
An Expert System for Alarm System Planning

Akira Tsurushima, Kenji Urushima, Daigo Sakata,
Hiroyuki Date, Masatomo Nakata, Yoshinobu Adachi, and Kazuhisa Takahashi

Arti�cial Intelligence Department SECOM Intelligent Systems Laboratory
Mitaka Tokyo 181, Japan

Email: akira@ai.isl.secom.co.jp

Abstract

This paper discusses the design and implementation
of ESSPL, an expert system which generates security
plans for alarm systems (Figure 1). Security planning
is the task of determining an e�cient layout of sensors,
alarms, and the associated wiring for a building. ES-
SPL uses Rule Based System technology to generate
a plan and Constraint Based technology to position
the alarm equipment. A Constraint Logic Program-
ming Language (CONTA) is developed to solve the
positioning problem.

ESSPL proved to be an excellent tool in automatic
planning in laboratory tests. Field tests were also car-
ried out and examined whether there is a drawback
to use ESSPL in the real world context. This is also
discussed in this paper.

Problem Description
SECOM Co., Ltd. is the leading security service company
in Japan, providing alarm system services to more than
400,000 subscribers over the country. When a sensor de-
tects an abnormal situation, the alarm system sends a sig-
nal to the central monitoring station. A trained response
o�cer is then dispatched to respond to the situation. To
provide high quality alarm services, the remote sensors and
equipment layout for a building is crucial. This design ac-
tivity is called security planning. 1

Security Planning

Security planning is the problem of determining an e�cient
arrangement of alarm equipment for a building based on an
analysis of its potential risks. Poor planning results in an
increase of false alarms and failures to alarm, decreasing
the overall quality of security services.
Security planning is accomplished by solving three sub-

problems; 1) alarm zoning, 2) sensor arrangement, and 3)
system integration.
Alarm zoning is the process of dividing the building into

several security zones depending on the building usage.

1
In this paper, the term planning or plan is used in a somewhat dif-

ferent manner than is typically used in the AI community. The de�nition

is close to that of design or con�guration.

Copyright 1998, American Association for Arti�cial In-
telligence (www.aaai.org). All right reserved.

Figure 1: ESSPL: The Main Window

This allows customers to arm (unarm) all of the alarms
in a given zones independently of other zones.

Sensor arrangement determines the best layout of sensors
for a building. In this subproblem, there are two important
decisions: 1) selection of the proper sensor for the situation
and 2) positioning the sensor in the most appropriate loca-
tion.

System integration connects all of the sensors which
are distributed throughout the building and introduces all
other necessary equipment to the security plan. This task
involves determining security circuits by grouping sensors,
selecting proper control equipment and peripherals, assign-
ing addresses to the sensors and connecting all of the equip-
ment.

Traditionally security planning has been undertaken by
human engineers. However, security planning is a very
complicated design task which requires experience and ex-
pertise especially for large scale buildings. Therefore there
are only a few engineers who are able to design large secu-
rity plans. This expert system was developed to overcome
these limitations.

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Image DB

User Interface

DMP

SBP CPP FCP CEP

ESSPL-TX

Figure 2: System Architecture

ESSPL : An Expert System for
Security PLanning

There is relatively little work that has been published about
the application of AI technology to the security �eld (Ward
& Sena 1986; Lamont 1988) except in the �eld of computer
security. Our work is an unique attempt to apply AI tech-
nology to the security service industry.
ESSPL (Expert System for Security PLanning)is an ex-

pert system which designs a security plan for SECOM
ALARM SYSTEM, an alarm system specially designed for
large scale o�ce buildings and multi occupancy buildings.
Figure 2 shows the system architecture of ESSPL. First,

ESSPL takes a raster image of a building oor plan from
the image database. Using the user interface subsystem,
the ESSPL user traces the basic architectural elements (e.g.
rooms, doors, windows, etc.) of a building on the raster im-
age. This template becomes the input to ESSPL and from
this point on, the system creates a security plan without
any user intervention. The completed security plan is then
output as a printout.
ESSPL consists of the following six subsystems:

1. User Interface (UI)

2. Data Management (DMP)

3. Zone Planning (SBP2)

4. Sensor Planning (CPP3 & FCP4)

5. Control Equipment Planning (CEP)

The knowledge base subsystems (SBP, CPP, FCP and
CEP) and the data management subsystem (DMP) are im-
plemented using a combination of CLIPS, SICStus Prolog,
and CONTA, a constraint programming language devel-
oped for this project. The UI subsystem is implemented in
Tcl/Tk.

