
Automated Instructor Assistant for Ship Damage Control

Vadim V. Bulitko & David C. Wilkins

Beckman Institute
University of Illinois at Urbana-Champaign

405 North Mathews Avenue
Urbana, IL 61801

{bulitko,dcw}@uiuc.edu

Abstract
The decision making task of ship damage control includes
addressing problems such as fire spread, flooding, smoke,
equipment failures, and personnel casualties. It is a
challenging and highly stressful domain with a limited
provision for real-life training. In response to this need, a
multimedia interactive damage control simulator system,
called DC-Train 2.0 was recently deployed at a Navy officer
training school; it provides officers with an immersive
environment for damage control training. This paper
describes a component of the DC-Train 2.0 system that
provides feedback to the user, called the automated
instructor assistant. This assistant is based on a blackboard-
based expert system called Minerva-DCA, which is capable
of solving damage control scenarios at the “expert” level. Its
innovative blackboard architecture facilitates various forms
of user assistance, including interactive explanation,
advising, and critiquing. In a large exercise involving
approximately 500 ship crises scenarios, Minerva-DCA
showed a 76% improvement over Navy officers by saving
89 more ships.

The Domain of Ship Damage Control
The tasks of ship damage control are vital to ship
survivability, human life, and operational readiness. Most
crises on military and civilian ships could be successfully
addressed if handled promptly and properly. Typically the
crisis management efforts on a ship are coordinated by a
single person called the Damage Control Assistant (DCA).
This person is in charge of maintaining situational
awareness, directing crisis management crews, and
managing other resources. Naturally, crisis management
tasks are challenging even for seasoned Navy officers due
to the inherent complexity of physical damage, limited
resources, information overload, uncertainty, infrequent
opportunities for realistic practice, and tremendous
psychological stress. Studies have shown that the
performance could be significantly improved by providing
more opportunities for realistic practice (Ericsson 1993,
Baumann et al. 1996). As in many other military domains,
real-life training in often infeasible or inadequate due to
the high cost and a limited number of possible scenarios.

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

The Navy has been involved in supporting the creation of
various damage control simulators to compliment
textbook training (Jones et al. 1998, Bulitko 1998a, Fuller
1993, Johnson 1994). One of these projects resulted in
creation of DC-Train 2.0, an immersive multimedia
simulator (Bulitko 1998a). The system is capable of
involved simulation including physical phenomena (fire,
flooding, smoke spread, equipment failures) and personnel
modeling (crisis management activities, casualties,
standard procedures, and communications). The physical
aspects of the scenarios are simulated from first principles
starting with a sophisticated scenario specification tool
mapping training objectives to primary damage
specifications (Grois et al. 1998). A wide range of realistic
scenarios are modeled.

However, the system, as described above, still needs a
human instructor to (1) demonstrate a successful scenario
solution, (2) provide the student with instructional advice,
(3) observe the student’s problem-solving and provide a
comprehensive critique, and (4) score performance on
various scenarios for progress evaluation and comparative
analysis purposes. While the simulator itself is
implemented with numerical and knowledge-based
simulation techniques, requirements of an automated
instructor include, first, achievement of the level of
expertise sufficient to solve arbitrary scenarios in real-
time; and, second, an ability to observe the student in real-
time, communicate with the student, and present
intelligible feedback in a natural language format. Such
functions clearly present an interesting challenge for
modern AI technology.

In this paper we present an automated instructor
assistant, called Minerva-DCA, that is capable of doing the
aforementioned four instructor functions. Minerva-DCA
has been fielded at the Navy’s Surface Warfare Officer
School (SWOS) in Newport, Rhode Island and has shown
impressive performance.

Minerva-DCA: The Automated Instructor
Assistant

AI Technology
As outlined above Minerva-DCA is a real-time problem-
solver, capable of explanation, advising, critiquing, and
scoring thus serving as an automated instructor for the

From: IAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

damage control environment. These abilities result from
utilizing an innovative combination of AI technology as
highlighted below:

1. Minerva-DCA is based on a blackboard architecture
with exhaustive deliberation on all available domain
data posted on the blackboard. This approach delivers
a comprehensive set of feasible actions that address
the current problem state.

2. A separation and explicit representation of domain and
strategy knowledge layers allows for the output of the
blackboard deliberation step to be a set of dynamically
constructed set of strategy networks. These facilitate
explanation, advising, and critiquing.

