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Abstract
The Wasabi Personal Shopper (WPS) is a domain-
independent database browsing tool designed for on-line
information access, particularly for electronic product
catalogs.  Typically, web-based catalogs rely either on text
search or query formulation.  WPS introduces an alternative
form of access via preference-based navigation.  WPS is
based on a line of academic research called FindMe systems.
These systems were built in a variety of different languages
and used custom-built ad-hoc databases.  WPS is written in
C++, and designed to be a commercial-grade software
product, compatible with any SQL-accessible catalog.  The
paper describes the WPS and discusses some of the
development issues involved in re-engineering our AI
research system as a general-purpose commercial
application.

Introduction 

Although electronic commerce is clearly burgeoning,
electronic product catalogs leave much to be desired.
Typically implemented as a form-based front-end to an
SQL database, these catalogs are frustrating to the user who
does not know exactly what she is looking for.  Other
catalogs rely on text search.  In one software catalog,
entering “Windows NT Workstation” brought back over a
thousand responses, since the names of compatible
operating systems are often mentioned in product
descriptions.
The Wasabi Personal Shopper (WPS) provides a
conversational interface to a database, based on the
principles of case-based reasoning.  The user examines a
suggestion from the system – an item from the catalog –
and responds to it with a critique or tweak.  The system
uses the item and the associated tweak to formulate a new
query returning a new item for consideration.  The result is
a natural traversal of the catalog, honing in on the product
that best meets the user’s needs.
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Example
The Wasabi Personal Shopper (WPS) has been applied to a
database of wines known as the VintageExchange <URL:
http://www.vintageexchange.com>.  Still in development,
VintageExchange aims to be a web-based market-maker
for individuals trading wines from their personal cellars.
When we became involved, the site had already
implemented a database of wines using descriptions and
ratings licensed from the Wine Spectator, a well-known
wine industry periodical.  Consider the following
hypothetical exchange between a user and WPS as
implemented with the VintageExchange database:

Vintage Vinnie selects a bottle from his on-line cellar
database and marks it as deleted, since he drank it last
night.  It was a 1994 Rochioli Russian River Pinot
Noir (Three Corner Vineyard Reserve).  The Wine
Spectator describes it as follows: “Delicious Pinot
Noir from the first sip. Serves up lots of complex
flavors, with layers of ripe cherry, plum and raspberry
and finishes with notes of tea, anise and spice. Tannins
are smooth and polished and the finish goes on and on,
revealing more nuances.”  (Rating: 94)

That was the last one in the case, so Vinnie checks to
see if any similar wines are available.  He selects
“Find similar.”  The system returns with ten more
Pinot Noirs, the top-most being a 1991 Williams
Selyem Russian River (Rochioli Vineyard).  It gets a
higher rating (95) from the Spectator:  “Rich, ripe and
plummy, this is generous from start to finish, dripping
with vanilla-scented fruit and spice flavors while
remaining smooth and polished. The flavors linger
enticingly. Delicious now.”

Sounds great, but Vinnie notes the price ($45) and
clicks on the “Less $$” button.  The answer is a 1988
Pinot Noir Mount Harlan Jensen from California’s
central coast.  It is still rated highly (92) and is $10
cheaper.  The description says “Packs in a load of
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fresh, ultraripe, rich black cherry, currant, herb and
spicy earth overtones. Deeply flavored and very
concentrated, with smooth, supple tannins and a long,
full, fruity finish. A distinctive wine. Drink now.”
Vinnie clicks “Buy.”

This example shows how WPS allows the user to express
his preferences without having to make those preferences
explicit in a query.  The wine that he had and liked serves
as Vinnie’s entry point into the system, and his preference
to spend less is conveyed with a simple button click. There
are about 2,400 Pinot Noirs in the system, many at the
same price and rating points. All the wines found are
described as having large quantities of fruit, being
“smooth” and “spicy”, and having long finishes.  While
these are qualities of many good wines, other comparable
Pinot Noirs are described quite differently.  For example,
an otherwise similar 1989 version of the same Mount
Harlan Jensen wine gets the following description:

Broad, rich and spicy, with nice toast, coffee and
brown sugar nuances to the basic plum and currant
aromas and flavors that linger. The finish echoes fruit
and flavor as it spreads. Approachable now, but best
after 1995.

This one lacks the fresh fruit flavors found in the previous
wine, and mentions burnt overtones (toast, coffee) absent in
the first suggestion. Attention to such subtleties lets the
WPS-enabled catalog help users find items that meet their
preferences without having to make those preferences
explicit.