2SBP|Security Block Planning
3CPP|Crime Prevention Planning
4FCP|Fire Containment Planning

User Interface
As shown in Figure 1 ESSPL has a CAD like user interface
with the following functions:

1. Create building data by tracing a oor plan

2. Edit the resulting template

3. Display the result

Since the UI has almost all basic CAD capabilities, an
user can design a plan manually without using the auto-
matic planning function. These CAD capabilities are used
to create building data and to modify the planning results.

In this project, one of the major design issues was system
exibility due to the following reasons:

� New products are frequently introduced, therefore ES-
SPL must be updated correspondingly.

� It is not possible to anticipate all necessary types of
rooms since there are almost a limitless number of types.

For the �rst problem, the UI refers to a separate database
of alarm system equipment which allows the program to be
independent of equipment information. When new equip-
ment is introduced, all the users need to do is to update the
database, which does not require program modi�cation.
For the second problem, the UI has a room type attribute

table. In ESSPL, all room types are de�ned with respect
to the following nine planning attributes:

1. appropriateness as a main �nal exit

2. appropriateness as a private zone

3. appropriateness as a entry route

4. appropriateness for general equipment placement

5. appropriateness for control equipment placement

6. appropriateness for monitoring equipment placement

7. level of intrusion risk in a lower oor

8. level of intrusion risk in a higher oor

9. type of �re detector

For example, room type `o�ce' is de�ned as 1. BAD, 2.
EXCELLENT, 3. BAD, 4. GOOD, 5. FAIR, 6. FAIR,
7. LEVEL 3, 8. LEVEL 2, 9. SMOKE DETECTOR.
Since ESSPL does not refer directly to the room types but
rather these attributes, users can introduce new room types
by setting these attributes. In this way ESSPL can handle
new room types correctly.

Zone Planning (SBP)
Zone planning arranges the rooms in the building into sev-
eral spatial units (zones) and determines each of their �nal
exits. When a customer arms a zone (i.e., all sensors in
the zone are switched on), they must leave the zone from
the �nal exit, otherwise the alarms will activate. Zones are
classi�ed into three categories: private, public, and inde-
pendent. Zones are determined by the following factors:

� room type attributes and door types

� building topology (how the rooms are connected by
doors)

� customer request



1 2

3 4

5 6

7 8

START

GOAL

NG

START

GOAL

NG

1 2

3 4

5 6

7 8

Figure 3: An example of the two paths through the same
node (node 4)

The key element in zone planning is in determining the
public zone. A public zone is a section of a building that
anyone in the building is approved to enter. A public zone
can only be armed after all other private zones are armed.
Only one public zone is allowed per building owing to the
system speci�cation, and the �nal exit of this zone is called
the main �nal exit of the building.
When determining a public zone, it is important to en-

sure that a customer can leave the building without enter-
ing any other private zones. Once a public zone is properly
determined, arranging private zones may be trivial. The
SBP subsystem searches for a route which connects the �-
nal exit of each private zone to the main �nal exit of the
building. This is accomplished by a modi�ed branch and
bound algorithm with an evaluation function

f (ni) = f (ni�1) + C(ni)

where ni is the i-th room on the path. C(ni) is deter-
mined by the value of the `appropriateness as a entry route'
room type attribute of ni as follows:

C(ni) =

8><
>:

20 if value = BAD
5 if value = FAIR
2 if value = GOOD
1 if value = EXCELLENT

In ESSPL, an user can select any door as the �nal exit
of a private zone. If a door is selected to be the �nal exit,
the two rooms connected by the door cannot be members
of the same zone. Therefore this condition must be treated
as a constraint on the search procedure. This constraint
is called FE-constraint and the set of nodes which are
a�ected by FE-constraint the prohibition node set of
the path.
For example, the graph in Figure 3 shows the room topol-

ogy in a building, where the nodes and vertices represents

rooms and doors, respectively. The box containing char-
acters `NG' represents the FE-constraint. In this example,
nodes 3 and 5 are a�ected by this; therefore they both
cannot be members of the same path. Suppose a search
proceeds through nodes 1, 3 and 4. Node 5 is now a mem-
ber of the prohibition node set because node 3 is on the
path. Therefore, the path must proceed through nodes 6,
8 and 7 (as shown in the left hand side).

