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Abstract 
A system combining genetic algorithms and a fuzzy-rule 
induction routine has been developed. Two prototype 
expert systems, one derived analytically, and one derived 
e~~pir;lcal]y by tb.e fi~q++ inrlnrtinn ..L....v..V.. system, were 

developed to evaluate the utility of expert system 
technology relative to waste nondestructive assay (NDA) 
data review. Technical review of waste NDA measurement 
data, though warranted with respect to present day waste 
NDA system capabilities, is labor intensive. Hence it is 
desirable to have an automated system to perform technical 
review. It has been shown that both the analytically and 
empirically derived expert systems produce reasonable 
results, but that the automatic system can produce fuzzy 
rules more efficiently and accurately than the analytical 
method. A visual explanation facility for fuzzy expert 
systems has also been developed. 
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Introduction 
Management of U. S. Department of Energy (DOE) 
defense generated containerized transuranic (TRU) waste 
requires determination of the entrained TRU material 
quantity and associated parameters. Nondestructive assay 
(NDA) techniques are the most common and efficient 
means to determine the TRU material quantity. Quality 
assurance objectives (QAOs) for NDA techniques used to 
characterize TRU waste destined for the Waste Isolation 
Pilot Plant are delineated in the National TRU Program 
Tramuranic Waste Characterization Quality Assurance 
Program Plan (QAPP) (DOE 1996). 

Technically justifying compliance with applicable 
requirements and @OS for the variety of TRU waste 
forms in the DOE inventory can be a complex process. 
Some waste form configurations manifest NDA system 
response complexities that diminish the ability to clearly 
establish compliance. Such complexities require that a 
technical review be performed at the data generation level 

for each assay to ensure operational boundaries are 
maintained relative to QAPP requirements. 

Technical review of waste NDA measurement data, 
though warranted with respect to present day waste NDA 
system capabilities, is labor intensive. Hence it is desirable 
to have an automated system to perform the technical 
review. Therefore, an evaluation of methods to represent 
luiowledge, reason, and make decisions was undertaken. 
The automated system must be capable of providing a 
comprehensive waste assay data assessment, and must be 
reproducible, auditable and compatible with the overall 
throughput requirements of the waste characterization 
process. Expert system technology is under consideration 
to perform this task. 

*-,-m--11--1,-- m---.?--- -, 171---- --.L t---L---- mdlyncalry Yenvea bxperr; 3ysr;em 
The prototype analytically derived expert system consists 
of a module of titzzy rules characterizing the quality of 
waste assay TRU mass estimates, as measured by the 
Stored Waste Examination Pilot Plant (SWEPP) passive- 
active neutron assay system (SAS). The expert system was 
built using the package FuzzyCLIPS (Orchard 1995), a 
fuzzy variant of the expert system shell CLIPS (Giarratano 
1994). The input to the expert system consists of various 
SAS neutron measures for a given waste assay. These are 
processed into figures of merit and passed to the expert 
system module. The expert system operates on these 
mputs to arrive at a set of confidence values for the 
particular assay. The expert system output is comparable 
to the confidence a domain expert would assign to mass 
estimates resulting from the assay in terms of compliance 
with the National TRU Program QAOs. 

SAS Fundamentals 
The analytically derived expert system design is predicated 
on the operating principles of the neutron detection, 
acquisition and data reduction technique implemented in 
the SAS. The means by which the SAS detects the 
presence of TRU materials, processes detected signals and 
reduces the information to a mass estimate defines the 
attainable ti,mctional performance and resulting assay 
validity. Waste form configuration also influences the 
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mass estimation routine. Hence, the SAS neutron 
measures input to the expert system must embed base 

The SAS has two primary modes of operation: passive 
neutron detection and active neutron interrogation. The 
SAS is currently calibrated to assay the quantity of 240Pu in 
the passive measurement mode, and 23gPu in the active 
mode. Selection of either the 24~u or 23gPu mass as the 
most appropriate measure to apply to the waste container 
assay is based on criteria coded in the SAS algorithm. 