FindMe Systems
The Wasabi Personal Shopper has its roots in a line of
research known as FindMe systems.1 See <URL:
http://infolab.ils.nwu.edu/entree/> for an example of a
publicly-accessible FindMe system: the Entree restaurant
guide, which has been on-line since the summer of 1996.
The FindMe technique is one of knowledge-based
similarity retrieval. There are two fundamental retrieval
modes: similarity and tweak application.  In the similarity
case, the user has selected a given item from the catalog
(called the source) and requested other items similar to it.
First, a large set of candidate entities is retrieved from the
database.  This set is sorted based on similarity to the
source and the top few candidates returned to the user.
Tweak application is essentially the same except that the
candidate set is filtered prior to sorting to leave only those
candidates that satisfy the tweak.  For example, if a user
responds to an item with the tweak “Nicer,” the system
determines the “niceness” value of that source item and
rejects all candidates except those whose value is greater.
Our initial FindMe experiments demonstrated something
that case-based reasoning researchers have always known,
namely that similarity is not a simple or uniform concept.

                                           
1 See (Burke, Hammond & Young, 1997) for a full description of
the systems involved in this effort.

In part, what counts as similar depends on what one’s goals
are: a shoe is similar to a hammer if one is looking around
for something to bang with, but not if one wants to extract
nails.  Our similarity measures therefore have to be goal-
based.  We also must consider multiple goals and their
tradeoffs, which are always involved in shopping.
Typically, there are only a handful of standard goals in any
given product domain.  For each goal, we define a
similarity metric, which measures how closely two
products come to meeting the same goal.  Two products
with the same price would get the maximum similarity
rating on the metric of price, but may differ greatly on
another metric, such as quality.
We looked at the interactions between goals, and
experimented with complex combinations of metrics to
achieve intuitive rankings of products.  We found there
were well-defined priorities attached to the most important
goals and that they could be treated independently.  For
example, in the restaurant domain, cuisine is of paramount
importance.  Part of the reason is that cuisine is a category
that more or less defines the meaning of other features – a
high-quality French restaurant is not really comparable to a
high-quality burger joint, partly because of what it means to
serve French cuisine.
We can think of the primary category as the most important
goal that a recommendation must satisfy, but there are
many other goals also. FindMe systems order these goals.
For example, in the Entree restaurant recommender system,
the ranking of goals was cuisine, price, quality, atmosphere,
which seemed to capture our intuition about what was
important about restaurants.  As part of the development of
WPS, we realized that different users might have different
goal orderings or different goals altogether.  This gave rise
to the concept of the retrieval strategy. A retrieval strategy
selects the goals to be used in comparing entities, and
orders them.  In VintageExchange, the standard goal
ordering is wine type, price, quality, flavor, body, finish,
and drinkability, but the system also has a “money no
object” strategy in which price is not considered.
Given the goal ordering in the strategy, the process of
finding the most similar candidate becomes an alphabetic
sort.  We sort the candidates into a list of buckets based on
their similarity to the source along the most important goal,
then sort each of these buckets based on the next most
important goal, creating a new list of finer-grained buckets.
(The details of the sort algorithm are discussed in [Burke,
Hammond & Young, 1997].)
One benefit of this solution is that we can iteratively reduce
the set of candidates under consideration as the sort
proceeds.  Since we are only interested in returning a small
number of recommendations to the user, we need to
preserve only enough buckets to ensure that we have
enough candidates.  Buckets farther down in the sort order
can be deleted since their contents would never be
presented.



Architecture

Our research systems showed that the fundamental idea of
FindMe worked well.  In our informal evaluations, our
prototypes returned products that users agreed were similar
to their input entries, and the process of navigation by
tweaking proved to be a natural, conversational, way to
focus in on a desired item.  We built enough systems to
demonstrate that the idea had cross-domain applicability.
Several obstacles remained to the commercialization of
FindMe.  Obviously, it would be unreasonable to expect
FindMe to be the only interface to a product catalog.  It
would have to be an add-on on to an existing product
database, most likely a relational database using SQL.
Second, all of our research systems had been custom-built.
The WPS had to be capable of navigating through catalogs
containing any type of product. So, the system needed to be
completely general and make as few assumptions about
products as possible.
Finally, a truly useful catalog system needs to provide
feedback to its owners. Because of the user’s unique
interaction with WPS, a user profile created while using the
system is uniquely valuable, revealing the user’s
preferences with respect to specific items in the inventory,
including “holes” in the product space: places where many
customers attempt the same tweak, but come up empty-
handed.
The WPS architecture was our response to these new
requirements.  It generalizes and encapsulates the previous
FindMe work, making possible a commercial-grade

