From: IAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

The Use of Word Sense Disambiguation in an Information Extraction
System

Joyce Yue Chai
30 Saw Mill River Rd.
IBM T. J. Watson Research Center
Hawthorne, NY 10532
jchai@us.ibm.com

Abstract

This paper describes a rule-based methodology for
word sense disambiguation and an application of
the methodology to information extraction using
rules generalized with the help of the WordNet
system. The methodology creates word sense dis-
ambiguation rules based on user trained examples
working in the domain of interest. It achieves ac-
curacy rates comparable to the best competing
methods and can be easily integrated into higher
level applications.

Introduction

Most information extraction (IE) systems have used
hand-crafted semantic resources for each application
domain, or have employed techniques for automat-
ically or semi-automatically constructing lexicons of
annotated texts in the domain (Riloff & Lehnert
1993) (Riloff 1996) (Krupka 1995). Few examples apply
general lexical semantic resources. NYU’s MUC-4 sys-
tem (Grishman, Macleod, & Sterling 1992) made some
attempt at using WordNet for semantic classification.
However, they ran into the problem of automated sense
disambiguation because the WordNet hierarchy is sense
dependent. Are the generic lexical semantic databases
useful at all for information extraction purposes? Can
we avoid the process of hand-crafting domain specific
knowledge? If so, how can we effectively use the generic
lexical semantics?

In order to apply generic resources effectively,
sense selection among the polysemies becomes im-
portant. There is a great amount of work con-
cerning Word Sense Disambiguation (WSD), espe-
cially various algorithms that can improve the accu-
racy of WSD on a predefined set of words in pre-
annotated corpora. Some recent work on WSD in-
cludes the use of the knowledge contained in a machine-
readable dictionary (Luk 1995)(Wilks et al. 1990),
supervised learning from tagged sentences (Bruce &
Wiebe 1994)(Miller 1990)(Ng & Lee 1996)(Yarowsky
1992)(Yarowsky 1994), unsupervised learning from raw

Copyright ©1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Alan W. Biermann
Computer Science Department
Duke University
Durham, NC 27708
awb@cs.duke.edu

corpora (Yarowsky 1995), and hybrid methods that
combine several knowledge sources, collocation and oth-
ers (Bruce & Wiebe 1994) (Ng & Lee 1996). Despite the
strides made in developing robust WSD algorithms, its
use as a technology in higher level applications has been
limited. Some work has shown WSD could help with in-
formation retrieval and machine translation. However,
its role in information extraction has not been investi-
gated. Furthermore, even with the best algorithm, the
question arises as to whether that algorithm is applica-
ble to real NLP systems, since most algorithms heavily
depend on large corpora of annotated text which might
not be available.

In this paper, we will describe an information ex-
traction system that applies a generic lexical semantic
resource (WordNet) and achieves competitive results.
In particular, we will give a detailed description of a
WSD algorithm that is integrated into the system and
makes the application of generic lexical semantics pos-
sible. First, we will give a brief introduction to the sys-
tem. Then we will present a rule-based WSD algorithm
and its performance on a common data set. Finally, we
will describe the integration of this WSD algorithm into
the information extraction system and its performance.

TIMES System

The Trainable InforMation FExtraction System
(TIMES) is shown in diagram form in Figure 1 where
the main processors handle Tokenization, Lexical Pro-
cessing, Partial Parsing, and Rule Learning and Gen-
eralization (Chai 1998). The Tokenizer segments the
input text into words and sentences. The Lexical Pro-
cessing stage tags words with syntactic information
from CELEX database' and semantic information from
WordNet (Miller 1990). In particular, a Semantic Type
Identifier is used to identify special semantic types such
as email and web addresses, file and directory names,
dates, times, and dollar amounts, telephone numbers,
zip codes, cities, states, countries, names of compa-
nies, and many others. The Partial Parser uses a fi-

!CELEX was developed by several universities and insti-
tutions in the Netherlands, and is distributed by the Lin-
guistic Data Consortium.