Physically, the SAS neutron detection system consists of 
an aluminum structure supporting a top, bottom and four 
side walls, which contain neutron detection assemblies. 
The SAS chamber accommodates a 55 gal waste drum. 

All six sides of the chamber contain two types of 
detection assemblies: bare and shielded. The shielded 
assemblies are preferentially sensitive to fast neutrons, 
while the bare detection assemblies are sensitive to both 
slow and fast neutrons. This dual response system allows a 
degree of neutron energy discrimination. The combined 
response of the bare and shielded assemblies IS termed the 
system response. 

Neutrons detected in the passive mode are the result of 
TRU spontaneous fission and (a,n) neutron processes. The 
spontaneous fission neutrons are time-correlated and 
x,L~-.:-1--1 cc.-.-- *L- I-. -1 -___ A,--_-- -.l-:-l^ _-^ -^A A:--^ msurguisrlou lrwn me: (U,IIJ ~IGULIUIIS, WIIICII alt: I IUC LIIIIG- 

correlated, through a data acquisition technique known as 
coincidence event counting. In this type of counting, a 
coincident event is recorded when two or more neutrons 
are detected by the system within a specified time window. 
The coincidence signal is converted to the desired Pu mass 
using appropriate conversion factors. 

In the SAS active mode, the shielded detector assemblies 
are used to detect neutrons produced by stimulated fission 
resulting from thermal neutron interrogation. The 
interrogation neutron source is a Zetatron 14 MeV neutron 
generator located inside the cavity. The signal of interest is 
taken from a time gated count of the shielded detectors 
from 700 psec to 2700 psec following each interrogating 
neutron burst. To account for the neutron background that 
may be included in this measure, another count window is 
opened from 5.7 to 15.7 msec after each neutron burst. 
The net induced fission neutron signal used for quantifying 
the Pu mass is arrived at by taking the difference of these 
signals. The active mode also employs the response of two 
additional neutron counters: the cavity flux monitor and 
the barrel flux monitor. These monitors are used to acquire 
information regarding neutron moderation and absorption 
processes occurring in the waste matrix. 

Analytically Derived System Input Variables 
A number of sipnals from the SAS signal processing -- L-,..-- ------ v-m-~- 
modules provide output carrying the response of the 
passive and active detection assemblies and active flux 
monitors. These signals are combined into figures of merit 
that characterize the system response, and become the 
expert system input variables. Table 1 tabulates the input 
variables for each of the three SAS mass estimation modes. 
The selected variables are not all inclusive, but contain 

system response data to properly evaluate system function. 

sufficient SAS neutron response information to assess 

I-- 

Late Count Ratio Shielded Background Counts 
Early Barrel/ Barrel Flux Monitor/ 
Cavity Count Ratio Flux Monitor “-“,l_l___l”l”l”“-“lll ~“-11 ----~--111”1- 

Table 1. Expert system input variables. 

Input Variable Membership Function Definitions 
The figures of merit discussed in the previous section 
comprise the input variables to the expert system. The 
fuzzy variables Low, Medium and High are assigned by the 
domain expert to span the range of possible values for each 
input variable by defining appropriate membership 
functions. The membership function definitions are based 
on known SAS responses associated with the inventory of 
waste forms to which the SAS will be applied. Figure 1 
illustrates a typical set of membership functions. 

Active/Passive Shielded Rate Ratio 

;F fyfff p- 

0 60 80 70 lb0 130 110 lb0 

Figure 1. Typical membership function definitions. 

Analytically Derived System Fuzzy Rules 
To form the set of fuzzy rules, a table is constructed listing 
ail possibie combinations of the three input variabies (i.e., 
Low, Medium and High) for each SAS measurement mode. 
The domain expert then makes a judgment for each 
indicator combination for each measurement mode as to 
the level of confidence that should be attributed to the 
assay estimate for a particular combination. Examples of 
some active mode confidence rules are provided in 
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Table 2. Similar rule sets exist for the passive system and 
passive shielded SAS response modes. 

Each of the confidence consequents is also defined by 
membership function specifications. The confidence 
membership functions required calibration and are 
discussed in the Test Results section. 

