
Control Strategies in HTN Planning: Theory Versus Practice

Dana S. Nau Stephen J. J. Smith Kutluhan Erol

Department of Computer Science,
and Institute for Systems Research

University of Maryland
College Park, MD, USA

nau@cs.umd.edu

Department of Mathematics
and Computer Science

Hood College
Frederick, MD, USA

sjsmith@nimue.hood.edu

Intelligent Automation Inc.
2 Research Place #202
Rockville, MD 20850
kutluhan@i-a-i.com

Abstract
AI planning techniques are beginning to find use in a number

of practical planning domains. However, the backward-chaining
and partial-order-planning control strategies traditionally used in
AI planning systems are not necessarily the best ones to use for
practical planning problems. In this paper, we discuss some of
the difficulties that can result from the use of backward chaining
and partial-order planning, and we describe how these difficulties
can be overcome by adapting Hierarchical Task-Network (HTN)
planning to use a total-order control strategy that generates the
steps of a plan in the same order that those steps will be executed.
We also examine how introducing the total-order restriction into
HTN planning affects its expressive power, and propose a way to
relax the total-order restriction to increase its expressive power
and range of applicability.

Introduction

Although there has been much recent interest in exploring
alternative control strategies for AI planning systems, one
aspect of the control strategy that is usually taken for
granted is the use of partial-order planning and backward
chaining. However, a backward-chaining partial-order-
planning strategy is not necessarily the best kind of
strategy to use in practical planning problems. Two
examples come from our recent use of HTN planning in
two very different application domains:

• As reported in The New York Times and T h e
Washington Post, a new version of Great Game
Products’ Bridge Baron program won the 1997 Baron
Barclay World Bridge Computer Challenge. The
competition, which was hosted by the American
Contract Bridge League (ACBL) in July 1997, is
effectively the world championship compeition for
computer bridge programs. The first two authors
helped develop this new version of the Bridge Baron
(Smith et al., 1996), incorporating HTN planning
techniques into it to improve its declarer play.

• EDAPS (Hebbar et al., 1996) is an integrated system
for designing and planning the manufacture of
microwave transmit/receive modules. EDAPS uses
HTN planning to generate process plans for proposed

Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

designs, and evaluates these plans to provide feedback
to the designer about the manufacturability of the
design. The first author is currently working with
Northrop Grumman to develop EDAPS into a product
for use in their manufacturing facility in Baltimore.

These application domains were not amenable to the
partial-order planning and backward chaining techniques
used in most AI planning systems. Instead, we developed a
total-order planning control strategy that expands tasks in
the same order that they will be executed. This control
strategy worked quite well in both application domains.

This experience has led us to question how well the
reasons normally given for using partial-order planning and
backward chaining apply to real-world planning domains—
and in this paper, we try to answer that question. In
particular, we do the following:

1. We examine some of the assumptions behind the use
of backward chaining and partial-order planning, and
conclude that these assumptions do not always apply
to HTN planning in real-world domains.

2. We describe some of the difficulties that can be caused
by backward chaining and partial-order planning, and
explain how total-order HTN planning can overcome
those difficulties.

3. While total-order HTN planning is strictly more
expressive than planning with STRIPS-style operators,
it is also strictly less expressive than unrestricted HTN
planning. We propose a way to relax the “total-order”
restriction, to produce a sound and complete forward-
search approach to HTN planning that has the same
expressive power as unrestricted HTN planning.

Overview of HTN Planning

The basic ideas used in HTN planning were originally
developed more than 20 years ago (Sacerdoti 1977; Tate
1977). To create plans, HTN planning uses task
decomposition, in which the planning system decomposes
tasks into smaller and smaller subtasks until primitive tasks
are found that can be performed directly. HTN planning
systems have knowledge bases containing methods. As
shown in Figure 1(a), each method includes a prescription
for how to decompose some task into a set of subtasks,

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

with various restrictions that must be satisfied in order for
the method to be applicable, and various constraints on the
subtasks and the relationships among them. Given a task to
accomplish, the planner chooses an applicable method,
instantiates it to decompose the task into subtasks, and then
chooses and instantiates other methods to decompose the
subtasks even further, as illustrated in Figure 1(b). If the
constraints on the subtasks or the interactions among them
prevent the plan from being feasible, the planning system
will backtrack and try other methods.