3. An Extended Petri Net envisionment-based blackboard
scheduler allows for sophisticated critiquing that
accounts for creativity on the trainee’s side.

In the following sections, we will go into the key details of
Minerva-DCA design and implementation.

Blackboard Framework
Minerva-DCA is an extended blackboard architecture
system (Hayes-Roth 1985, Carver and Lesser 1994,
Bulitko and Wilkins 1998b, Nii 1989, Larsson et al. 1996,
Park et al. 1994, Najem 1993, Park et al. 1991). The
blackboard is accessed by a number of domain knowledge
sources that constitute the domain knowledge layer.
Domain knowledge sources, however, do not operate on
their own but rather are used by the strategy knowledge
sources. The reasoning is done via the strategy networks.

Figure 1. Example of a domain rule that
provides evidence for fire hypothesis

In the next few sections we will describe the domain and
strategy level representation. This is fairly conventional in
terms of second-generation expert systems (Clancey 1985,
Clancey 1987, Chandrasekaran 1986); the innovative part
is the way the output of the domain and strategy level
unification is processed by the envisionment-based
scheduler.

Domain Knowledge Layer
Each domain knowledge source contains several Horn-
clause style domain rules related to a particular domain
topic (e.g. handling a certain type of fire). An annotated

example of an actual domain rule for the Navy damage
control domain is shown in Figure 1.

Domain knowledge and domain vocabulary are
conceptually organized in the domain graph (Bulitko
1998a) which is a graph with domain findings, hypotheses,
and actions in the vertices. Domain rules in the presented
format comprise the edges of the domain graph and thus
allow movement from one domain datum to another. The
entire decision process is roughly represented as traversing
the domain graph starting at the vertices with known
findings and eventually arriving at the vertices with
domain actions.

In order to handcode the domain knowledge layer we have
conducted a knowledge acquisition process involving: (1)
researching the Navy damage control manuals and damage
control plates (analogous to ship blueprints); (2) consulting
Navy domain experts; (3) attending classes at the Surface
Warfare Officer School (SWOS) in Newport, Rhode
Island.

Strategy Knowledge Layer
Minerva-DCA's deliberation mechanism uses a declarative
and domain-independent representation of strategy

Figure 2. Strategy goals used as nodes of the
strategy networks in Minerva-DCA

knowledge. The strategy layer of Minerva-DCA
knowledge is used to drive the deliberation process.
Depending on the new data and other blackboard contents,
Minerva performs backward or forward chaining. This
makes Minerva-DCA flexible in its reasoning process.
While domain knowledge sources reason over the lexicon
of domain findings, hypotheses, and actions the rule-based
strategy knowledge sources reason over the lexicon of
domain-independent strategy goals. Strategy goals come at

ccf(r1012,1,1,[alarm,fire,Where,Time],800, [fire, Where,
FireClass, discovered, Time],0.6,[]).
ccb(r1012,1,1,[alarm,fire,Where,TimeAlarm],800,[fire, Where,
FireClass, Status,Time],0.6).

Meaning: finding alarm indicates hypothesis fire with a
confidence of 0.6.

Top-level goals:
process_hypothesis(Hypothesis)
process_finding(Finding)
explore_hypothesis(Hypothesis)
remove_datum(Datum)

Intermediate-level goals:
applyrule_backward(Rule)
applyrule_forward(Rule)
findout(Datum)
pursue_hypothesis(Hypothesis)
test_hypothesis(Hypothesis)

Bottom-level goals:
perform(Action)
lookup(Finding)
remove(Datum)
conclude(Hypothesis)

different levels as summarized in Figure 2.
The goals are used in building the strategy networks. A

strategy network is a directed acyclic graph consisting of
strategy chains. Each chain starts with a top-level goal,
goes through the intermediate and top-level goals, and ends
with a bottom level goal that carries a domain-level action
to take. During the deliberation process the strategy
knowledge sources rules are triggered by important
findings and active hypotheses on the blackboard. The