Table 2. Active mode confidence rules. 

Explanation Facility 
Decisions in a fuzzy expert system are not arrived at via a 
simple causal chain: Producing an explanation for a given 
decision is more difficult in a fuzzy expert system than in a 
crisp expert system. In a fuzzy expert system, every fact 
that supports a given conclusion contributes in some 
degree to the final decision, and an explanation becomes an 
attempt to represent the influence of each fact on the final 
decision. Thus, an inverted tree structure was chosen to 
represent the decision process. Individual facts are shown 
in the top level of the structure (i.e., input variable names 
and their associated values). The next level displays the 
names of the rules that were fEed to arrive at a given 
decision, with lines of varying thickness connecting the 
facts to the rules. The match strength between an 
individual fact and its associated rule antecedent is 
proportional to the interconnecting line thickness. The 
bottom level of the structure is a single node representing 
the decision, in this case an assay confidence value. The 
line thickness for the line connecting a rule to the final 
decision represents the overall match strength of the rule. 
The rule match strength is the minimum match strength of 
the facts that support the rule, hence the rule strength line 
thickness is the minimum line thickness of the lines 
connecting facts to the given rule. 

Empirically Derived Expert System 
Eliciting expert knowledge through the formulation of 
fuzzy rules was resource-intensive; therefore, methods of 
automatic fuzzy rule generation from data were examined 
(Yager and Filev 1994) (Chiu 1994). One method of fuzzy 
rule generation consists of rule estimation by subtractive 
clustering, followed by gradient descent optimization. 
This process is repeated many times under the control of a 

genetic algorithm in order to find an optimal rule set. The 
rule set derived in this manner 1s referred to as the 
empirically derived expert system. 

The automatic rule generation process is an instance of 
supervised learning; therefore, correctly classified training 
and test data must be provided. The input data is some set 
of figures of merit that a domain expert has deemed 
significant. In this instance, the same figures of merit used 
in the analytically derived expert system were used in the 
empirically derived expert system. The training and test 
data was classified by a panel of domain experts. 

Automatic Rule Generation Procedure 
In subtractive clustermg, the data are viewed as 

mput/output vectors in a hyperspace, the dimension of 
which is the sum of the number of input and output 
elements. A cluster of data points in this hyperspace 
represents an approximate relationship from input to 
output, a relationship that can be represented as a fuzzy 
rule. The number of clusters to be found is not directly 
specified; instead, a parameter between zero and one called 
the cluster radius is specified. The number of clusters 
found increases as the cluster radius decreases. 

In general, for n input and m output elements in each 
datum, the generated fuzzy rules take the following form: 

if (x, matches A,) and . . . (x, matches A,) 
then (y, is B,) and . . . (y, is B,), where 

x, . . . x,, are normalized rule input values, 
y, . . . y, are rule output values, 
A , . . . A,, are exponential membership functions, and 
B , . . . B, are symmetric membership functions. 

The use of symmetric output functions allows for a simpler 
solution, in that only the centroids of the output 
membership functions need be determined. The input 
membership functions are expressed as follows: 

A,(x,) = exp(-S((x,-x,*)/o,)“), j=l..n, where 

x,* and o, are derived as discussed below. 
For simplicity, the remainder of the discussion will focus 

on the more specific case of one output element in each 
rule, or m = 1. This simplification is employed because the 
assay confidence assignment is the only output element. 

The result of the calculation A,(x,) is referred to as the 
match strength of the input x, with the associated 
membership function A,. The match strength of a rule with 
multiple inputs is the product of the component match 
strengths. This differs from the analytically derived expert 
system, in which the rule match strength is the minimum of 
the input match strengths. The rule strength is given the 
symbol 1-1 and is expressed as: 

p (xJ = exp(-.5 C ((x,-x,*)/ G,)~), j=l...n. 