Formal analyses of HTN planning have shown that it is
strictly more expressive than planning with STRIPS-style
operators (Erol et al. 1994b), and have established
properties such as soundness and completeness (Erol et al.
1994a), complexity (Erol et al. 1996), and the efficiency of
various control strategies (Tsuneto et al. 1996, 1997). A
domain-independent HTN planner is available at
<http://www.cs.umd.edu/projects/plus/umcp/manual> for
experimental use, and domain-specific HTN planners are
being developed for several practical applications (Aarup
et at. 1994; Hebbar et al. 1996; Smith et al. 1997; Smith et
al. 1998; Wilkins & Desimone 1994).

Two Applications of HTN Planning

Contract Bridge
Although computer programs have done very well in
games such as chess, checkers, and Othello (Schaeffer
1993; Korf 1994), human experts still outperform
computers in the game of bridge. One reason for this is the
difficulty of adapting traditional game-tree search
techniques to imperfect-information games. Bridge players
normally don’t know what cards are in the other players’
hands (except for what cards are in the dummy’s hand)—
and thus each player has only partial knowledge of the state
of the world, the possible actions, and their effects. A
game tree that represents all sequences of actions that
might be possible would be much too large to be searched
within the time available during a bridge game.

For declarer play in bridge, we have developed a
different approach, that grows out of the observation that

bridge is a game of planning. The bridge literature
describes a number of tactical and strategic schemes (such
as finessing, ruffing, and crossruffing) that people combine
into plans for how to play their bridge hands. We have
taken advantage of the planning nature of bridge, by
adapting and extending some ideas from HTN planning.

To represent the tactical and strategic schemes of card-
playing in bridge, we use structures similar to HTN
methods—but modified to represent multi-agency and
uncertainty. Each multi-agent method encodes a portion
of some bridge tactic (such as finessing, ruffing, cross-
ruffing, cashing out, etc.). To generate game trees, we
apply HTN decomposition to these multi-agent methods.
This produces a game tree in which each branch represents
a move that fits into some coherent strategy. In
comparison with a brute-force game-tree search, this gives
us a smaller branching factor and a much smaller search
tree: our approach generates game trees containing only
about 305,000 nodes in the worst case and 26,000 nodes on
the average, as compared to 5.55x1044 nodes in the worst
case and 1024 nodes on the average if we had generated a
conventional game tree. Thus, our algorithm can search the
game tree all the way to the end, to predict the likely
results of the various sequences of cards it might play.

We have incorporated our HTN planning techniques for
declarer play into the latest version of Great Game
Products’ Bridge Baron program, Bridge Baron 8. As
reported in The New York Times (Truscott 1997) and The
Washington Post (Chandrasekaran 1997), a pre-release
version of Bridge Baron 8 won the latest world-
championship competition for computer bridge programs,
the 1997 Baron Barclay World Bridge Computer
Challenge. Table 1 shows how each of the contenders
placed in the competition.

The official version of Bridge Baron 8 went on the

travel by taxi … other methods

travel (x, y)

buy ticket (airport(x), airport(y)) travel (x, airport(x)) fly (airport(x), airport(y)) travel(airport(y), y)

travel by airget taxi pay driverride taxi(x,y)

buy ticket (BWI, Logan)
travel (UMD, BWI)

get taxi
ride taxi (UMD, BWI)
pay driver

get taxi
ride taxi (Logan, MIT)
pay driver

fly (BWI ,Logan)
travel (Logan, MIT)

travel(UMD,MIT)
restriction: use
only for short-
distance travel

restriction: use only for
long-distance travel

(a) methods (b) plan

Figure 1: Methods for traveling, and their use in developing a plan for traveling from U. of Maryland to MIT.