Figure 3. An example of strategy rule
used for forward-chaining

triggering data is considered within the context of top-level
goals. For example: fire alarm finding(fire-alarm) would
lead to the top-level goal process_finding(fire-alarm). In
turn, this goal will trigger other strategy rules and thus
entail intermediate-level goals. This process eventually
results in the strategy chain network (a strategy chain
example is shown in Figure 4). Each edge in the network is
labeled with the corresponding strategy operator identifier
(e.g. pf5). Figure 3 shows an example of actual strategy
rule. Strategy operators are also implemented as Prolog
clauses. The first argument of mr is the strategy operator
identifier (in this case pf1). The second argument is the
higher level goal the operator applies to. Finally, the third
argument is the lower-level goal. So, in a way, a strategy
operator is nothing but a transition from a higher to a lower
level goals. The pre-conditions of mr are various predicates
that have to hold in order for the strategy
operator to fire. In the example shown in Figure 3 we
should apply Rule in a backward manner if:
(a) we are trying to process finding F;
(b) F is important (a ''red-flag'');
(c) there is (ccf) a domain rule (Rule) such that F is one of

its preconditions (with the required confidence factor
of CF) and Hyp is its conclusion;

(d) and finally F is known to hold with confidence factor
of at least CF.

In handcoding the strategy knowledge layer we started
with a strategy layer of Minerva-3 medical diagnosis
expert system (Park et al. 1991, Park et al. 1994) which
was a refinement of Neomycin (Clancey 1987, Wilkins
1990). The layer has then been significantly modified to
address the following major differences between damage

control decision-making and medical diagnosis domains:
(1) multiple simultaneous crises; (2) action generation; (3)
real-time autonomous operation. Details can be found in
(Bulitko 1998a).

Figure 4. A Strategy Chain Example: Order Repair-3
station to investigate compartment 01-300-2 since there
is a suspected fire in the compartment; a fire report
would confirm/disconfirm the fire hypothesis; and a
fire report could be obtained through investigation.

As we have said, for the domain and strategy knowledge
layers the described knowledge representation and
inference method are fairly conventional with respect to
second-generation expert systems (Clancey 1987, Wilkins
1990). The innovative aspect of Minerva-DCA relates to
the way the scheduler processes the output of the
deliberation level created by unification of domain and
strategy knowledge layers.

Scheduler Knowledge Layer
Minerva-DCA uses an innovative envisionment-based
scheduler with the environment model implemented as an
extended Petri Net (Bulitko 1998a). The scheduler consists
of the following main parts:

1. An Extended Petri Net (EPN) environment model is
capable of a coarse-level environment envisionment. The
model takes into account the current state of the ship as
well as the actions under consideration. It then predicts a
sequence of ship states within the 10-minute range.
Using an EPN model has a number of advantages
including the following: (1) it models the ship at a coarse
level of detail hence allowing for a high-speed operation
(up to 600 times faster than real-time) and better noisy
data handling; (2) it can model physical phenomena
(fire, smoke, flooding, etc.) as well as equipment
operation (overheating, failures, etc.) and personnel
activities (occupation, casualties, etc.); (3) it can take
proposed DCA actions as an input; (4) Petri Nets
naturally support concurrency and have a convenient

mr(pf1,process_finding(F),applyrule_forward(Rule,Hyp)) :-
 finding(F,_),
 red-flag(F),
 ccf(Rule,N,M,F,CF,Hyp,CFC,UL),
 satisfied(F,CF).

Meaning: strategy goal process_finding(F) could be reduced
to strategy goal applyrule_forward(Rule,Hyp) if there is a
domain rule Rule with F as its condition clause and the
clause is satisfied. So if we are processing finding F and
there is a rule conditioned on F then try to apply that rule.

graphical representation; (5) Petri Nets have a sound
mathematical theory and allow for various analysis and
proof methods.

2. A static state evaluator is used to evaluate the envisioned
states with regard to the state severity from the damage
control standpoint. While the EPN model describes ship
states by markings of the Extended Petri Network, the
state evaluator uses a vector form where each value
summarizes the important parameters such as the status
(engulfed, ignited, intact, etc.) and duration of the status
about vital ship components. The evaluator assesses the
severity of the state and outputs a single value: the
estimated time to ship loss (i.e. a major disaster such as a
missile magazine explosion) (Bulitko 1998a). Naturally,
lower values of the time-to-ship-lost correspond to more
severe states.