Using a standard method of defuzzification (the center of 
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gravity algorithm), the output of the system is found from; 

y = Ci=,(cLiyil)/C ,=,p,, i=l...l, where 
y,* is a vector of output membership function centroids. 
The membership function parameters xj* and y,* are 

initialized from the cluster center coordinates, and the 
parameters cr, are initially derived from the cluster radius, 
where there is one vector x,* and or, for each rule in the 
system, resulting in the matrices x,, and o,,. The yi* are 
centroids of the symmetric output membership functions B. 
The rules as initialized with data found in the clustering 
phase are a tirst approximation. 

Gradient descent optimization is performed on the 
parameters xij*, yi*, and oil to fit them to the training data. 
This process is analogous to back-propagation training of 
neural networks. The following equation is the basic 
equation for back-propagation in neural networks and 
gradient descent optimization of fuzzy rule parameters: 

Z “WI = z,,,, - a 6E/6z, 
E = 0.5 ek 

where z could be an interconnection weight in a neural 
network, or any of the parameters oiJ, Xd* or y,*. The term, 
ek, is the error between the predicted and assigned 
confidence value of a given assay, and a is the learning 
rate. The learning rate is a value between zero and one, 
where low values accelerate convergence. Convergence is 
achieved when the root-mean-square (RMS) error of the 
system with respect to the training data becomes relatively 
constant (i.e., the difference in successive iteration- 
averaged RMS values is below a specified criterion). 

The back-propagation method described in (Yager and 
Filev 1994) employed incremental back-propagation. 
Other enhancements to back-propagation commonly used 
in the training of neural networks (Hassoun 1995) were 
employed in the current application, including a variable 
learning rate and the inclusion of a momentum term. The 
learning rate was initialized to a user specified value, and 
decreased in fmite steps as the convergence criteria was 
approached, resulting in an initially elevated learning rate, 
to accelerate convergence, and a reduced learning rate as 
convergence progressed, improving the effectiveness of the 
training process. The momentum term is intended to 
accelerate convergence, and involves a user specified 
factor between zero and one. Higher values of this factor 
increase the rate of convergence, but may induce numerical 
instabilities. A momentum factor set to 0.1 resulted in 
stable calculations that quickly converged. 

Genetic Algorithm Search for Rule Generation 
Parameters 
The clustering and optimization procedures just discussed 
require the specification of a cluster radius, a learning rate, 
and a convergence criteria. The performance of the 
generated system is highly dependent on the values of 
these rule generation parameters. System generation, 

given a set of rule generation parameters, can take 
anywhere from several seconds to several minutes, 
depending on the number of rule inputs and the values of 
these rule generation parameters. Because more than one 
hundred trials were typically required to achieve optimal 
performance, fmding an optimal set of rule generation 
parameters was labor-intensive and the decision was made 
to automate the search. Genetic algorithms (Goldberg 
1989) were selected to control the procedure. The C++ 
genetic algorithm class library developed at the 
Massachusetts Institute of Technology called GAlib, 
version 2.4.2, was acquired and employed in this effort. 
The application of genetic algorithms in fuzzy-system 
design has been studied by a number of authors (Heider 
and Drabe 1997) (Takagi and Lee 1993) (Karr 1991). 

To use GAlib, an initializer is defined to create a 
population of potential solutions over the space of valid 
rule generation parameters. Methods for performing 
genetic crossover and mutation are either selected from a 
set of standard methods, or defined for a particular 
problem. For example, the standard one-point crossover 
method was employed in the current application. A 
specialized mutator was defined that varied the value of a 
gene by a small delta. The set of three rule generation 
parameters -was encoded as three real-valued genes in a 
chromosome. Finally, an objective function was defined 
that scored a particular chromosome based on performance 
of the system with respect to a specified test set. The 
objective function first trained a set of rules using the rule 
generation parameters within the current chromosome, and 
then scored the derived set of rules with respect to the test 
data. To accelerate the search, if a particular chromosome 
recurred, training and testing were not repeated, rather, the 
score for that chromosome was retrieved from memory. 

The genetic algorithm employed in the current 
application assumed a constant population. The children 
replaced the parents in succeeding generations, except that 
elitism was employed. Selection of individuals for mating 
was performed by the standard roulette-wheel method, in 
which the most fit individuals have the highest probability 
of being selected for reproduction. 