Suppose a search proceeds through nodes 1, 2 and 4. In
this case, since node 3 is not on the path, the prohibition
node set is empty, allowing node 5 to be placed on the path.
Therefore the rest of the path can proceed through nodes
5 and 7 (as shown in the right hand side).

This example shows that the prohibited nodes are dy-
namically changes as the search proceeds. The whole search
procedure is as follows.

Search (start goal)

1. Form a queue of partial paths. Let the initial queue
consists of the zero-length path from the start node

2. While the queue is not empty repeat the following pro-
cedure

(a) Remove the �rst path from the queue
(b) Form new paths from the removed path by extending

one step
(c) Return the path if the goal is reached. Stop the pro-

cedure
(d) Remove the paths that violate the FE-constraints
(e) For each remaining path, do one of the following:

i. Do nothing if there is a path which has the same last
extended node, the same prohibition node set and a
higher f (ni) value in the queue

ii. Else, remove all the paths which have the same last
extended node, the same prohibition node set and a
lower f(ni) value from the queue. Insert the path
into the queue and sort it by the evaluation function
in ascending order

3. Report failure and stop the procedure

The FE-constraint is applied in step 2-(d). Since two
paths having the same last extended node may results in
two di�erent solutions due to the FE-constraint, the queue
must hold all paths rather than just the last extended
nodes. Furthermore, the optimal path cannot be deter-
mined until the goal is reached. This makes the search
procedure ine�cient, especially for large graphs. Step 2-(e)
handles this problem by pruning non-optimal paths from
the queue.

Sensor Planning (CPP & FCP)

SECOM ALARM SYSTEM can detect two types of emer-
gencies with its sensors: �re and intrusion. Security plan-
ning for both are carried out in a similar manner, therefore
this section focuses on intrusion only. Sensors for detecting
intrusion are classi�ed into two categories:



Direct Detection Sensors Sensors in this category usu-
ally monitor a speci�c item, for example a door, shut-
ter, window, etc. These sensors are mounted directly
onto the target. This category includes magnetic reed
switches, glass break sensors, etc.

Indirect Detection Sensors Sensors in this category
detect intrusions by monitoring a predetermined area.
This type of sensor is mounted away from the target.
This category includes photoelectric beams, passive in-
frared sensors, etc.

These sensors are used in conjunction with the following
detection methods:

Direct Outer Detection Intrusion detection at the
boundaries of a building by a direct detection sensor

Indirect Outer Detection Intrusion detection just in-
side building boundaries by an indirect detection sensor

Inner Detection Intrusion detection inside of a building.

Target Detection Intrusion detection by monitoring
speci�c items.

The sensor planning procedure consists of the following
four steps: 1) Target Identi�cation, 2) Threat Analysis, 3)
Sensor Selection, and 4) Sensor Positioning.

Target Identi�cation

Rooms and doors which are especially vulnerable from the
viewpoint of intrusion risks are identi�ed in this task. For
example all entrances to the building are potentially high
risk. All targets identi�ed here are candidates for monitor-
ing by alarm equipment.

Threat Analysis

Depending on the room and door type and the location of
the room, security levels are assigned to each room; these
levels designate which detection method is required, as fol-
lows:

Level 0 No detection is necessary

Level 1 Direct outer detection should be applied

Level 2 Indirect outer detection should be applied

Level 3 Direct or indirect outer detection should be ap-
plied

Level 4 Inner detection and either direct or indirect outer
detection should be applied

Threat analysis determines detection methods for each
target depending on the security level of the adjacent
rooms.

Due to physical constraints, it may not be possible to
install the proper sensors for the detection method which
the threat analysis determines as necessary. In such a case,
the detection method assigned to the target will be changed
to another method or shifted to adjacent rooms depending
on the situation.