Having elicited domain knowledge from various sources,
we handcoded the Extended Petri Net model. Automated
generation of such a model is an area of current research.
The state evaluator, however, has been automatically
generated from the past scenarios in the following fashion.
While running simulated damage control scenarios we had
regularly recorded the states of the ship and time-stamped
them. Complete scenario timeline available at the end of
scenario was used to annotate the sequences of ship states
with the time-to-ship-lost. Thus, each state annotated with

Exhaustive Deliberation

Envisionment-based
Scheduling

Execution

Figure 5. Minerva-DCA Operation: the
blackboard problem-solving cycle stages

time-to-ship-lost constituted a single training example. A
collection of such training samples has been used with
well-known machine learning packages such as
NeuroSolutions’ back propagation learning engine (Haykin
1994) and C5.0 decision-tree/rule learner (Quinlan 1993).
The output of these packages comprised the state
evaluator. In the case of backpropagation learning it was an
artificial neural network while C5.0 produced a decision
ruleset. The decision ruleset has attained cross-validation
accuracy of 80-90% (Bulitko 1998a).

The Blackboard Cycle
Minerva-DCA works in cycles (Figure 5). Each cycle
consists of the following three stages:

1) Exhaustive deliberation;
2) Envisionment-Based Scheduling - qualitative

prediction, state evaluation, utilities computation;
3) Execution.

The following subsections will go into details on each of
the stages.

Deliberation. At the deliberation stage, the important data
from the blackboard are used to trigger domain rules and
build a strategy network that represents exhaustive
deliberation. Each of the strategy chains starts with a top-
level goal (e.g. process_hypothesis(fire)) and ends with a
feasible action (e.g. perform(fight_fire)). Different networks
can share different nodes. The size of the strategy network
is, at most, linear in the number of important (red-flag)
findings and hypotheses. Since the network is built in a
depth-first manner, the deliberation time is linear in the
total number of findings as well (Bulitko 1998a).

Scheduling. At the scheduling stage prediction, evaluation,
and utility computation are carried out. As mentioned
above, each strategy chain ends with a feasible action
(either internal to the system (e.g. conclude(hypothesis)) or
external or domain-level (e.g. perform(action)). While most
internal actions could be executed at once, domain-level
actions require scheduling due to the limited resources,
different priorities, and possible inconsistencies.
Scheduling stage has three substages:

(a) Envisionment-Based Scheduling: An Extended Petri
Net (EPN) predictor models the environment to
predict effects of a particular action or consequences
of a particular finding.

(b) State evaluator evaluates the predicted states and
assesses their severity levels.

(c) Utility computation module combines the outputs of
the both stages above and ranks the actions by
assessing their utility.

Execution. The last stage of the blackboard operating
cycle is execution. There are three different execution
modes: problem-solving, advising, and critiquing.

Operation Modes
The three execution modes will now be covered in detail.

In problem-solving mode, the highest-ranked domain-
level (external) action is executed. All internal actions are
also executed. Examples of internal actions include
asserting hypotheses and removing obsolete data from the
blackboard. Executing domain-level actions involves
passing the appropriate messages to the actuators (either
simulated or real). It is worth noticing that domain-level
actions could be inconsistent with each other (e.g. one of

the reasons is the existence of multiple solution paths). To
avoid potential conflicts, Minerva-DCA executes the single
top-ranked domain-level action at every cycle.

In advising mode, the system’s external actions are not
passed to the domain actuators but instead used for
advising. Specifically, we present n top-ranked actions to
the student through an Advisory Graphical User Interface
(GUI). For each action the following information is
available upon request:

a) Reasoning behind the action could be shown by
displaying the appropriate strategy chain(s) in both
graphical and textual forms. The textual form involves
generating natural language output for the action and the
top nodes of the chain (the short form) or possibly all

nodes of the chain (the long form). Indeed, the advantage
of the explicit strategy knowledge representation and
reasoning is that we can easily explain why a certain
action was suggested by simply traversing the strategy
chain and translating the nodes into a natural language.
Figure 6 shows a screenshot of the actual GUI displaying
several suggested actions and a short-form explanation
for one of them.

b) Reasoning behind the action's rank could be shown by
displaying the environment states predicted by the EPN
prediction module and their scores computed by the state
evaluator. Further details could be provided by tracking
down state evaluator’s reasoning if it allows for that (e.g.
in case with decision trees).

DO list: recommended
actions
DO list: recommended
actions

NL explanation window:
Provides a NL output for an
suggested action

NL explanation window:
Provides a NL output for an
suggested action

Toolbar: allows to
navigate the graphs and
control different options

Toolbar: allows to
navigate the graphs and
control different options

Figure 6. Minerva-DCA Advisory Graphical User Interface
features natural language explanations of the advised actions

In the critiquing mode the scheduled actions are not
passed to the actuators for execution but used to match
against actions of the subject being critiqued. The
intricate details of the approach are presented in (Bulitko
1998a) while in this section we will limit ourselves to a
brief overview.