application.  The architecture has five basic parts as shown
in Figure 1:
External Information Environment (B in the diagram):
We assume WPS will be running in a standard catalog
serving environment where the web server will receive
requests and forward them to WPS, possibly through an
application server.
WPS Engine (C in the diagram): At the core of the system
is the WPS Engine.  It is responsible for retrieving entities,
applying metrics, sorting and returning answers.
Knowledge Engineering (D in the diagram): The engine
knows nothing of wines, restaurants, or any other
catalogued product.  It only knows entities and their
features, and the metrics that operate on them.  Metrics and
strategies are defined as part of the configuration of the
system through a knowledge engineering step.
WPS Database (E in the diagram): In the WPS Database,
the system essentially has a copy of the product database in
its own format.  The transformation process that creates
this database essentially flattens the catalog into our
feature-set representation.  Designing this transformation is
another important knowledge engineering step involved in
building a WPS system.
Profiling and Reporting (A in the diagram): As discussed
above, the ability to profile users and identify patterns of
catalog browsing is a crucial advantage that WPS brings.
The engine creates a transaction database, recording the
history of user interactions with the system, to allow for
report generation.
The WPS architecture is a work in progress. As of this
writing, only the WPS Engine is in its final form.  Our tools
for data conversion are still domain- and database-
dependent.  We have high-level specifications and
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Figure 1. Wasabi Personal Shopper architecture



preliminary designs for the knowledge engineering tools,
but no implementations.  The configuration files for
existing WPS applications are created and maintained
manually.  We are also still implementing the transaction
logging and reporting features.

Database Integration

The most significant implementation issue we faced was
one of scale.  Our hand-built databases or Lisp data
structures could not be expected to scale to very large data
sets.  So it was imperative that our persistent store of
entities and their features be a database.  We chose
relational databases instead of object-oriented ones since
relational databases are the most widely-deployed systems
for web applications, although OODBs would have
matched our data model somewhat better.
Since we needed to be completely general, we chose a very
simple database schema.  Each entity has an entity ID,
which serves as the primary key for accessing it in the
database.  The row associated with an entity ID contains
two types of columns: single integer values and fixed
length bit fields.  The single integer columns are used for
singleton features like price, where each entity has only one
value.  The bit field columns are used to hold multi-feature
values, such as all of the flavor features of a wine.
Recall that the FindMe algorithm as originally designed
took a large set of candidates and performed a series of
sorting operations.  We used promiscuous retrieval
deliberately because other steps (such as tweaking steps)
filter out many candidates and it was important not to
exclude any potentially-useful entity.  In our Lisp
implementations, we found that applying the algorithm to a
large candidate set was reasonably efficient since the
candidates were already in memory.  This was definitely
not true in the database: queries that return large numbers
of rows are highly inefficient, and each retrieved entity
must be allocated on the heap.  Employed against a
relational store, our original algorithms yielded
unacceptable response times, sometimes greater than 10
minutes.
It was necessary therefore to retrieve more precisely – to
get back just those items likely to be highly rated by the
sort algorithm.  We needed to widen the scope of
interaction between the engine and the database.  We
considered a fully-integrated approach: building the metrics
and retrieval strategies right into the database as stored
procedures.  However, we opted to keep our code separate
to preserve its portability.
Our solution was a natural outgrowth of the metric and
strategy system that we had developed for sorting, and was
inspired by the CADET system, which performs nearest-
neighbor retrieval in relational databases (Shimazu, Kitano
& Shibata, 1993).  Each metric became responsible for
generating retrieval constraints based on the source entity.
These constraints could then be turned into SQL clauses
when retrieval took place.  This approach was especially
powerful for tweaks.  A properly-constrained query for a