Table 1: The contenders in the Baron Barclay World
Bridge Computer Challenge, and their final places.
Program Country Performance
Bridge Baron USA 1st place
Q-Plus Germany 2nd place
MicroBridge 8 Japan 3rd place
Meadowlark USA 4th place
GIB USA 5th place

market in October 1997. During the last three months of
1997, it was purchased by more than 1000 people. More
information about Bridge Baron 8 appears elsewhere in this
conference proceedings (Smith et al 1998).

Process Planning for Microwave Modules
Microwave transmit/receive modules are complex
electronic devices that are used in such applications as
radars and satellite communications. These modules
include a number of analog and digital components
mounted on a substrate. Since these modules operate in the
1-20 GHz range, the location and orientation of the
components on the substrate—and the dimensions and
location of the printed wiring—affect the electrical
performance. Thus the design of these modules is a
complex task.

As with many manufactured products, the cost of
manufacturing microwave modules is largely determined
by decisions made while the modules are being designed.
Thus, while a designer is producing a design, it is
important to consider how the design decisions will affect
not only the design’s performance but also its potential
manufacturing cost.

EDAPS (Electro-Mechanical Design and Planning
System) is a toolkit to aid in this task. It integrates
electronic design with mechanical design by incorporating
a commercial electronic CAD tool (Hewlett Packard’s
EEsof) and a mechanical CAD tool (Bentley Systems’
Microstation). Furthermore, it uses an HTN planning
system to generate manufacturing process plans from the
CAD models. Manufacturing a microwave module
involves both mechanical operations (to produce holes and
pockets in the substrate) and electronic operations (such as
artwork generation and soldering operations). Each of
these is discussed briefly below:

• For complex machined parts it can be quite difficult to
generate good process plans (Nau et al. 1995). In
particular, if the part geometry is complicated, it can
be very difficult to determine what machining
operations to use in what order, and how best to clamp
the part to hold it in place during machining.
However, for microwave modules the geometry of the
substrate is relatively simple, and thus the task is
considerably easier. Since there are few interactions
among the features to be machined on the substrate, it
is possible to find a one-to-one correspondence
between machined features in the substrate and the
machining operations that will be used to make them.
It is easy to encode the machining processes using
HTNs, by representing each process with an HTN
method, and easy to instantiate these methods to find
process orderings that work.

• For electrical operations such as artwork generation
and soldering, the process structure is more
complicated than for the mechanical operations—but it
decomposes naturally into tasks and subtasks that are
performed in a fixed sequence. This decomposition

hierarchy can be represented quite naturally using
HTNs, making it easy to develop plan details
depending on the details of the design.

Once EDAPS has generated a process plan, it does
calculations to estimate the plan’s time, cost, and product
quality. By generating and comparing several plans and
displaying the pareto-optimal ones to the user, this allows
the user to select the best plan and to make an informed
decision about the manufacturability of the design.

Comparison with Conventional Planning

Both the Bridge Baron and EDAPS required some
extensions to the usual formulation of HTN planning:

• The Bridge Baron needed ways to represent and
reason about possible actions by other agents (such as
the opponents in a bridge game), as well as uncertainty
about their capabilities (for example, lack of
knowledge about what cards they have).

• EDAPS needed a way for the planner to interact with
CAD modelers to get information about the product to
be manufactured.

In order to incorporate these extensions, we found it
necessary to restrict the ways in which the Bridge Baron
and EDAPS go about generating plans. Both the Bridge
Baron and EDAPS use total-order planning, and both
expand tasks in a “left-to-right” order, i.e., in the same
order that the tasks will be executed later. For example, in
Figure 1, this control strategy would plan the steps in
exactly the order in which they appear in Figure 1(b).

In contrast, most planning systems described in the AI
planning literature operate using partial-order planning and
backward chaining. Below, we examine the assumptions
that have led to this preference, and explain why those
assumptions do not apply to the Bridge Baron and EDAPS.