Basically, the critiques provided are of two kinds:
errors of omission and errors of commission.

An error of omission occurs when the subject fails to
take an action associated with a critical goal. This
corresponds to a high-level goal remaining unaddressed
on the blackboard. When displaying such an error it is
easy to invoke the explanatory facilities of the shell and
generate a NL explanation on why a certain action should
be taken and the goal it would address.

Errors of commission are handled in two steps. First,
the system tries to match a subject’s action against the

actions the system has recently deliberated and scheduled
for execution. If the matching succeeds and the matching
action found was ranked low by the scheduler then we can
critique the subject by supplying the scheduler’s
reasoning (“poor action” critique). If the matching action
is not one of the top-ranked actions then we can critique
the subject by showing a better action (“suboptimal
action” critique). Finally, if there is no matching action on
the system’s side we feed the action to the envisionment-
based scheduler. The scheduler produces a rating of the
action based on the envisionment process. It may well be
that the action is better than that of the Minerva-DCA
problem solver, in which case no critique needs to be
displayed. If the action is judged by the envisionment-
based scheduler to be a poor one, then a critique is
appropriate. The envisionment process outputs the
deleterious consequences of the subjects action.

Figure 7 presents the Minerva’s Critiquing GUI
showing an error of commission critique explained. Just
like with advising, the explicit strategy knowledge
representation and reasoning process allow the critiquing

facility to be implemented naturally without an extra
dedicated critiquing expert system shell like it would with
alternative critiquing approaches such as the use of a bug
library.

Suboptimal actions
performed by the supervisor
Suboptimal actions
performed by the supervisor

NL explanation window:
Provides a NL output for a selected critique
NL explanation window:
Provides a NL output for a selected critique

Actions the supervisor should
have taken while overriding the
system

Actions the supervisor should
have taken while overriding the
system

Figure 7. Minerva-DCA Critiquing Graphical User Interface features natural
language explanations of the critiques

Hardware and software implementation details
Minerva-DCA is implemented in LPA Prolog and runs
under Windows NT. An ODBC interface integrates it into
the DC-Train simulated environment which uses
Microsoft Access databases to represent the state of the
ship and other dynamic and static domain information.
The graphical user interfaces are implemented in Visual
C++ and run as separate tasks under Windows NT. The
graphical user interfaces and Minerva-DCA exchange
information through ODBC interface and dedicated
Access files.

In our tests Minerva-DCA has been running at 50-800
blackboard cycles per second speed on a dual-Pentium II-
400MHz workstation.

Minerva-DCA Experimental Evaluation
To evaluate the performance we have run approximately
500 scenarios of the DC-Train ship damage control
simulator at the Navy officer training school in Newport,
Rhode Island and at our home laboratory. We have
compared the problem-solving performance of Minerva-
DCA to Navy officers. The results are presented in Figure
8.

Any scenario could have one of the three outcomes:
“ship lost” meaning that a major disaster such as a missile
magazine compartment explosion has occurred; “ship
possibly saved” meaning that at 25 minutes scenario time

the ship was still alive yet there were active crises; and
“ship saved” means there were no active crises at the 25-
minute mark.

In the experiments Minerva-DCA has lost 21 ships.
This is a 46% improvement over Navy officers where 39
ships were lost. Likewise, Minerva-DCA has shown a
76% improvement in the number of ships being saved
(117 vs. 28).

Analysis of the scenarios where Minerva-DCA has
failed to save the ship helped locating suboptimal
components of Minerva-DCA domain knowledge layer as
well as certain modeling problems of the DC-Train
damage control simulator. A large-scale evaluation of the
improved versions of Minerva-DCA and DC-Train is
pending.

Application Use and Pay-Off
A proof-of-principle prototype, called DC-Train 1.0, was
first used at the Navy officer training school in Newport,
Rhode Island, in March 1997. A refinement of this
system, called DC-Train 2.0, was permanently deployed
at SWOS in December 1998. It is to be regularly used in
the six-week damage control course, which has
approximately 30-50 Navy officers every six weeks. It
provides the damage control course with its first tool that
can generate arbitrarily many damage control scenarios
and thereby provide extensive and immersive whole-task
training.

