
SciFinance: A Program Synthesis Tool for Financial Modeling

Robert L. Akers, Ion Bica, Elaine Kant, Curt Randall, Robert L. Young

SciComp Inc.
5806 Mesa Drive, Suite 250

Austin, TX 78731
phone: 512-451-1050, fax: 512-451-1622

email: info@scicomp.com or <lastname>@scicomp.com
www.scicomp.com

Abstract

The SciFinanceTM software synthesis system automates the
programming task for financial risk management activities
ranging from algorithms research to production pricing to risk
control. Introduced commercially in late 1998, the system is
currently licensed to a number of major investment banks.
SciFinance’s high-level, extensible specification language,
ASPEN, enables quantitative analysts to generate code from
concise model descriptions that are written in application-
specific and mathematical terminology. From these spec-
ifications, typically one page or less, the system will pro-
duce a C program thousands of lines long. The specification
language’s abstractions help analysts focus on their primary
tasks—model description, validation, and analysis—rather
than on programming details. Compared with manual pro-
gramming, automating the programming process produces
codes that are more sophisticated, accurate, and consistent.
Analysts can develop modeling codes within a day that previ-
ously took weeks or were not even attempted. SciFinance is
an extension to a system that generates scientific computing
codes in a variety of target languages including Fortran and C.
The implementation integrates an object-oriented knowledge
base, refinement and optimization rules, computer algebra,
and a planning system. The same knowledge base is used by
the specification checking, synthesis, and information portal
subsystems.

Problem Description
Financial risk management increasingly demands new and
customized simulation codes to implement its sophisticated
computational models. These codes, typically designed by
the quantitative analysts at investment banks, help determine
prices for investment products, make trading decisions, and
assess and control financial risk. The rate of growth in this
area is striking. For example, the volume of the parent indus-
try, custom (“over-the-counter”) derivative securities trad-
ing, has increased twelve-fold since 1990 to eighty trillion
dollars. Spending for modeling software is close to a billion
dollars per year with an expected growth rate of about 10
percent. One way quantitative analysts can keep on top of
this growth is with a tool like SciFinanceTM , which auto-
mates code generation.

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A derivative security is one whose value depends on that
of some other underlying security. Derivatives allow firms
to hedge risk. For example, a multi-national firm may use
foreign exchange options to limit its exposure to volatile ex-
change rates. In 1973, Myron Scholes and Fischer Black de-
rived a partial differential equation, the Black-Scholes equa-
tion (for which a Nobel Prize was later awarded), that esti-
mates the fair value of a derivative security as a function of
the characteristics of the underlying security and time. Since
then, the mathematical theory of derivative pricing has been
greatly refined, supporting the explosive growth in the vol-
ume and variety of derivatives sold in the marketplace.

Analysts need codes that accurately value and hedge
derivative portfolios because as the global derivatives market
grows in size, complexity, and competitiveness, clients in-
creasingly demand products tailored to their specific invest-
ment requirements. As a bank’s suite of investment products
grows, corresponding simulation codes must be rapidly and
accurately produced.

Large investment banks, brokerage firms, insurance com-
panies, and hedge funds employ quantitative analysts to de-
velop pricing models for these complex derivative struc-
tures. Analysts must create a new pricing model whenever
a customer needs a price quote on a custom derivative in-
strument; thus new models must be produced rapidly and
frequently. This demand is straining the ability of deriva-
tives houses to model and price these instruments in a timely
manner. The complexity of the deals may require a team of
analysts, financial engineers, and programmers to work days
or even weeks to develop the pricing model. Because a small
programming or design error can cost the holding institu-
tion millions of dollars, accuracy and consistency of pricing
strategies are critical. Quick turnaround is also essential, or
the institution may lose the deal to a competitor.

The simulation codes involve the solution of a set of par-
tial differential equations, each of which is an equation like
the Black-Scholes equation described in Figure 1. The so-
lution is subject to appropriate boundary conditions, initial
conditions, constraints, and possible discrete events such as
dividend payments. Especially important are the sensitivi-
ties of the solution to the various input parameters. Closed-
form solutions are not available for any but the most trivial
examples of these problems, and thus numerical approxima-
tion codes must be written.

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



The value V of a derivative security whose underlying
stock has current price S, dividend yield D0, volatility �, and
risk-free interest rate r satisfies the equation:

@V

@t
+ 1

2
�
2
S
2 @

2
V

@S2
+ (r �D0)S

@V

@S
� r V = 0

Figure 1: The Black-Scholes equation.

Analysts ensure the accuracy and efficiency of models,
but because they are highly trained and compensated, they
make very expensive programmers. Consequently the objec-
tive is to greatly reduce programming time while maintain-
ing or improving the accuracy and consistency of the pricing
models. In addition, new tools must be both easy to use and
familiar enough to inspire confidence in their function.