Backward Chaining
Most AI planning systems use some form of goal-directed
search to improve the efficiency of planning by reducing
the branching factor of the search space. One of the most
common kinds of goal-directed search is backward
chaining, in which the planner chooses some condition that
needs to be achieved (either because it is specified as a
goal or is a precondition for an operator that is already in
the plan) but has not yet been achieved, and looks for a
way to achieve it.

For example, in the blocks-world problem shown in
Figure 2, suppose the basic available planning operator is

Initial state Goal condition

C D E
H I JG

A B A

B
C

F
K L

Figure 2. A planning problem that illustrates the
motivation for backward chaining.

the operator move(X,Y), which can move X to Y if X is a
clear block and Y is either the table or a clear block other
than X. Then in the initial state there are 36 applicable
instances of the “move” operation, but only one of them
(namely move(B,C)) is of any use in achieving the goal. If
a planner were to develop plans by searching forward from
the initial state and considering all operator instances that
are applicable at each point, it might easily search down
lots of wrong paths before finding the right one. Instead,
the planner focuses on achieving the goal conditions
on(A,B) and on(B,C); thus, it will immediately look at the
only planning operations that can possibly be relevant:
move(A,B) and move(B,C). Some of the assumptions
embodied in this example include the following:

• The number of operators that are applicable at each
state of the world is generally higher than the number
of operators capable of producing that state of the
world. Thus, if we do forward chaining, the search
space will have a higher branching factor than if we do
backward chaining.

• Many of the paths in the search space can be much
longer than the length of the plan we are trying to find.
If we go down the wrong path, it may take a long time
to discover this and backtrack to another path, so it is
very important to minimize the number of paths we
explore.

In contrast, the domains addressed by the Bridge Baron and
EDAPS have the following characteristics:

• There may be many paths to goal states, and we want
to find the optimal one. Most of the paths in the
search space have length similar to the length of the
plan we are trying to find, and many of these paths
may actually lead to feasible plans. Although the
problem can be very search-intensive, the search arises
from examining many different feasible plans in order
to try to find a good plan.

• HTN planners do not have to do backward chaining in
order to do goal-directed search. In an HTN planning
system, the goal is specified as a task or a task
network. The planner will not consider every planning
operator that is applicable to the current state, but only
those that occur in HTN methods that apply to the task
it is trying to accomplish. Often only one or two
methods are applicable—the rest get pruned.

Partial-Order Planning
In a planning problem where there are several goals to
achieve, a backward-chaining total-order planner such as
STRIPS (Nilsson 1980) will plan for the individual goals
one at a time, developing a complete plan for each one
before going on to the next. This approach has difficulty
with deleted-condition interactions such as the well known
Sussman anomaly (Waldinger 1990).

The discovery of deleted-condition interactions has
sometimes led researchers to conclude that unless a
planning has explicit mechanisms for detecting and
handling deleted-condition interactions, the planner is

incomplete (i.e., it will sometimes fail to find a plan when
in fact a plan exists). However, this conclusion is
incorrect. Although STRIPS’s total-order backward-
chaining algorithm is incomplete, total-order forward
chaining is complete: a breadth-first search that does total-
order forward chaining will generate every possible plan
for a problem. Thus, as shown by Gupta and Nau (1992), a
simple total-order forward-chaining strategy has no
difficulty with deleted-condition interactions, even though
it has no explicit way of detecting and handling these
interactions.

Another use of partial-order planning is to prevent
excessive backtracking during the planning process, by
avoiding premature commitments to the order of the steps
in a plan. However, in the planning domains discussed in
this paper, avoiding commitments to the order of the steps
would not prevent much backtracking, primarily because
there often is only one logical order in which to perform
the steps.