Training Phase Scanning Phase

Tokenization

Lexical Processing
Partial Parsing

Training Interface - —
Word Sense %[Rule Learning and Generalization

[Target Information
Extraction Rules WSD Rules

Automated Rule Creation Phase

Semantic Classification|
CELEX Database

Lexical Processing

Rule Application,

Target Information

Figure 1: System Overview

nite state model to discover noun phrases (NG), verb
phrases (VG), and prepositions (PG). Verb phrases are
further categorized as Verb Active (VG), Verb Passive
(VG_ED), Verb Be (VG_BE), Verb Gerund (VG_ING),
and Verb Infinitive (VG_TO). The headword of a phrase
is the base form of the last word in the phrase. The
Rule Learning and Generalization module constructs
extraction rules based on information given by the user
through the training interface and on the preprocessing
of the earlier stages.

The TIMES system has three modes of operation
which implement, respectively, training, rule creation,
and text scanning. The first mode enables the user to
move through a document and indicate desired infor-
mation items in the text. All significant actions by the
user are gathered by the system and used for generating
rules. One of the necessary inputs by the user is a des-
ignation of the WordNet word senses for the purposes of
training the system. However, the system requires only
minimum linguistic and domain knowledge so that ca-
sual users should be able to use it. The rule creation
phase generates rules, as described below, for informa-
tion extraction and for word sense disambiguation. Fi-
nally, the scanning phase applies the created rules to
any body of free text for the purposes of information
extraction.

Training and Generalization for Extraction
Rules

TIMES provides users a convenient interface for train-
ing. The interface shows a stack of phrases segmented
from the sentence by the Partial Parser. Associated
with each phrase, the syntactic category, semantic type,
headword, and meanings (i.e., senses) for the headword
are also given. The user is required to first define the
information of interest (i.e., the target information),
and then identify some phrases as one type of target
information. Furthermore, the user needs to specify

the correct sense for the headword. (The training in-
terface provides sense definitions and examples so that
the user would know which sense to choose.) By de-
fault, TIMES assigns sense one, the most frequently
used sense in WordNet to the headword if no specifi-
cation from the user is given. In addition, if the user
is experienced, he/she can assist the system to learn
by specifying important phrases in the sentence that
are crucial to the rule generation. However, this spec-
ification is optional. If the user does not identify the
important phrases, TIMES will regard every phrase as
an important phrase.

Extraction rules are generated based on the impor-
tant phrases and user specified target information. For
each important phrase in the training sentence, if its
headword exists in WordNet, then together with its
syntactic category and sense number, it can uniquely
determine a concept (i.e., a synonym list) in WordNet.
By following the hypernym path in WordNet, the con-
cept becomes more and more general (Chai & Biermann
1997).

Extraction rules are pattern-action rules. The pat-
tern, defined by the left hand side (LHS) of a rule, is a
conjunction (expressed by A) of subsumption functions
S(X,a,target(a)). X is instantiated by a new phrase
when the rule is applied; « is the concept corresponding
to the headword of an important phrase in the training
sentence; and target(a) is the type of target informa-
tion identified for .. The action in the right hand side
(RHS) of a rule, F'S(X,target(a)) fills a template slot,
assigning the type of target information target(a) to
the phrase X.

The subsumption function S(X,«,target(a)) looks
for subsumption of concepts. It returns true if the
headword of X is subsumed to the concept a. If all
subsumption functions on the LHS return true, then
the RHS action will take place to extract X as a type
target(a).