The problems of financial modeling, although similar to
those in other areas of engineering and scientific comput-
ing, are especially acute because the field of finance evolves
much more rapidly and new models are needed much more
quickly. Conventional approaches to producing modeling
codes involve combinations of library packages, object li-
braries, and manual programming. However, these ap-
proaches are unsatisfactory for many users (one of our cus-
tomers evaluated more than 10 products before choosing
SciFinance). The reason for the dissatisfaction is that such
approaches obscure the model and force the problem solver
to think at too low a level of abstraction (reasons are de-
scribed in more detail in (Akers et al. 1998)). Thinking in
terms of the tools or components, rather than in terms of the
problem, application, and mathematical solution techniques,
can potentially lead the analyst to make compromises that
cause inaccurate or incomplete solutions. Large-grained li-
brary packages, for example, do not address how to produce
new codes when the specifications do not exactly match an
existing library routine. Finer-grained libraries shift the em-
phasis to problems of matching interfaces and connecting
components and fail to provide component-spanning opti-
mizations. Manual programming is time consuming and er-
ror prone.

To address some of these shortcomings, both object-
oriented libraries (including in financial applications) and
expert systems (in other application areas) have been de-
veloped. Object-oriented libraries can provide more gen-
erality by abstracting data structure representations, but they
are usually not independent of the specific equations being
solved or of properties such as spatial dimensionality and or-
der of accuracy of the algorithm. Even with object-oriented
libraries, however, assembly and bottom-up optimization of
individual modules is the analyst’s focus rather than top-
down decision making and global optimization.

Conventional expert systems can select and combine li-
brary modules, relieving the user of some of the program-
ming burden. However, expert systems alone do not ad-
dress issues such as an appropriate specification level, gener-
ation of arbitrary higher-order methods, global and problem-
specific optimization, and platform re-targeting.

Software synthesis can solve these problems by integrat-
ing the best aspects of object libraries and expert systems

and augmenting them with the power of computer algebra,
program transformation, and planning. Program synthesis
accepts specifications in financial and mathematical terms,
provides intelligent assistance in making choices, validates
specifications and generates error checking code, and opti-
mizes globally with problem-specific knowledge.

Application Description
SciFinance transforms specifications written in a high-level
language called ASPEN (Algorithm SPEcification Notation)
into executable C code. The synthesis process allows mixed
user/system decision making and provides feedback to users
in the form of summaries of its work at a sequence of levels
of problem refinement.

SciFinance is a customized version of an underlying tech-
nology called SciNapse (Kant 1993), (Akers et al. 1997) and
part of a general tradition of software synthesis (e.g., (Lowry
and McCartney 1991), (Johnson)). Related techniques in-
clude the use of planning, theorem proving, or expert sys-
tems to compose library modules or to construct scripts. Al-
though these techniques have proved fruitful in other do-
mains, for example using planning to reconfigure software
libraries for image analysis (Chien et al. 1999), they typ-
ically do not generate the complex control structures and
customized data representations that are required in finan-
cial applications.

The SciFinance implementation is an object-oriented
knowledge base containing application, mathematical, and
programming constructs. Integrated with the objects are
program transformations (for program elaboration, numer-
ical approximation, data-structure selection and program
optimization) and a scheduling mechanism. SciFinance
successively refines ASPEN specifications through increas-
ingly detailed levels of representation paralleling a best-
practice version of human scientific computing. The levels-
of-refinement approach, consistent with state-of-the-art lit-
erature (Gallopoulos and Sameh 1997) helps give the user
a sense of familiarity and confidence. It also allows mixed
user/system decision making. Design choices include ques-
tions about the desired results (which only the user can
answer) and selection of numerical techniques. SciFi-
nance will make selections in the absence of user specifica-
tion. SciFinance is implemented in MathematicaR (Wolfram
1999).

High-Level Specification Language. The ASPEN spec-
ification language represents problems in a way that is both
clear to the user and suitable for manipulation by the sys-
tem. Because ASPEN is concise, expressive, and flexible,
users can easily write both simple and sophisticated speci-
fications. Many numerical algorithms, equations, and other
mathematical entities can be specified with keywords, and it
is easy to specify equations algebraically or to define new,
parameterized equation families.

Specification Checking. A front-end specification parser
processes specifications and sets up the object instances rep-
resenting the user’s problem statement. Its extensive diag-
nostics trap and report specification errors early in the syn-
thesis process. The parser is partially dynamically gener-



ated; it constructs its semantic actions based upon the cur-
rent content of the knowledge base and automatically incor-
porates the relevant knowledge base content from the user’s
problem specification. Thus, the knowledge base itself de-
fines what the front end will process and many of the actions
it will take. In this sense, the front end is merely a machine
presenting and processing a language defined in the knowl-
edge base, which means that new concepts can be introduced
with no impact on the front-end processor.