Difficulty with Backward Chaining and Partial-
Order Planning
The previous sections have shown that the reasons
normally used to motivate the use of backward chaining
and partial-order planning do not necessarily apply to HTN
planning in real-world domains. In this section, we argue
that in some real-world domains, backward chaining and
partial-order planning can cause substantial difficulty. This
derives primarily from that fact that if a planner is
searching backward from the goal or is developing a
partial-order plan, it often does not know the input state for
each of its planning operators, which makes it difficult to
reason about those planning operators. For example, in
Figure 3, we cannot tell whether or not Step s3 is
executable unless we know whether Step s2 comes before
Step s3, whether it comes before Step s1, whether z=y, and
whether x=y.

The standard way for AI planning systems to handle this
problem is by requiring each planning operator to have its
constraints and effects represented as lists of logical atoms,
so that the planner can partially instantiate those atoms
based on what things it does know. Such a representation
makes planning possible, provided that the planning
operators can represented in this fashion—but it makes it
very difficult for the planner to do a number of things that
may be important for realistic planning:

• doing complex numeric calculations (e.g., computing
probabilities, kinematic calculations, or monetary
calculations);

• interacting with external information sources (e.g.,
sensors, image analysis programs, or CAD modelers);

step s2
precondition p(w)

step s3
delete p(v)

step s1
add p(u)

Figure 3. A partially-ordered plan.

• dealing with imperfect-information domains or multi-
agent domains (such as contract bridge, negotiations,
or military campaign planning).

Because the Bridge Baron and EDAPS expand tasks in the
same order in which those tasks will be performed when
the plan executes, this means that when they plan for each
task, they already know as much as it is possible to know
about what the state of the world will be at the time that the
task will be performed. Consequently, the preconditions of
each method could be written as arbitrary computer code,
rather than as stylized logical expressions. This makes it
feasible for EDAPS to make queries to a CAD modeler
while developing a manufacturing plan, or for the Bridge
Baron to do the complex numeric computations needed for
reasoning about the probable locations of the opponents'
cards in contract bridge.

For another example, consider finessing. This is a bridge
tacticin which the declarer tries to win a trick with a high
card, even though the opponents have a higher card.
Depending on what cards the opponents have in their hands
and how they choose to play them, the declarer may need
to do different things as the finesse progresses; and to
handle this, the Bridge Baron contains a table of twenty-six
finesse situations. A partial-order planner might try using a
finesse method while leaving some uninstantiated variables
in the finesse method’s preconditions, and then later in
planning try to achieve these preconditions through the
play of tricks earlier in the deal. Such a planner would
have to decide which of the twenty-six situations to try to
achieve—and it would not be immediately obvious which
of them were even possible to achieve.

In contrast, because the Bridge Baron uses total-order
planning to plan its declarer play, it would not try to apply
any of the finesse methods until it had developed a partial
plan resulting in a finesse situation. Furthermore, if it did
generate a situation, it could easily check (using arbitrary
computer code) whether the situation is an instance of one
of the twenty-six different possible finesse situations—and
then apply a finesse method, or not, as appropriate.

Theoretical Considerations

In STRIPS-style planning, total versus partial-order
planning is an algorithmic issue; it does not affect the set
of planning problems that can be represented or solved
using STRIPS-style planning operators. However, the same
is not true of HTN planning. As we explain below, only a
proper subset of HTN planning problems can be
represented if we force every method and the initial task
network to be totally ordered. We also present a
commitment strategy that will keep the task networks
mostly totally-ordered without compromising the
soundness or completeness of the planner.

Expressivity
Given a partially-ordered task network containing non-
primitive tasks, in order to enforce the total-order

restriction, one can consider enumerating all possible total
orderings consistent with the partial order. However, this
enumeration does not cover the whole set of candidate
solutions for the original task network, because it precludes
the possibility of interleaving subtasks of the non-primitive
tasks in the task network. Below is an intuitive example:

Suppose you want to see a movie and have popcorn
while you are doing so.

• The primitive tasks are Buy-Movie-Ticket, Buy-
Popcorn, and Find-Seat; these tasks must be performed
in this order (because you can only buy popcorn at the
concession stand, which you can only get to if you
have a ticket; and you certainly can’t buy popcorn
after you’ve found your seat.)