To date, the controlled evaluation has been limited to

each person solving four simulated scenarios at most, and
has not involved giving the subjects feedback using the
Automated Instructor Assistant. The initial limitations on
the numbers of scenarios solved, and the withholding of
automated feedback are necessary to establish a
performance baseline. Experts have, however, validated
the accuracy of the feedback generated by the Automated
Instructor Assistant.

39

93

28
21 22

117

0

20

40

60

80

100

120

140

Ship Lost Ship Possibly Saved Ship Saved

Navy Officers Minerva-DCA

Figure 8. Minerva-DCA vs. Navy
officers experimental comparison

The primary benefits of the deployed immersive
simulator and trainer described in this paper include (1)
decreased load on the damage control course instructors,
(2) the opportunity for the students to get a
comprehensive feedback on their performance anytime,
and (3) uniform and standardized scoring with a graphical
feedback. This is in contrast to the current practice where
an instructor is always present when a student solves a
scenario, which places a very large time-demand on the
instructors.

Minerva-DCA deployment at SWOS
Minerva-DCA was developed in the Knowledge Based
Systems Group (KBS) of Beckman Institute, University
of Illinois at Urbana-Champaign. After several years of
field tests the system has been permanently installed at
the Navy officer training facility (SWOS) in Newport,
Rhode Island. An internet link to the University of Illinois
allows for real-time automated data collection and
analysis.

Since the deployment of the system at SWOS, the KBS
group has maintained DC-Train 2.0 and Minerva-DCA
packages via a close co-operation with SWOS personnel.
Maintenance has included: (1) collecting feedback from
the instructors and students; (2) sending in updates and
patches; and (3) discussing the new features and
extensions to be implemented in the up-coming versions.

Future Work
During the remainder of 1999, a group of research

psychologists will be conducting controlled experiments
to measure the training effectiveness of solving large
numbers of scenarios. They will also measure the impact
of the feedback generated by the Automated Instructor
Assistant in terms of scores, advice, and critiques. This
will provide essential information for refinement of the
system, and quantification of its utility.

Another near-term project goal is to install the DC-
Train system aboard ships for Afloat Training. All
seasoned damage control assistants aboard ships receive
weeks of refresher training every year, and DC-Train will
allow them for the first time to receive extensive whole-
task training with an computer-based damage control
simulator. This is of interest because it will be possible to
explore the efficacy of a single person solving more
scenarios than is possible within the context of a
relatively short course.

Finally, it is planned to use Minerva-DCA as a
component of a project sponsored by the Naval Research
Lab on automated intelligent control for the next
generation of ships to be built. It is called DC-ARM –
(Damage Control: Automation for Reduced Manning).
This project seeks to automated many aspects of the
damage control process (Wilkins and Sniezek 1997). We
will investigate the extent that Minerva-DCA can assist
with the automation process, and the Intelligent Assistant
can assist with providing a damage control supervisor
with real-time situation awareness.

Acknowledgements

Scott Borton, Adam Boyko, Dr. Valeriy K. Bulitko, Tony
Czupryna, Joel Hegg, Sebastian Magda, Arthur Menaker,
and Tamar Shinar have helped with Minerva-DCA
implementation and have contributed a number of
valuable suggestions. We gratefully acknowledge the
support of the SWOS personnel, in particular: CAPT
Wittcamp, CDR Shikada, CDR Kunnert, LCDR Morrill,
LT Anderson, LT Cisneros, LT Gianelli, LT Kenderick-
Holmes, DCCS(SW) Ciesielczyk, and Dave Monroe.
SWOS students and KBS members have been very
cooperative. The research has been supported in part by
ONR Grant N00014-95-1-0749, ARL Grant DAAL01-96-
2-0003, and NRL Contract N00014-97-C-2061.

References
Baumann, M.R.; Sniezek, J.A.; Donovan, M.A.; Wilkins,
D.C. 1996. Training effectiveness of an immersive
multimedia trainer for acute stress domains: Ship damage
control. University of Illinois technical report, UIUC-BI-
KBS-96008.

Bulitko, V. 1998a. Minerva-5: A Multifunctional
Dynamic Expert System. MS Thesis. Department of
Computer Science, University of Illinois at Urbana-
Champaign.