The system applies a two-dimensional generalization
model to learn the number of subsumption functions to
be included in the LHS, the order of subsumption func-
tions, and specification/generalization of o (from Word-
Net hierarchy) in the subsumption function (Chai, Bier-
mann, & Guinn 1999). For example, the user is inter-
ested in finding out which company has what position
open. Suppose the training sentence is “IBM is look-
ing for software engineers.” Through the interface, the
user identifies “IBM” as the target information COM-
PANY and “software engineers” as the target informa-
tion POSITION. Based on this input, the system can
generate a set of rules. Some sample rules are shown
in Figure 2. Since two types of target information are
specified, two rules are necessary to capture both COM-
PANY and POSITION as shown in R; and R». (By our
convention, each rule only captures one type of target
information.) In Figure 2, R3 is more general than R;
since it has fewer constraints on the LHS. R, is more
general than R; since the subsumed concepts in Ry are
more general than those in R;. For each type of target

Ry: S(Xy,{company}, COMPANY) A S(Xs,{look_for},none) A S(Xs,{engineer}, POSITION)

—» FS(X,,COMPANY)

Ry: S(Xy, {company}, COMPANY) A S(Xa, {look_for},none) A S(Xs, {engineer}, POSITION)

— FS(X3, POSITION)

Rs: S(Xy,{company}, COMPANY) A S(X3, {look_for},none) — FS(X,,COMPANY)
Ry: S(Xy,{group,...}, COMPANY) A S(Xs, {look_for, },none) A S(Xs, {professional, ...}, POSITION)

—» FS(X,,COMPANY)

Figure 2: Examples of Extraction Rules

information, the system will automatically determine
the generalization/specification for rules.

The Semantic Tagging Approach

Successful semantic generalization by use of Word-
Net conceptual hierarchy depends on the correct word
senses. Semantic tagging (and the associated word
sense disambiguation) has been studied in great detail.
However, its use in higher level applications is limited.
We have designed a WSD algorithm which can be inte-
grated into information extraction systems, particularly
IE systems which use generic lexical semantic resources.
In this section, we will describe the algorithm and re-
port on its performance on a common data set.

The Learning Model for WSD Rules

Our rule learning model follows the supervised learning
paradigm. The model automatically generates useful
rules from the tagged examples for WSD tasks. A tar-
get word is defined as the word that needs to be sense
identified. The WSD rules will be generated based on
the context of the target word.

Context After being processed by the Partial Parser,
each pre-tagged sentence is divided into a sequence of
phrases. Each phrase corresponds to a segment group
g = (phrase, head, syn_type, sem_type, sense), where
phrase is the phrase itself; head is the headword of the
phrase; syn_type is the syntactic category of the phrase;
sem_type is the semantic type identified by the Semantic
Type Identifier; sense is the pre-tagged sense number.
If a phrase is identified as a special semantic type, then
its headword is the name for that special type. Since
we are only interested in nouns and verbs, the target
word is always the headword of a phrase.

Within a sentence, the context of a target word is
created based on the surrounding phrases. More pre-
cisely, if g; contains a target word (where ¢ is the po-
sition/index of the phrase in the sentence, 1 < ¢t < n),
then the context of g¢;, with contextual range d, is
(gi; < 9t—1,9¢t, 9t +1, "';gj)a where @ = max(t - d;]-)7
j = min(t+d, n), and each g; corresponds to one phrase
in the sentence.

For example, suppose the original sentence is: “Cray
Research will retain a 10 percent interest in the new
company, which will be based in Colorado Springs,
CO.” The sense for “interest” is pre-tagged as “5”. Af-

ter applying the Partial Parser and the Semantic Type
Identifier, the system will mark the sentence as: “[Cray
Research/NG/Company _type| [will retain/VG] [a 10
percent/NG] [interest_-5/NG] [in/PG] [the new com-
pany/NG] which [will be based/VG _ED] [in/PG] [Col-
orado Springs/NG/City_type] [CO./NG/State_type].”
The string “A 10 percent interest” is a noun phrase
parsed by the Partial Parser. However, due to the as-
sumption that noun modifiers can be a good indicator
for the sense of the target word, in our approach, the
target word (if it is a noun) is separated from its noun
modifiers.