• The complex task is Watch-Movie, which decomposes
into Buy-Movie-Ticket and Find-Seat.

An HTN planner starts out with the tasks Buy-Popcorn and
Watch-Movie. A total-order planner must impose some
ordering on these tasks, but neither ordering works: Buy-
Popcorn before Watch-Movie leads to the primitive task
sequence Buy-Popcorn, Buy-Movie-Ticket, and Find-Seat,
but Buy-Movie-Ticket must be performed before Buy-
Popcorn; and Watch-Movie before Buy-Popcorn leads to
the primitive task sequence Buy-Movie-Ticket, Find-Seat,
and Buy-Popcorn, but Buy-Popcorn must be performed
before Find-Seat.

In contrast, a partial-order planner need not impose some
ordering on Buy-Popcorn and Watch-Movie. It can start
by decomposing Watch-Movie into Buy-Movie-Ticket and
Find-Seat, and then interleaving Buy-Popcorn between
Buy-Movie-Ticket and Find-Seat to produce a final plan.
Thus, the expressivity of a partial-order HTN planning is
stronger than the expressivity of a total-order HTN
planning. This assertion can be proved using the definitions
of complexity-based expressivity, model-theoretic
expressivity, and operational expressivity developed by
Erol et al. (1994b).

As reported in Erol et al. (1994b), the complexity of
totally-ordered HTN planning is EXPSPACE-hard, and in
DOUBLE-EXPTIME. In comparison, the complexity of
HTN planning without this restriction is semi-decidable.
Thus, from the computational-complexity perspective,
totally-ordered HTN planning is significantly less
expressive. Total-order HTN planning precludes the
possibility of interleaving subtasks from different non-
primitive tasks, thus eliminating inter-task interactions to a
large extend. As a result, specialized algorithms that make
use of this extra information can be developed.Note that
the total-order restriction places HTN planning at the same
complexity level as STRIPS-style planning, which is
EXPSPACE-complete.

From the perspective of operational and model-theoretic
expressivity, total-order HTN planning lies strictly between
STRIPS-style planning and unrestricted HTN planning.
Any problem represented in STRIPS language can be
mapped to a total-order HTN planning problem. One such
mapping is presented in (Erol et.al. 1994b). Obviously any
total-order HTN planning problem can be represented by

the unrestricted HTN language. On the other hand, total-
order HTN planning is not as expressive as the unrestricted
HTN language: The set of plans for any total-order HTN
problem is a context-free set. The set of solutions to
unrestricted HTN planning problems may form arbitrary
intersections of context-free sets, which properly contain
context-free sets. Total-order HTN planning is strictly
more expressive (with respect to operational and model
theoretic expressivity) than the STRIPS language because
the set of plans to any STRIPS-style planning problem
form a regular set, which is properly contained in the set of
context-free sets.

Increasing Expressivity by Relaxing the Total-
Order Restriction
Our experience in practical planning applications indicates
that most planning problems have tight ordering
constraints. This feature can be utilized to develop
specialized, efficient planning algorithms. However, some
parts of a planning problem may not be totally-ordered, and
we need to be able to deal with those problems without
compromising soundness or completeness. As explained in
the previous section, simply enumerating all total orderings
consistent with the constraints in the task network would
sacrifice completeness. In this section, we present a
commitment strategy that will address this issue.

A commitment strategy, in the context of HTN planning,
refers to the selection of the refinement strategy to be
applied to the current task network. Erol et al. (1994b)
presented a sound and complete HTN planning system
called UMCP. UMCP’s basic planning algorithm, which is
based on refinement search, is as follows:

1. Input a planning problem P=<d,I,D>
2. Initialize OPEN-LIST to contain only d
3. if OPEN-LIST is empty then return “no solution”
4. Remove a task network tn from the OPEN-LIST
5. if tn is primitive, tn’s constraint formula is “TRUE”

andall committed constraints have become true
then return tn as a solution

6. Pick a refinement strategy R for tn
7. Apply R to tn. Insert the resulting set of task

networks into OPEN-LIST
8. Goto Step 3.