On the basis of these detection methods, speci�c sensing
techniques, e.g. closure-con�rmation, shutter-control, etc.,
are assigned to each target.

Sensor Selection and Positioning

Sensor selection determines the type of sensor which can
accomplish the designated sensing technique. The possible
selections are:

� Direct Detection Sensors

� Indirect Detection Sensors

� A contact embedded in electric locks

� A contact embedded in elevator doors

The CPP subsystem has declarative knowledge about
sensing techniques for di�erent types of sensors. For exam-
ple, to correlate the sensor `SHTxxx' with targets which re-
quire closure con�rmation and shutter control sensing tech-
niques,

(selection-db DIRECT ENTRY-OBJECT ANY SHTxxx

closure-confirmation shutter-control)

knowledge entry is declared.

The sensor positioning task determines the number of
sensors required to monitor the targets and their coordi-
nates within the building. The details are discussed in a
later section.

Control Equipment Planning (CEP)

Equipment Selection

After sensor planning, the equipment required to integrate
the sensors into an alarm system is introduced into the
security plan, according to the following procedure:

1. Identify locations for equipment installation

2. Assign functional roles to each location to achieve desired
system operation

3. Introduce system equipment which ful�lls the functional
role

Locations identi�ed in the �rst step are as follows:

� inside and outside of the �nal exits of each zone

� building manager rooms

� rooms or spaces on each oor to keep the equipment out
of view

Each location plays an important part in achieving alarm
system operation. For example, a card reader is necessary
near the exterior of a �nal exit to unarm the alarms in
the zone and unlock the electric locking mechanism. The
functional roles UNARMING and UNLOCKING can be as-
signed to the location. A device, in this case a card reader,
can be placed at the location because it has the matching
functional roles of UNARMING and UNLOCKING.

Equipment instances are created by the following proce-
dures:

1. Determine the equipment model

2. Determine how much equipment is required for the situ-
ation

3. Determine installation location

4. Create equipment instances



Equipment Connections

System equipment introduced to the plan must be con-
nected together for the system to function properly.
SECOM ALARM SYSTEM incorporates a LAN for sev-
eral devices, thus interconnections between those devices is
relatively straightforward. However for other devices, the
connections must be made in an arbitrary manner. In ad-
dition to the sensors, SECOM ALARM SYSTEM is able
to control a portion of the building facilities (e.g. electric
locks, automatic doors, shutters, elevators, etc.). For ex-
ample, when a sensor detects a �re, all the electric locks in
the building should be unlocked automatically to allow the
occupants to evacuate. Since there are many variations in
this kind of facility control, they are carried out through ad
hoc connections. If all of these ad hoc connections are put
into rules, the resulting program would be cumbersome. To
avoid hard-coding the connection knowledge, simple case
based reasoning (CBR) techniques are used to implement
equipment connections. Therefore, we can maintain the
connection knowledge separately from the program. The
following is an example of a case.

(defcase case1

"air-conditioning and light control"

(deftype INTERLOCKING)

(defcontext ZONE ANY-ZONE)

(defcontext GOAL CONTROL-LIGHT)

(defcontext GOAL CONTROL-AIR-CONDITIONING)

(defactor *POT PO-T0210)

(defactor *RLY RL-Y5700)

(defactor *LIGHT MT-R0300)

(defactor *AIR MT-R0310)

(defrelation BLAN *POT)

(imply (defrelation BINARY *POT *RLY)

"set-signal")

(defrelation BINARY *RLY *LIGHT)

(defrelation BINARY *RLY *AIR)

)

In this example, equipment to be connected is repre-
sented by the defactor statements and the connections are
represented by the defrelation statements. Cases are trans-
formed to instances and stored in working memory prior
to reasoning. For equipment connections, the closest case
is selected by case retrieval rules and a similarity function.
Then the connection rules compare the selected case with
the equipment instances introduced by the equipment se-
lection rules and then establish the necessary connections.
The resulting connections are presented in the system dia-
gram (Figure 4).