tweak such as “cheaper” will retrieve only the entities that
will actually pass the “cheaper” filter, avoiding the work of
reading and instantiating entities that would be immediately
discarded.
The retrieval algorithm works as follows.  To retrieve
candidates for comparison against a source entity, each
metric creates a constraint.  The constraints are ordered by
the priority of the metric within the current retrieval
strategy.  If the query is to be used for a tweak, a constraint
is created that implements the tweak and is given highest
priority.  This constraint is considered “non-optional.”  An
SQL query is created conjoining all the constraints and is
passed to the database.  If no entities (or not enough) are
returned, the lowest priority constraint is dropped and the
query resubmitted.  This process can continue until all of
the optional constraints have been dropped.
The interaction between constraint set and candidate set
size is dramatic: a four-constraint query that returns nothing
will often return thousands of entities when relaxed to three
constraints.  We are considering a more flexible constraint
scheme in which each metric would propose a small set of
progressively more inclusive constraints, rather than just
one. Since database access time dominates all other
processing time in the system, we expect that any
additional computation involved would be outweighed by
the efficiencies to be had in more accurate retrieval.

Similarity metrics

In general, a similarity metric can be any function that
takes two entities and returns a value reflecting their
similarity with respect to a given goal.  Our FindMe
systems implemented the similarity metric idea in many
different domain-specific ways.  For WPS, we have created
a proprietary set of metrics general enough to cover all of
the similarity computations used in our other FindMe
systems and sufficient to implement the VintageExchange
system.  Internally, they are implemented as a single metric
class with a comparison-computing “strategy” object
(Gamma, et al. 1995) attached, so new metric types can be
easily added if they are needed.

Natural language processing

As the example at the beginning of this paper shows,
textual descriptions can be crucial discriminators in large
catalogs of otherwise similar objects.  We have found that
many of the databases used for electronic commerce
contain small amounts of descriptive data associated with
each product and large chunks of human-readable text.  As
of this writing, the natural language component of WPS is
not as well developed as the WPS Engine.  We have
implemented it only for the VintageExchange project, and
only now beginning to explore cross-domain applications.
However, the language of wine represents something of a
worst case for textual description, so we are optimistic that
our approach is robust.



Recall that an entity is simply a collection of features.  A
natural language description must therefore be transformed
into atomic features.  For wines, we identified four
categories of descriptive information: descriptions of the
flavor of the wine (“berry”, “tobacco”), descriptions of the
wine’s body and texture (“gritty”, “silky”), descriptions of
the finish (“lingering”, “truncated”), and descriptions of
how and when the wine should be drunk (“with meat”,
“aperitif”), and we identified the most commonly-used
terms, usually nouns, in each of these categories.  We also
identified modifiers both of quantity (“lots”, “lacking”) and
quality (“lovely”, “harsh”).
Each description was processed as follows.  First we broke
the description into phrases, then we associated each phrase
with a description category, since we had found that each
phrase usually concentrated on one aspect of the wine.  We
eliminated stopwords and performed some simple
stemming.  At this point, we had four word groups, one for
each description category, consisting of descriptive terms
and modifiers, and marked with phrase boundaries.  Using
the phrase boundaries, we associated modifiers with each
descriptive term in their scope.  For example, in the
description “a lovely fragrant explosion of cherry and
raspberry”, the “lovely fragrant explosion” refers to both of
the fruit terms.  This gave us a representation based on
terms and modifiers.
The “term plus modifier” representation was further
simplified by breaking modifiers into classes: quantity
modifiers could either refer to a large quantity (“oodles”), a
small quantity (“scant”), or a zero quantity (“lacking”);
quality modifiers could be positive (“tasty”) or negative
(“stale”).  Only the modifier count was retained.  “A lovely
fragrant explosion of cherry and raspberry” therefore
became (large-quantity  positive-quality*2 cherry) (large-
quantity positive-quality*2 raspberry), since “lovely” and
“fragrant” are both positive quality modifiers.  The
resulting representation loses the poetry of the original, but
retains enough of its essence to enable matching.
The final step was to turn this representation into an
encoding for manipulation by WPS.  Recall that features in
WPS are represented as integers.  Treating an integer as a
32-bit vector, we used the most-significant 20 bits to
represent the content term and the least-significant 12 to
represent the modifiers.  So, the encoding of our phrase
above would ultimately come down to the following two
hexadecimal integers: 803eb109, and 80388109, for
cherry and raspberry, respectively.  Note that the last three
hex digits (12 bits) are the same, reflecting the modifier
encoding, while the first 20 bits represent the particular
flavor terms.1

Preliminary analysis of other e-commerce data sets
suggests that product descriptions in general are not

                                           
1 The first three digits, 803, also happen to be the same, since
cherry and raspberry are both part of the “fruit” portion of the
flavor hierarchy and are near each other in the configuration file.
This, however, is an artifact of our numbering scheme and is not
used by the metric.

complex syntactically and concentrate on straightforward
descriptive adjectives and nouns.  Few domains have the
breadth of vocabulary present in our wine descriptions.
Our experience in building the next few WPS applications
will reveal more about the generalizability of the natural
language approach described here.