The UMCP planner utilizes two refinement strategies (Step
6): Task decomposition refinement involves retrieving the
set of methods associated with a non-primitive task in the
task network, and then for each method generating a new
task network by expanding the selected non-primitive task.
Constraint enforcement refinement involves making the
selected constraints necessarily true by restricting the
possible values for variables and task orderings in the task
network. Restrictions on possible values of variables and
task orderings are stored in specialized data-structures,
associated with each task network. Both of the refinement
strategies are provably sound, complete, and systematic. As
long as we give UMCP a sound and complete refinement

strategy to use in Step 6, UMCP as a whole will be sound
and complete. Below, we describe how to implement a
sound and complete refinement strategy for UMCP that
will explore earlier tasks first, while giving priority to
ordering commitments, as well as variables that appear in
earlier tasks.

Given a task network tn, let tasks(tn) denote the set of
tasks in tn. Our modified refinement strategy for UMCP
will construct a totally-ordered set of ground primitive
tasks called head(tn), such that these tasks are ordered to
be before every other task in tn. Intuitively, head(tn)
corresponds to a prefix of the final plan. In the initial task
network input given to our modified version of UMCP,
head(tn) is empty. Our refinement strategy will add ground
primitive tasks to head(tn) as the planning proceeds. At
the time that a solution is found, head(tn) will contain all
the tasks in the final task network, and thus head(tn) will
be the plan. Given a task network tn, here is how our
refinement strategy will select what refinement to perform
in Step 6 of UMCP:

1. If there are any constraints involving tasks in head(tn),
then select constraint enforcement on them.

2. Let ϕ be the set of all tasks in tasks(tn) – head(tn) that
are not necessarily ordered to come after any other
tasks in tasks(tn) – head(tn). If ϕ contains non-
primitive tasks, then select task decomposition
refinement on those tasks.

3. If ϕ consists of only primitive tasks, then for each
ground linearization of those tasks in ϕ , generate a
new task network where the ground linearization is
appended to the head(tn).

Refinement strategies 1 and 2 are from UMCP’s original
refinement strategies, and hence they are provably sound,
complete, and systematic. These two refinement strategies
are biased towards handling constraints and compound
tasks that appear earlier in the task network.

Refinement strategy 3 enumerates all possible orderings
and variable bindings for a set of primitive tasks in tn,
which are already ordered before every other task in tn
except for those in tail(tn). Since those tasks are primitive,
enumeration of their all possible ground linearizations
preserves soundness, completeness, and systematicity.
Note that this schema circumvents the problem with
enumerating all possible orderings of the input task
network tn right away: tn may contain non-primitive tasks,
and ordering them would preclude the interleaving the
subtasks of the non-primitive tasks.

Conclusions

AI planning is becoming increasing useful in practical
planning problems—but the techniques that work well in
practice are not always the ones that AI planning
researchers might expect. For example, in developing
successful HTN planning systems for two different
practical problems, we found it better not to use the
“traditional” techniques of backward chaining and partial-

order planning, but instead to develop a total-order
planning control strategy that expands tasks in the order
that they will be executed.

In this paper we have examined the assumptions behind
backward chaining and partial-order planning, and have
explained why these assumptions do not always reflect the
characteristics of real-world planning problems. We have
further explained how backward chaining and partial-order
planning can sometimes be very difficult to use in practice,
and how total-order HTN planning can overcome those
difficulties.

We have also examined the expressive power of total-
order HTN planning, and concluded that while it is strictly
more expressive than planning with STRIPS-style
operators, it is strictly less expressive than unrestricted
HTN planning. We have proposed a way to relax the
“total-order” restriction, to produce a sound and complete
forward-search approach that has the same expressive
power as unrestricted HTN planning. A promising topic
for future work will be to implement this control strategy
and try it out on a variety of planning problems.