In ESSPL, CBR is not a major inference mechanism, us-
ing only the case retrieval feature in the CBR paradigm.
Thus some advanced features such as learning, case adap-
tation or maintenance are not employed.

Figure 4: System Diagram Editor

Replanning Mechanism
Designing a building requires many changes, therefore secu-
rity planning is a long term project. Whenever the design
of a building is modi�ed, the security plan must be updated
to reect the modi�cation. Therefore, the replanning mech-
anism is an essential ESSPL feature. This mechanism must
be invoked in the following three cases:

1. The building design is modi�ed

2. Parts of a completed security plan is modi�ed by the user

3. Part of a security plan is prede�ned by the user

For the �rst case, the plan must be updated as the build-
ing design changes. ESSPL deletes the portion of the plan
which was a�ected by the modi�cation and replans the lo-
cation so that it is consistent with the rest of the plan.

In the second case, ESSPL removes the equipment which
became unnecessary due to the user action. In this case,
ESSPL does not introduce any new equipment to the plan,
even if it is determined that it is required. This is some-
times required due to the terms of the customer contract.
ESSPL is tolerant of some inconsistency arising from the
user editing.

In the third case, ESSPL simply �nishes the partially
completed plan. The user input is considered as a con-
straint in this case.

In ESSPL, the replanning is handled by the DMP sub-
system, shown in Figure 5. The user may stop the system
during the execution, display and modify the partial solu-
tion, and resume the execution. Most likely the user in-
tervention will conicts with the partial plan that was be-
ing computed, therefore the DMP subsystem resolves the



Original
Plan

Modified
Plan

DIF

SEP

differences 
identified

side-effects

Previous
Plan

changes

side-
effects

DMP

Knowledge Base

SBP

CPP

FCP

CEP

Control

User Interface

Figure 5: Replanning Mechanism

conict automatically and attempts to keep the reasoning
sound.

The DMP subsystem mediates between the user interface
and the planning knowledge bases (SBP, CPP, FCP and
CEP). It has two important roles:

1. Control the execution of planning knowledge bases

2. Prepare the proper input �les for planning knowledge
bases

The DMP subsystem consists of two parts, the DIF
and SEP. The DIF compares the original plan to the user
modi�ed plan and identi�es the changes which were made.
These changes are translated into operators such as ADD,
DELETE, CHANGE and HIDE.

The SEP identi�es any side e�ects as a result of applying
the operators to the original plan. The side e�ects are then
translated into operators. This process is repeated until all
side e�ects have been identi�ed.
Finally, the DMP modi�es and recreates the instances

of the original plan on the basis of these changes and side
e�ects. These new instances then become the input for the
next execution of the knowledge bases.

Uses of AI Technology

Sensor Positioning by Geometric
Constraints

In order to place the sensors, ESSPL must calculate the
exact placement of the sensor in the security plan. In ES-
SPL, the Sensor Placement Subsystem (SPS) deals with
this task. Since CLIPS does not have the capability to
handle geometric or numeric constraints, a constraint logic
programming language CONTA (Urushima 1993c; 1993a;
1993b) was developed to build the SPS.

In the case of indirect detection sensors, calculating their
coordinates is di�cult due to the number of geometric con-
straints to consider. For passive infrared sensors, we must

consider the following constraints to �nd a suitable posi-
tion:

1. Sensor must be placed inside of a room

2. All targets must be in its coverage area

3. Maintenance area is required

4. Coverage area should exclude windows

5. Placement near a corner of a room

To calculate the coordinates, all of these constraint must
be considered and solved. The �rst and the second con-
straints are strong constraints, thus a solution must satisfy
these two. On the other hand, the rest are weak constraints,
thus a solution should satisfy them only if possible.
The SPS generates a spatial solution (coordinates) and

checks whether the solution satis�es the above constraints.
If the solution satis�es all of the constraints, it is adopted.
Otherwise the geometric constraints are transformed to a
set of numerical equations and solved by CONTA's con-
straint satisfaction capability.