Related Work

The problem of intelligent assistance for browsing,
especially web browsing, is a topic of active interest in the
AI community.  There are a number of lines of research
directed at understanding browsing behavior in users
(Konstan, et al. 1997; Perkowitz & Etzioni, 1998),
extracting information from pages (Craven, et al. 1998;
Knoblock et al. 1998, Cohen, 1998), and automatically
locating related information (Lieberman, 1995).  Because
the web presents an unconstrained domain, these systems
must use knowledge-poor methods, typically statistical
ones.
WPS has a different niche. We expect users to have highly-
focused goals, such as finding a particular kind of wine.
We deal with database records, all of which describe the
same kind of product.  As a result, we can build detailed
knowledge into our systems that enables them to compare
entities in the information space, and respond to user goals.
In information retrieval research, retrieval is seen as the
main task in interacting with an information source, not
browsing. The ability to tailor retrieval by obtaining user
response to retrieved items has been implemented in some
information retrieval systems through retrieval clustering
(Cutting, et al., 1992) and through relevance feedback
(Salton & McGill, 1983).
Schneiderman’s “dynamic query” systems present another
approach to database navigation (Schneiderman, 1994).
These systems use two-dimensional graphical maps of a
data space in which examples are typically represented by
points. Queries are created by moving sliders that
correspond to features, and the items retrieved by the query
are shown as appropriately-colored points in the space.
This technique has been very effective for two-dimensional
data such as maps, when the relevant retrieval variables are
scalar values. Like WPS, the dynamic query approach has
the benefit of letting users discover tradeoffs in the data
because users can watch the pattern of the retrieved data
change as values are manipulated.
As discussed earlier, the closest precedent for our use of
knowledge-based methods in retrieval comes from case-
based reasoning (CBR) (Hammond, 1989; Kolodner, 1993;
Riesbeck & Schank, 1989). A case-based reasoning system
solves new problems by retrieving old problems likely to
have similar solutions.  Researchers working on the
retrieval of CBR cases have concentrated on developing
knowledge-based methods for precise, efficient retrieval of
well-represented examples. For some tasks, such as case-
based educational systems, where cases serve a variety of



purposes, CBR systems have also explored multiple goal-
based retrieval strategies (Burke & Kass, 1995).
Our use of tweaks is obviously related to CBR research in
case adaptation.  Note however, that our use of the term is
different.  Tweaking in the context of CBR means to adapt
a returned case to make it more closely match the problem
situation in which it will be applied.  The tweaks that a user
invokes in WPS are applied much differently.  We cannot
invent a new wine, or change an existing one to match the
user’s desires – the best we can do is attempt a new
retrieval, keeping the user’s preference in mind.

Future work

A key element of future releases of Wasabi Personal
Shopper will be the addition of the knowledge engineering
tools.  There are four major steps of the WPS knowledge
engineering process: (1) identifying the anticipated goals of
shoppers and their priorities, (2) mapping from these goals
to entries in the appropriate columns in the appropriate
database table, (3) isolating those elements of product data
that will serve as features, possibly performing natural
language processing, and (4) determining how similarity
should be judged between the features so extracted.
We feel that step 1 will not be difficult for marketing
experts, who already spend their days thinking about what
motivates shoppers to buy their companies’ products.  Step
2, however, will present a user-interface challenge.  We do
not want to assume that the user has any database expertise,
yet this task requires that we specify exactly what parts of a
database record correspond to the price, the color, etc.  The
most difficult task technically is step 3.  Here we are
building the system’s conceptual vocabulary, starting from
raw database entries. Finally, our inventory of similarity
metrics gives us great leverage over step 4.  We have
designed strategy-specific wizards that guide the user
through the problem of tailoring each metric.
Many e-commerce sites use some form of collaborative
filtering (Konstan et al. 1997).  These systems make
suggestions based on preferences of other users with
similar profiles.  Our profiling data could make such
systems more powerful (since we get useful data from
every browsing step, not just the final result).  One could
also imagine using collaborative filtering data to bias the
browsing process, either as part of the retrieval strategy, or
as a fallback when the tweaking process hits a dead end.
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