Acknowledgements

This work was supported in part by an AT&T PhD
scholarship to Stephen J. J. Smith; Maryland Industrial
Partnerships (MIPS) Grant 501.15; Great Game Products;
by NSF grants NSF EEC 94-02384, IRI-9306580, and
DDM-9201779; ARPA grant DABT63-95-C-0037; ONR
grant N000149610888; and in-kind contributions from
Spatial Technologies and Bentley Systems. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funders.

We also wish to thank James Hendler for many helpful
discussions.

References

Chandrasekaran, R. 1997. Program for a better bridge
game: A college partnership aids industry research. The
Washington Post, Sept. 15, 1997. Washington Business
section, pp. 1, 15, 19.

Erol, K.; Hendler, J.; and Nau, D. 1994. “UMCP: A
Sound and Complete Procedure for Hierarchical Task-
Network Planning,” Proc. 2nd Int'l Conf. on AI Planning
Systems, 249-254.

Erol, K.; Nau, D.; Hendler, J. 1994. “HTN Planning:
Complexity and Expressivity.” Proc. AAAI-94.

Erol, K.; Hendler, J.; and Nau, D. Complexity results for
hierarchical task-network planning. Annals of Mathematics
and Artificial Intelligence 18:69–93, 1996.

Great Game Products. 1997. Bridge Baron.
<http://www.bridgebaron.com>.

Hebbar, K.; Smith, S.; Minis, I.; and Nau, D. 1996. "Plan-
Based Evaluation of Designs for Microwave Modules,"
ASME Computers in Engineering Conf.

Korf, R. 1994. Best-first minimax search: Othello results.
AAAI-94.

Gupta, N. and Nau, D. 1992. On the complexity of
blocks-world planning. Artificial Intelligence 56(2-3),
223–254.

Nau, D.; Regli, W.; and Gupta, S. 1995. AI Planning
Versus Manufacturing-Operation Planning: A Case Study.
IJCAI-95.

Nilsson, N. 1980. Principles of Artificial Intelligence.
Morgan Kaufmann.

Sacerdoti, E. D. 1977. A Structure for Plans and Behavior.
American Elsevier Publishing Company.

Schaeffer, J. 1993. Presentation at plenary session, AAAI
Fall Symposium.

Smith, S. J..; Nau, D. S.; and Throop, T. 1996. “A
Planning Approach to Declarer Play in Contract Bridge”,
Computational Intelligence, 12(1), 106–130.

Smith, S. J.; Nau, D. S.; and Throop, T. 1996. “Total-
Order Multi-Agent Task-Network Planning for Contract
Bridge”, AAAI-96, 108–113.

Smith, S. J.; Hebbar, K.; Nau, D.; and Minis, I. 1997.
Integrating electrical and mechanical design and process
planning. In Martti Mantyla, Susan Finger and Tetsuo
Tomiyama (ed.), Knowledge Intensive CAD, Volume 2, pp.
269-288.

Smith, S. J.; Nau, D.; and Throop, T. 1998. Success in
spades: using AI planning techniques to win the world
championship of computer bridge. IAAI-98.

Tate, A. 1977. Generating project networks. IJCAI-77,
888–893.

Truscott, A. 1997. Bridge. New York Times, 16 August
1997, p. A19.

Tsuneto, R.; Erol, K.; Hendler, J.; and Nau, D. 1996.
Commitment strategies in hierarchical task network
planning. In Proc. Thirteenth National Conference on
Artificial Intelligence, pp. 536-542.

Tsuneto, R.; Nau, D.; and Hendler, J. 1997. Plan-
refinement strategies and search-space size. In Proc.
European Conference on AI Planning.

Waldinger, R. 1990. Achieving several goals
simultaneously. In J. Allen, J. Hendler, and A. Tate
(ed.),Readings in Planning, Morgan Kaufmann, San
Francisco, pp. 118-139.