CONTA : A Constraint Programming
Language

CONTA is a general purpose constraint logic programming
language designed to solve the sensor layout problem, de-
veloped on top of Prolog. CONTA can handle numeric
equalities and inequalities as constraints like other Prolog
clauses. A programmer needs only to state numerical equa-
tions with Prolog clauses in their program. Without giving
the algorithm to solve these equations, CONTA automati-
cally calculates a solution which satis�es the constraints by
using the constraint solver (CS-Solver). CONTA has the
following features:

� CONTA can handle linear equalities and inequalities

� CONTA has the capability to resolve conicts between
constraints

� CONTA looks for a solution which satis�es as many con-
straints as possible if no solution satis�es all constraints

� The programmer can set the strength of each constraint

� The programmer can state their preferences of feasible
solutions with respect to the constraints.

These features allow CONTA to be useful for many en-
gineering applications such as scheduling and layout prob-
lems. CONTA can handle the following three types of con-
straints.

1. required constraint

All feasible solution must satisfy this constraint

2. desired constraint

A feasible solution can may satisfy this constraint if pos-
sible. A solution which violates this constraints is still
feasible.

3. preferred constraint

If there is more than one feasible solution, the solutions
are returned in the order preference as determined by
this constraint.

These constraints are expressed in equalities and inequal-
ities by using the following expressions:



(6000,6200) (11000,6200)

(1000,1200) (11000,1200)

(1100,1500)

(1100,1300)

X = 1100 :: desire
Y = 1500 :: desire
X >= 1000 :: require
X =< 6000 :: require
Y >= 1200 :: require
Y =< X + 200 :: require

X = 1100 :: desire
Y = 1500 :: desire
X >= 6000 :: require
X =< 11000 :: require
Y >= 1200 :: require
Y =< 6200 :: require

Figure 6: Positioning by CONTA

1. << : diverging inequality sign

Inequality with preference for a larger di�erence between
the right hand side and left hand side

2. �< : converging inequality sign

Inequality with preference for a smaller di�erence be-
tween the right hand side and left hand side

3. =< : unrestricted inequality sign

Inequality with no preference

4. = : equality sign

Equality

These constraints can also have weights. The program-
mer can declare the strength of the preference by setting a
weight for each constraint. For example, if there are two
conicting constraints with the same weight, CONTA will
generate a solution \in the middle" of the constraints. On
the other hand, if one constraint has a higher weight than
the other, the solution will be closer (in the case of converg-
ing inequality ) to the constraint with the larger weight.
The typical constraint

X >> 30 :: desire 5

implies that the variable X should be greater than 30 if
possible. The greater it is, the better.

The CS-Solver transforms these numerical constraints
into a linear programming standard form and solves them
using the Simplex algorithm. (Urushima 1993b)

An example of positioning a passive infrared sensor in
a room is shown in Figure 6. The polygon represents
the desired area to position the sensor considering the
required maintenance area. Supposing the spatial solu-
tion (1100, 1500) failed to satisfy the inside-of-a-room con-
straint, CONTA generates the positioning constraints by
considering the following:

1. The solution should be inside of the polygon

2. The solution should be close to the spatial solution

(10, 10)

(30, 40)

(18, 25)
X >> 10 :: desire 2
X << 30 :: desire 3
Y >> 10 :: desire
Y << 40 :: desire

Figure 7: Example of diverging constraints

The polygon is divided into two simpler polygons and
procedure is applied to each. The above constraints are
transformed into numeric constraints as shown in the boxes.
The CS-Solver solves these constraints and returns the best
solution (1100; 1200).

The following is an example of CONTA code to achieve
this. The coordinates are found by proving the CONTA
goal conta inside room.

conta_inside_room

(Point, [[XAREA, YFOOT, YTOP]|T], [X,Y]) :-

conta_near(Point, X, Y),

conta_inside_x(XAREA, X),

conta_larger_y(YFOOT, X, Y),

conta_smaller_Y(YTOP, X, Y)

;

conta_inside_room(Point, T, [X, Y]).

conta_near([Xp, Yp], X, Y) :-

X = Xp :: desire,

Y = Yp :: desire.

conta_inside_x([Xmin, Xmax], X) :-

Xmin =< X :: require,

X =< Xmax :: require.

conta_larger_y([X1, Y1, X2, Y2], X, Y) :-

A is (Y1 - Y2)/(X1 - X2),

Y >= A * (X - X1) + Y1 :: require.

conta_smaller_y([X1, Y1, X2, Y2], X, Y) :-

A is (Y1 - Y2)/(X1 - X2),

Y =< A * (X - X1) + Y1 :: require.