Creating WSD Rules In general, rules consist
of a left hand side (LHS) which defines the ap-
plicability conditions and a right hand side (RHS)
which specifies the action to select senses. The
LHS of a rule is a conjunction (expressed by A) of
Match Functions. Each Match Function corresponds
to one phrase in the context of the target word.
Given g = (phrase, head, syn_type, sem_type, sense)
as previously defined, the system creates a Match
Function M atch(X, head, syn-type, sense), where X
is the variable field to be filled by a new phrase.
Match(X, head, syn-type, sense) returns true if head-
word of X is the same as head and the syntactic
category of X is the same as syn_type. The RHS
T(X,sense) is the sense tagging function which iden-
tifies the sense of the headword of X as sense. The
number of Match Functions on the LHS indicates speci-
fication/generalization of the rule. More numbers imply
more constraints, and therefore, a more specific rule.

For each context of the target word, a rule with n
Match Functions can be generated by simply selecting
n phrases (including the one containing a target word)
from the context, and creating corresponding Match
Functions to make up the LHS. The RHS of the rule
is generated according to the correct sense for the tar-
get word in that particular context. Some examples of
WSD rules are shown in Figure 3.

The first rule in Figure 3 is very precise; however,
the chance of obtaining a match in the unseen data is
small. On the other hand, the fourth rule is too gen-
eral. Applying this rule simply tags all words with one
sense, and the highest performance would be no bet-
ter than that attained by identifying all words with the
most frequently used senses. Based on this scenario,
we would like to generate rules with the optimum num-

1. Match(Xy,retain, VG, 1) A Match(Xs, percent, NG, 1) A Match(Xs, interest, NG, 5)
AMatch(Xy4,in, PG, 1) A Match(X5, company, NG,1) — T(Xs,5)

2. Match(Xy,retain, VG, 1) A Match(Xo, percent, NG, 1) A Match(Xs,interest, NG,5) — T(X3,5)

3. Match(Match(X,,percent, NG,1) A Match(Xs, interest, NG,5) — T'(X>2,5)

4. Match(X,,interest, NG,5) — T(X1,5)

Figure 3: Examples of WSD Rules

ber of Match Functions. This process is carried out by
checking the Precision Rate for each rule.

Suppose a rule r; is applied to the training data, pre-
cisely, to the context of a target word. If all the entities
on the LHS are satisfied, then a particular sense will be
assigned to the target word. By comparing the senses
identified with the original tagged senses, the Precision
Rate P(r;) is derived:

number of correct senses identified by r;

P(r;) =
(ri) number of senses identified by r;

A threshold @ is predefined to select useful rules. If

P(r;) > 6, r; is considered a useful rule and will be

applied for WSD on unseen data.

We applied a greedy covering algorithm to generate
WSD rules:

1. Predefine IV as the maximum number of Match Func-
tions allowed in a rule, d as the contextual range, and
0 as the threshold.

2. For each target word, based on its context with con-
textual range d, create all possible rules with one
Match Function, two Match Functions, ..., and up
to N Match Functions.

3. For each rule r;, apply it to the training data and
compute P(r;). If P(r;) > 6, put r; in the rule base.

4. Sort the rules to ensure no repetition of rules.

Applying the Rules When useful rules are applied
to new sentences, two types of match routines are used.
The full match routine guarantees that only when each
Match Function in the LHS of a rule returns true, does
the RHS take place. The partial match routine allows a
rule with V Match Functions to be activated when only
N — 1 Match Functions are satisfied. The application
of rules takes place as follows (assuming new sentences
have been properly pre-processed):

o For each context of the target word, let n = N. Start
applying rules with n Match Functions. In doing so,
it first applies rules with the Precision Rate between
0.9 to 1.0. If there are matches, it selects the sense
which is identified by the most of rules and proceeds
to the next context. Otherwise, it applies the rules
with the Precision Rate between 0.8 to 0.9. The pro-
cedure continues. If there are matches, then it assigns
the sense and proceeds to the next context; other-
wise it decrements the Precision Rate by 0.1 until it
reaches the threshold.

e If there is no match, it applies rules with n = n —
1 Match Functions with the decremental Precision
Rate. If there are matches, it then assigns the sense
which is identified by the most of rules and proceeds
to the next context; otherwise it applies rules with
fewer Match Functions until n becomes 0.

e If there is no match, it operates the partial match to
the rules with NV entities and selects the sense which
is identified by the most of those partial matches.

e If there is no match, the most frequently used sense
will be assigned.

