reduced learning curve: since we were already familiar 
with C++, learning R++ was quite simple. Learning a 
new rule-based language would have taken 
significantly more time. 
easier integration with the rest of the OSS: Since R++ 
is a superset of C++, the expert system was trivially 

2 Please note that while the 4ESS-ES did perform alarm filtering, the 
auto-ticketing and auto-restore capabilitles are new to ANSWER. 

able to interface to other Darts of the ouerational 
support system. The 4ESS:ES, on the ot’her hand, 
required a separate, hand-coded interface layer so that 
information could flow between the CS-based expert 
system and the remainder of the system, which was 
coded in C++. 

l use of procedural code within the expert system: for 
some tasks, C++ code is clearly more effective than 
rules; R++ allows the developer to choose the most 
appropriate programming paradigm. 

In addition to these benefits, the use of R++ and an 
abstract object model have led to reusable groups of rules. 
In fact, some of the rules from ANSWER have been 
adapted to model and monitor the behavior of other 
network elements. Another key insight is that we were 
able to use rules not only to encode domain knowledge, but 
to facilitate inter-object communication, For example, we 
were able to use rules to trigger activity based on a value in 
one object being greater than the value in another object; 
implementing this without rules requires the programmer to 
distribute code throughout both of the involved objects. 
This is an awkward, time-consuming and error prone 
process, which essentially requires the programmer to 
hand-generate the code that would automatically be 
generated by the R++ preprocessor. During the course of 
the project it became clear that some of the more 
complicated communication patterns (e.g., publish- 
subscribe) we were using could also be implemented using 
rules. Using the terminology of the object-oriented 
nl.,3"l.ornn-.;"‘T ,wTmmr.n;t.r ,I,_ f,T,v~‘YnA ,.n L,L,-,.#:,""I rl,,:,.w p"~jlalllllllll~ ti"llLllluLrlry, vvb I"cILKlI;IU "I, U~,‘UY‘",U L4GJ‘~;r‘ 

patterns-pieces of reusable code that control how 
cooperating objects interact and distribute responsibility 
(Gamma, Helm, Johnson & Vlissides 1995). A description 
of how we used R++‘s object-oriented rules to implement 
behavioral design patterns in ANSWER is provided by 
Weiss & Ros (1999). 

Maintenance 
Given the fact that maintainability was a key factor in the 
A]^“:-- AC ̂ .._ .._.---A ̂ _.^.- - - ^-_. --z-r------ 1-- ._^_ I---.- uG;slgll VI UUI GqJGll SyYLGIII, Illany 11liilnLGnancG 1SSUGS rmvt: 
already been discussed. To summarize, our use of an 
abstract object model and general relations using that 
model, along with certain features of object-oriented 
languages (inheritance, encapsulation) have made 
ANSWER easy to maintain. The expert system is being 
maintained by one of the three original developers. Based 
on his experience, we estimate that adding new 
functionality to ANSWER takes only about one-half the 
development time that would be required to add the same 
functionality to the 4ESS-ES. In particular, based on our 
use of a fairly generic device model, he frequently finds 
that much of- the code necessary to implement the new 
functionality is already present in the system. Finally, we 
believe that this reuse has led to higher quality code, with 
fewer bugs. 
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Conclusion 
The use of both rule-based and object-oriented technologies 

- -?---- in ANSWEK has proven to be highiy effective. BY 
providing an abstract device object with diagnostically 
motivated affective relations, a simple form of model- 
based reasoning was able to be applied to a domain 
normally too complex for such methods. Thus, this 
approach has led to a middle-ground between model-based 
reasoning and heuristic (ad-hoc) first generation expert 
systems. The use of object technology has also provided a 
principled approach for designing, implementing and 
organizing the expert system and is responsible for 
ANSWER being a more comprehensible and maintainable 
ar.rctnm thaw, ;tc v.~PAP~.PD~~T. the AlZ'Z‘G-EC JJOLUll LllLul &La p~uuLaci~"I, Lll" TJ2"U-Y". 

Our experience with R++ and the modeling approach 
described in this paper has been very positive. In fact, we 
have been surprised at how few problems we have seen 
since the application has been deployed. We attribute this 
success to the benefits of our approach, which we have 
already described in detail, as well as to the up-front work 
in developing a good, comprehensive, object model. 

ANSWER is fully deployed and is monitoring and 
maintaining all of AT&T’s 4ESS switches. Additional 
operation support systems are now being implemented 
using R++ and the approach described in this paper-using 
some design principles we have identified. Active 
development is continuing on R++, in order to enhance its 
capabilities. As mentioned earlier, R++ is now publicly 
available. 

The approach described in this paper is very important for 
one additional reason-we believe it provides a way for 
data-driven programming to enter the mainstream. 
Currently, rule-based languages are considered “AI 
languages” and are not used by the large number of 
“mainstream” developers. As we showed earlier, in 
addition to representing knowledge, rules can facilitate 
. 1~ -,~.--a ~~ ~~~~~~~ -.L .~ inter-0oJecr communicauon. By adding rules to an 
existing, popular language, these and other benefits of data- 
driven programming, long known to AI programmers, can 
be shared by a much larger population of developers. 
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