Bulitko, V.; Wilkins, D.C. 1998b. Minerva: A Blackboard
Expert System for Real-Time Problem-Solving and
Critiquing. Tech. Report UIUC-BI-KBS-98-003,
University of Illinois at Urbana-Champaign.

Chandrasekaran, B. 1986. Generic tasks in knowledge-
based reasoning: High-level building blocks for expert
system design. IEEE Expert, 1(3):23-30.

Carver, N.; Lesser, V. 1994. The Evolution of Blackboard
Control Architectures. In Expert Systems with
Applications--Special Issue on the Blackboard Paradigm
and Its Application, Volume 7, Number 1, pp. 1-30,
Liebowitz. New York, Pergamon Press.

Clancey, W.J. 1985. Heuristic Classification. Artificial
Intelligence, 27(3):289-350.

Clancey, W.J. 1987. Acquiring, representing, and
evaluating a competence model of diagnostic strategy. In
Chi, Glaser, and Farr, eds. Contributions to the Nature of
Expertise. Lawrence Erlbaum Press.

Ericsson, K.A.; Krampe, R.T.; Tesch-Romer, C. 1993.
The Role of Deliberate Practice in the Acquisition of
Expert Performance. Psychological Review, 100(3): 363-
407.

Feigenbaum, E.A. 1977. The Art of Artificial
Intelligence: I. Themes and Case Studies of Knowledge
Engineering. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 1014-1029.
Cambridge, MA.

Fuller, J. V. 1993. Measuring Damage Control Assistant's
(DCA) Decision-Making Proficiency in Integrated
Damage Control Training Technology (IDCTT) Training
Scenarios. Master's Thesis. Naval Postgraduate School:
Monterey, CA.

Grois, E..; Hsu, W.H.; Voloshin, M.; Wilkins, D.C. 1998.
Bayesian Network Model for Generation of Crisis
Management Training Scenarios. In The Proceedings of
The Tenth IAAI conference. 1113-1120. Menlo-Park,
Calif.: AAAI Press.

Hayes-Roth, B. 1985. A blackboard architecture for
control. Artificial Intelligence, 26(2):251-321.

Haykin, S. 1994. Neural Networks: A Comprehensive
Foundation. Macmillan College Publishing Company.

Jones, R.M.; Laird, J.E.; Nielsen, P.E. 1998. Automated
Intelligent Pilots for Combat Flight Simulation. In The

Proceedings of The Tenth IAAI conference. 1047-1054.
Menlo-Park, Calif.: AAAI Press.

Johnson, M. 1994. Validation of an active multimedia
courseware package for the integrated damage control
training technology (IDCTT) Trainer. Master’s thesis.
Naval Postgraduate School, Monterey, California.

Larsson, E.; Hayes-Roth, B.; Gaba, D. 1996. Guardian:
Final Evaluation. Knowledge Systems Lab, Stanford
University. TechReport KSL-96-25.

Najem, Z.H. 1993. A Hierarchical Representation of
Control Knowledge For A Heuristic Classification Shell.
Ph.D. Thesis. The Department of Computer Science.
University of Illinois at Urbana-Champaign.1993.

Nii, H.P. 1989. Blackboard Systems. In Barr, A.; Cohen,
P.R.; Feigenbaum, E.A. eds. The Handbook of Artificial
Intelligence. Volume IV, Chapter XVI. Addison-Wesley.

Park, Y.T; Tan, K.W.; Wilkins, D.C. 1991. Minerva 3.0:
A Knowledge-based Expert System Shell with
Declarative Representation and Flexible Control. Tech.
Report. UIUC, Department of Computer Science.

Park, Y.T.; Donoho, S.; Wilkins, D.C. 1994. “Recursive
Heuristic Classification”. International Journal of Expert
Systems, Volume 7, Number 4, 329-357.

Quinlan, J.R. 1993. C4.5: Programs for Machine
Learning, San Mateo, California: Morgan Kaufmann.

Wilkins, D.C. 1990. “Knowledge Base Refinement as
Improving an Incorrect and Incomplete Domain Theory”,
in Machine Learning: An Artificial Intelligence
Approach, Volume III, Y. Kondratoff and R.Michalski
(eds.), Morgan Kaunfmann, 493-513.

Wilkins, D.C.; Sniezek, J.A. 1997. An Approach to
Automated Situation Awareness for Ship Damage
Control. KBS Tech. Report UIUC-BI-KBS-97-012.
University of Illinois at Urbana-Champaign.