The approach for applying rules will first achieve
the highest precision for a small number of identifica-
tions. Then by applying rules with decremented Pre-
cision Rate and fewer Match Functions, more identi-
fications will take place while maintaining the overall
precision.

A Test on a Common Data Set

We chose a common data set (Bruce & Wiebe 1994) in-
volving the noun “interest” to test the performance of
our WSD algorithm. This data set was extracted from
Penn Treebank (Marcus, Santorini, & Marcinkiewicz
1993) and made available by Bruce and Wiebe (Bruce
& Wiebe 1994). It consisted of 2369 sentences and
each sentence had an occurrence of the noun “interest”
tagged with a correct sense. The sense definitions used
were from the Longman Dictionary of Contemporary
English (LDOCE). The six senses of the noun “interest”
are: 1) readiness to give attention (15% in the dataset);
2) quality of causing attention to be given (about 1%);
3) activity, subject, etc. which one gives time and at-
tention to (3%); 4) advantage, advancement, or favor
(8%); 5) a share in a company, business, etc. (21%); 6)
money paid for the use of money (53%). Senses 2 and 3
are dramatically underrepresented in the data set. Be-
fore using the WSD algorithm to learn the rules, all
sentences are preprocessed by the Partial Parser and
the Semantic Type Identifier. In the experiment, each
trial included a randomly selected 1769 sentences as
training data and 600 sentences as testing data. This
is the same experimental strategy as described in (Ng
& Lee 1996).

We ran 100 trials. In each trial, rules were created
based on contextual range 2, and threshold 0.6. The av-
erage precision for identifying all six senses was 88.2%,
with a standard deviation 1.0%; the average precision
for identifying sense 1, 4, 5, 6 was 89.7%, with a stan-
dard deviation of 1.0%. The average precision and the

standard deviation on each sense tagging is shown in
Table 1.

sense average | standard
precision | deviation

1 67.8% 4.1%

2 0 0

3 52.7% 10.2%

4 70.9% 7.6%

3 88.7% 2.6%

6 99.0% 0.6%

Overall | 88.2% 1.0%

1,4,5,6 89.7% 1.0%

Table 1: Performance for WSD on Individual Sense

Many research groups have investigated WSD of
the word “interest.” In identifying four senses of the
noun “interest.” Black achieved 72% (Black 1988) and
Yarowsky achieved 72% (Yarowsky 1992) . However,
their work was not based on the same data set. Bruce
and Weibe made this common data set available (Bruce
& Wiebe 1994). They developed a decomposable prob-
abilistic model (Bruce & Wiebe 1994), which used parts
of speech and morphological forms for the surrounding
words. Their model achieved 78% precision on identi-
fying all six senses, and 79% on identifying senses 1, 4
5, and 6. Based on the same data set, Ng and Lee inte-
grated multiple knowledge sources and used exemplar
learning to achieve WSD (Ng & Lee 1996). In addi-
tion to parts of speech and morphological forms, they
also took local collocation (common expressions) and
verb-object syntactic relationships as features. Their
LEXAS system achieved 87.4% in precision on all six
senses of “interest”and 89% on senses 1, 4, 5, 6. Our
rule learning model achieves the comparable perfor-
mance (88.2% for all senses, 89.7% for senses 1, 4, 5, 6)
in this common data set. It applies limited knowledge
sources (syntactic category and preliminary semantic
type classification). Furthermore, the model is ready
to disambiguate senses for any target word.