The use of diverging inequalities can be seen when plac-
ing a smoke detector. A smoke detector must be placed
away from any walls. Figure 7 shows how the weights at-
tached to the constraints a�ect the solution (18, 25).

Evaluation

Tests on Real Data

The ESSPL execution has been evaluated using customer
data. ESSPL has shown to be of signi�cant advantage when
generating security plans from scratch. On average, for a
small sized, 7 story o�ce building, a human engineer took
approximately 8 hours to complete the plan. A plan with
equivalent quality was achieved in 1.5 hours with ESSPL. It
is worth noting that 95% of the time was spent constructing
the input data. The execution time to actually generate the



plan was less than �ve minutes. In a large sized 15 story
building, ESSPL took 2.5 hours while a human engineer
took 2 days. The actual execution time was less than 15
minutes.

The Experiences of Field Tests

Field tests were carried out in a security planning depart-
ment which deals with large-scale security plans. In �eld
tests, ESSPL proved advantageous for automatic planning.
However few drawbacks were found in using ESSPL in the
real world context.

1. A large e�ort was required to construct the input data
by tracing the oor plans. Most of the engineers in the
department felt that it was di�cult to use and cumber-
some.

2. The side e�ects of the replanning mechanism when the
user edited the plan were unpredictable, thus the user
often found undesirable side e�ects at the end of the
replanning process.

Even though few drawbacks are exist, we can conclude
that ESSPL is very useful for security planning. We are
expecting to utilize it in the department after a few modi-
�cations.

Future Directions
After examination of the �eld test results, the following
policies were devised:

1. Automatic conict resolution of the user input is not
useful in most cases, since the users tend to be puzzled
by the unpredictable side e�ects. Instead of one function
which does everything, smaller functions, e.g. addressing,
zone planning, etc., which give the users �ner control
over the planning process will be provided.

2. Currently, there is no way to reduce the e�ort required
to construct the input data necessary for automatic zone
and sensor planning. Although these two functions are
the primary tasks in security planning, we have aban-
doned the use of these functions at this time.

Recently, the International Alliance for Interoperability
(IAI) has proposed the Industrial Foundation Class (IFC),
which is a high-level common language for building com-
plexes. We are expecting to receive most building data in
the IFC format in the near future, at which point, the prob-
lem of constructing the input data will become negligible
and the automatic planning function of ESSPL will have
full play of its ability.

Acknowledgements
The authors wish to express our appreciation to Yasuyuki
Tauchi, Muneaki Saitoh and Dr. ShinIchiro Hashimoto of
SECOM Intelligent Systems Laboratory, for their support
and encouragement. In particular, we would like to thank
Janelle Jurek Kozak, Joshua Hornik, Linda Chen and Dr.
Taesik Jeong for their work and dedication to the project.

We are grateful to Yoshikazu Shinoda for reading the paper
and providing many helpful suggestions.

References
Lamont, A. 1988. A computer model for identifying se-
curity system upgrades. In Institute of Nuclear Materials

Managment 29th Annual Meeting.

Urushima, K. 1993a. A Constraint Logic Programming
Language CONTA Ver 1.3 : Detailed Speci�cation. Tech-
nical Report AI-93-014, SECOM Intelligent Systems Lab-
oratory. in Japanese (unpublished).

Urushima, K. 1993b. A Constraint Logic Programming
Language CONTA Ver 1.3 : Functional Speci�cation.
Technical Report AI-93-016, SECOM Intelligent Systems
Laboratory. in Japanese (unpublished).

Urushima, K. 1993c. A Constraint Logic Programming
Language CONTA Ver 1.3 : Outer Speci�cation. Techni-
cal Report AI-93-013, SECOM Intelligent Systems Labo-
ratory. in Japanese (unpublished).

Ward, J. D., and Sena, K. J. 1986. Senlex : Sensor Layout
Expert System. In Proceedings 1986 International Carna-

han Conference on Security Technology: Electric Crime

Countermeasures.