A few parameters were required by the genetic 
algorithm. The population size was chosen to be six 
individuals, as this supplied a reasonable initial diversity in 
the population. The calculation was terminated by 
specifying a maximum number of generations. Two 
hundred generations was typically ample to provide 
thorough coverage of the search space. Two probabilities 
were also required: the probability of cross-over, and the 
probability of mutation. Crossover was given a probability 
of 0.9, as crossover is the primary means of expanding the 
search space. Mutation was given a probability of O.i, as 
some mutation was needed to thoroughly explore the 
search space, but too much mutation could result in the 
loss of a good solution from the population. A mutation 
probability of 0.1 may appear high, but it is appropriate to 
the number of unique individuals generated during the 
search. Six individuals per generation multiplied by 
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200 generations yields a maximum of 1200 individuals. 
But many duplications occurred, resulting in at most a few 
hundred unique individuals in the search space. Were the 
mutation probability to be much lower than 0.1, so few 
mutations would occur as to be insignificant. 

Test Results 
The results of testing both systems are presented in this 
section. To test the performance of the prototype expert 
systems, a set of SAS generated waste container assays 
with known validity confidence ratings was generated. 
Calibration of the analytically derived expert confidence 
membership functions was also required. 

Test Set Normalization 
A panel of three waste NDA experts was assembled and 
given a set of SAS generated waste assays to assign 
validity confidence ratings, on a scale from zero to ten. 
They rated their confidence in each of the three 
measurement modes of the system, for each assay. The set 
contained 99 assays evenly selected from the waste types, 
graphite, combustibles, and glass. Disagreement existed 
h,+..,,,, +h.-. ,.-,..a.+~ an +a +h, n..,...ov- ,,lnnn:C;nn+;~n .mP nnnh “EjLWGFill UlEi LyNirra CID I.” UIG pI”p bulDaIIIbaLI”u “I CIclbII 
assay, due partly to differing internal scales of judgment 
used by each expert, and partly to the considerable 
uncertainty inherent in the interpretation of NDA results. 
A normalization procedure was adopted to reduce the 
scaling bias of each expert. Assays with normalized scores 
that still did not agree between the experts were removed 
from the test set. 

The score sets for each confidence value were 
normalized as follows. The mean and standard deviation 
for each expert’s set of scores, and for all the scores 
combined were calculated. Each expert’s set of scores was 
adjusted via calculated scaling factors to have the mean 
and standard deviation of the total population. 

Where there was good agreement for each confidence 
value between all three experts the normalized confidence 
scores were considered reliable. Assays for which 
disagreement occurred were removed, yielding a total of 
67 assays in the test set. These assays were used for 
calibration of the analytically derived expert system, for 
training of the automated rule generation system, and for 
testing the performance of both systems. Sixteen assays 
were used for calibration and training, and 51 were used 
for testing. The calibration and training sets were selected 
to thoroughly represent the spectrum of confidence values. 

Analytically Derived Expert System Calibration 
During initial design of the expert system, the confidence 
membership functions were arbitrarily set to triangular 
functions of width 0.33 and centered on 0.17, 0.5, and 
0.83. These arbitrary definitions did not produce results 
consistent with the test data, hence some of the data were 
segregated and used to calibrate the confidence scale. 
Table 3 compares the calibrated and uncalibrated system 

responses, indicating an initial poor level of agreement to 
test data. 

Calibration was performed as follows: the equations 
used by FuzzyCLIPS to obtain a defuzzitied output were 
set equal to the normalized and averaged test scores for a 
selected set of 16 assays. The confidence level outputs 
produced by FuzzyCLIPS are determined by the center of 
gravity defuzzification algorithm. One equation of the 
following form was derived for each of the 16 calibration 
data points: 

X,x,* = scored confidence value, 

where each x,* is the centroid coordinate of a confidence 
membership function (Low, Medium or High), and Ci is the 
area of the same membership function, normalized by the 
sum of the areas of all contributing membership functions. 
Multiple linear regression was used to find values for the 
three confidence membership function centroids that best 
fit the calibration data points. 