Experimental Results

We have conducted experiments to test the applicabil-
ity of our rule-based WSD algorithm in TIMES. The
working domain is the triangle.job newsgroup, where
job advertisements are posted. The types of the target
information are defined as the following: COMPANY
(the name of the company which has job openings), PO-
SITION (the name of the available position), SALARY
(the salary, stipend, compensation information), LO-
CATION (the state/city where the job is located),
EXPERIENCE (years of experience), CONTACT (the
phone number or email address for contact), SKILLS
(the specific skills required, such as programming lan-
guages, operating systems, etc), BENEFITS (the ben-
efits provided by the company, such as health, dental
insurance, etc). The training set consisted of 24 articles
and the testing set had 40 articles. As described earlier,

in the training phase, the user is required to annotate
the target information and tag the correct senses to the
words which are not used as sense one. The average
training time for each article was about three minutes.
Based on each target word (the word which sense is not
used as sense one), the system generated a set of WSD
rules. In the scanning phase, WSD rules are applied to
assign senses to target words. Furthermore, from the
training examples, a set of extraction rules were gener-
ated to be applied in the scanning phase.

Based on the threshold 0.8 and the contextual range
2, the system generated a set of rules for the WSD task.
Among those, three rules had three Match Functions,
21 rules had two Match Functions, and 10 rules had
one Match Function. However, all rules with one Match
Function could cover the rest of the rules since the Pre-
cision Rate for them is already very high. This obser-
vation suggested that, in a specific domain, senses of
words tend to remain the same throughout the domain.
For example, “position” has fifteen senses in WordNet,
but in the triangle.job domain, every time it appears,
it’s always used as sense six which means a job in an
organization.

The end performance of the system on extracting tar-
get information with and without WSD is shown in Ta-
ble 2, The use of the WSD algorithm pushes up the
overall performance in terms of F-measure by 7.5%. It
is extremely helpful in enhancing recall (about 10%).
This indicates that instead of building a domain spe-
cific knowledge base for information extraction, WSD
can enable the use of an off-the-shelf lexical semantic
resource. Our rule based WSD algorithm can be easily
incorporated into such a system.

with WSD | without WSD |
precision 71.0% 67.2%
recall 67.5% 57.1%
F-measure. 69.2% 61.7%

Table 2: End Performance with and without WSD

Discussion

Since the first version of the system (Bagga, Chai, &
Biermann 1997), TIMES has been upgraded in many
ways. First, in the old system, the user created seman-
tic transitions by specifying nodes and relations. The
new version of the system replaces that training ap-
proach by asking users to indicate the target informa-
tion and allowing the system to build rules automat-
ically. Second, the old system only applied semantic
generalization with various degrees and it didn’t pro-
vide an automated mechanism to control the degree of
generalization based on the training data. The new sys-
tem automatically generates rules based on both syn-
tactic generalization and semantic generalization. Fur-
thermore the new approach determines the optimum
amount of generalization for both directions. Finally,

the new system provides a new framework to learn WSD
rules in IE context.

By allowing the user to select the correct senses, the
system can automatically generate WSD rules. Based
on the assumption that most senses are used as sense
one in WordNet and senses tend to remain the same for
a specific domain, the sense training process is easier
than the creation of a specific domain knowledge base.
This process does not require the expertise in a partic-
ular domain and allows any casual user to accomplish
it given a set of sense descriptions (glosses). We feel
that, if possible, using generic resources is more efficient
than hand-crafting domain specific knowledge with the
respect to easy customization. Furthermore, in order
to make the generic lexical semantic resources useful,
word sense disambiguation is necessary, and moreover,
an easily adaptable WSD approach is important.