I Calibrated _ ] 78% j_O’% ~--~-1111~~-1 lll_ 1 76% 
Table 3. Comparison of uncalibrated and calibrated 
analytically derived expert system performances. 

Table 4 lists the centroid values found for each 
measurement mode confidence value. The Medium 
centroid value for passive confidence were not reasonable 
(the centroid of Medium exceeded the centroid of High). 
This is due to the fact that few data points among the 
training and test data employed either the passive system or 
passive shielded Medium membership functions. Thus, 
reasonable calibration data was not available. By the same 
token, the current results are not greatly affected. 

Confidence Value Low Medium High 
Active .28 .53 .76 
Passive System .36 .80 .75 
Passive Shielded .26 .69 .87 

Table 4. Calibrated centroid values. 

System Performance Comparison 
Table 5 compares results of the prototype expert systems. 
The table indicates that the empirically derived expert 
system performed as well as or better than the analytically 
derived expert system for all modes of operation. 

Table 5. Prototype expert system performances. 

Innovative Applications 1111 



The design of both expert systems is at a prototype 
stage, intended to demonstrate the utility of the expert 
system approach to waste NDA data review. Only neutron 
measurement data was initially available to develop and 
assess the performance of the expert systems. Gamma 
spectroscopy data is also required to arrive at the final 
assay. Therefore, expert system development was limited 
by not having all the data used to determine an assay value. 
Despite this limitation, the results obtained indicate that 
even prototypes can achieve a high rate of correct 
classification when applied to actual waste assay data. 

The analytically derived expert system required 
123 rules, as implemented. The empirically derived expert 
system partitioned the input space into a total of 18 rules. 
Hence the empirically derived expert system was simpler 
in structure than the analytically derived expert system. 

With respect to performance of the genetic algorithm a 
few comments should be made. Initial attempts to find an 
optimal rule set with a manual search required one day’s 
effort for each confidence value, and produced rule sets 
that performed at about the 60% correct level. Initial 
application of the genetic algorithm located rule sets that 
performed at about the 70% correct level, and required no 
more than four hours execution time for each confidence 
value. Improvements in the genetic algorithm search 
nrn,.~,-l,,re rpanltwl in the v,m.fnmnno~ 1~vm.l~ rnnm.tnA ;n y”L”“vuu’” I”“UI~WU 111 LA_ y”lL”lllllIllUU AU * “ID I by”” Lb%.& 111 

Table 5, such that it can be confidently stated that the 
application of genetic algorithms resulted in the more 
efficient location of higher accuracy rule sets. 
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Conclusions 
Two expert systems were developed to operate on neutron 
assay data acquired using the SAS waste NDA system. 
Both systems performed well, especially considering that 
only partial waste NDA data was available for expert 
system processing (i.e. neutron data only). System 
performance was benchmarked against domain expert 
assessments of the compliance quality of the test and 
training data. The empirically derived expert system was 
more accurate than the anaiyticaiiy derived expert system 
for the passive system and passive shielded confidence 
assessments, and as good as the analytically derived expert 
system for the active mode confidence assessment. 

An important lesson learned during development is that 
an empirically derived expert system is less labor intensive 
to develop than an analytically derived expert system. This 
was due to time consuming work required to define 
analytically derived expert system fuzzy rules, fuzzy 
membership functions for the input variables and 

calibration of the analytically derived expert system output. 
Therefore, where knowledge is available in the form of 
data, future development will employ the empirical method 
of rule formation. As it is expected that analytical rule 
formation will be required in some instances, methods for 
integrating empirically and analytically derived rules into a 
common expert system architecture will be developed. 

Initial requirements on the function of the expert system 
have for the most part been demonstrated. These 
requirements include representation of domain expert NDA 
knowledge, and reasoning with supplied data and 
represented knowledge. A technique to interpret the 
empirically derived rules is planned as part of the future 
expert system development activities. At the present time 
there is ample indication that the expert system technique 
can be refined to accommodate the balance of NDA data 
( i.e., gamma measurements), needed to make a 
comprehensive assessment of waste NDA data quality in 
accordance with the National TRU Program requirements. 
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