In contrast with many statistically based WSD algo-
rithms, our rule-based approach incorporates syntactic
features and basic semantic knowledge. This approach
has achieved comparable results on a common data set.
Furthermore, the model is applicable to any target word
and can be easily integrated into any system (not just
information extraction systems) where large annotated
corpora are not available. Finally, the rules learned can
reflect the domain characteristics and allow easy inter-
pretation.

Conclusion

In this paper, we have presented a WSD method in an
information extraction system that uses WordNet for
automated rule generalization. Furthermore, it demon-
strates that, to successfully make use of the generic
resources, WSD is very important. This calls for an
adaptable WSD approach, and our rule based WSD al-
gorithm meets this need.

Acknowledgments

We would like to thank Amit Bagga for developing the
Tokenizer and the Semantic Type Identifier. We would
also like to thank Jerry Hobbs for providing us with the
finite state rules for the Partial Parser. This work was
supported in part by an IBM Fellowship.

References

Bagga, A.; Chai, J.; and Biermann, A. 1997. The
role of WordNet in the creation of a trainable message
understanding system. Proceedings of Ninth Confer-

ence on Innovative Applications of Artificial Intelli-
gence (IAAI-97).

Black, E. 1988. An experiment in computational dis-
crimination of english word senses. IBM Journal of
Research and Development 32(2).

Bruce, R., and Wiebe, J. 1994. Word sense disam-
biguation using decomposable models. Proceedings of
the 82nd Annual Meeting of the Association for Com-
putational Linguistics.

Chal, J., and Biermann, A. 1997. Corpus based sta-
tistical generalization tree in rule optimization. Pro-
ceedings of Fifth Workshop on Very Large Corpora
(WVLC-5).

Chai, J.; Biermann, A.; and Guinn, C. 1999. Two
dimensional generalization in information extraction.
Proceedings of Sizteenth National Conference on Arti-
ficial Intelligence.

Chai, J. 1998. Learning and Generalization in the
Creation of Information Extraction Systems. Ph.D.
Dissertation, Department of Computer Science, Duke
University.

Grishman, R.; Macleod, C.; and Sterling, J. 1992.
New York University Proteus system: MUC-4 test re-
sults and analysis. Proceedings of the Fourth Message
Understanding Conference.

Krupka, G. 1995. Description of the SRA system as
used for MUC-6. Proceedings of the Sizth Message
Understanding Conference.

Luk, A. K. 1995. Statistical sense disambiguation
with relatively small corpora using dictionary defini-
tions. Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics.

Marcus, M.; Santorini, B.; and Marcinkiewicz, M.
1993. Building a large annotated corpus of english:
the Penn Treebank. Computational Linguistics 19(3).

Miller, G. 1990. WordNet: An on-line lexical database.
International Journal of Lexicography.

Ng, H., and Lee, H. 1996. Integrating multiple
knowledge sources to disambiguate word sense: An
exemplar-based approach. Proceedings of the 34th An-
nual Meeting of the Association for Computational
Linguistics.

Riloff, E., and Lehnert, W. 1993. Automated dic-
tionary construction for information extraction from
text. Proceedings of Ninth IEEE Conference on Arti-
ficial Intelligence for Applications.

Riloff, E. 1996. An empirical study of automated
dictionary construction for information extraction in
three domains. Al Journal 85.

Wilks, Y.; Fass, D.; Guo, C.; McDonald, J.; Plate, T.;
and Slator, B. M. 1990. Providing machine tractable
dictionary tools. Machine Translation 5(2).

Yarowsky, D. 1992. Word-sense disambiguation us-
ing statistical models of Roget’s categories trained on
large corpora. Proceedings of the Fifteenth Interna-
tional Conference on Computational Linguistics.

Yarowsky, D. 1994. Decision lists for lexical ambi-
guity resolution: Application to accent restoration in
Spanish and French. Proceedings of the 32nd Annual
Meeting of the Association for Computational Linguis-
tics.

Yarowsky, D. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. Proceedings of
the 33rd Association of Computational Linguistics.