Knowledge Representation. SciFinance mixes rules and
objects to represent knowledge about mathematics and pro-
gramming and to present design choices in appropriate terms
and in a logical order. Objects represent entities such as
equation sets, individual equations, variables, and solvers.
Attributes on object instances not only store object rela-
tionships between equations and variables, but also store
the design choices that must be made for specific problems.
For example, a representation attribute on an array variable
can be filled by alternatives such as full, diagonal, time-
independent, and stencil. Associated design choice rules en-
capsulate the details of the knowledge about how to make
choices. Representation choice rules, for example, examine
the equations in which a variable participates to determine
the best data structure for a variable. Choices are not always
from a fixed set but may be algebraically constructed based
on equation discretizations.

We developed an object-oriented programming system,
built on top of Mathematica, that supports dynamically cre-
ated classes as well as instances. Tools use the dynamic
classes to translate declarative, human-oriented descriptions
of discrete events, algorithm templates, and discretization
rules into the internal object and rule representations. The
goals and agendas mechanism, which manages the synthesis
and user interactions by ordering the resolution of object at-
tribute values according to their dependencies, is tightly in-
tegrated with the object system. It allows attribute values to
be computed with methods, constraints, heuristics, and both
user-defined and system-defined defaults. Thus, the object
system is used not only to organize the knowledge base, but
also to encode the synthesis process itself.

Design Choice Rules. Associated with each choice (ob-
ject attribute) are a result type, constraint and heuristic rules
(which both can use previous choices), and defaults. Con-
straints filter the legal values of the alternatives type. Heuris-
tics (with a simple voting scheme) and defaults are applied
next if the ASPEN specification or constraints do not indi-
cate a unique design choice. The specification may contain
general default choices, such as an input file for variables
not otherwise initialized.

Algorithm Templates. After most design decisions are
made, SciFinance constructs a program by instantiating al-
gorithm templates. Templates are special objects that repre-
sent mathematical algorithms such as time-evolution loops,
equation-system solvers, and interpolations. Template ob-
jects are generic algorithm descriptions, free of specific
equations and data-structure representations, which provide
links to other synthesis entities, including other templates.
SciFinance fills out the network of templates, and expands

the template objects into pseudocode, inserting assignment
statements based on the specific equations and representa-
tion selections.

Templates are introduced to the system declaratively. A
template translator processes these declarations and incor-
porates them into the knowledge base in such a way that
they are smoothly integrated with the synthesis process.

Elaboration Rules and Global Optimization. Unlike
a library-combining process, SciFinance optimizes through-
out synthesis, not just as a final code-transformation pass.
For example, it eliminates unnecessary problem variables as
soon as possible, maximizes parallelism based on equation
dependencies, and makes space-time tradeoffs via algorithm
choices and problem-specific representation selections. Sci-
Finance also applies conventional optimizations such as the
introduction of temporary variables, loop merging, and loop
unrolling.

Computer Algebra. SciFinance would be much less
powerful without its extensive use of computer algebra to
make coordinate system transformations, numerical approx-
imations, error estimates, and data structure and operator op-
timizations. Various rule-based simplifiers and transforma-
tion engines perform the algebraic manipulations of prob-
lem entities. Examples include a pseudocode optimizer in-
tegrated with a pseudocode elaboration transformer, an in-
equality simplifier, and translators to convert the system’s
low-level pseudocode to various target languages, including
Fortran and dialects of C.

Platforms. The synthesis engine, SciFinance, runs on
a wide variety of platforms (anything that Mathematica
runs on), including UNIX, WindowsNT, and Windows9x.
SciFinance-generated codes adhere to the standards of the
target languages (ANSI C, Microsoft C, and Fortran-77) and
may be compiled and run on any platform supporting those
languages.

The Mathematica system has two separate parts. The first
part is an evaluator/interpreter called the kernel, in which
SciFinance objects and rules are implemented. The other
part is the Mathematica Notebook, which provides window-
based communication between a user and the kernel. The
notebooks provide access to a built-in set of WYSIWYG
document writing capabilities that can mix text and kernel
instructions. We have added new menus for interacting with
SciFinance to those already present on notebooks.

Information Portal.
SciFinance’s information portal (Young, Kant, and Akers

2000) provides easy access to a suite of Mathematica note-
books presenting information about the system’s capabili-
ties and the synthesis in process. The notebooks all utilize a
semantic network of information nodes. The semantic net-
work uses the same knowledge representation tools as the
rest of SciFinance and can refer to classes in the synthe-
sis knowledge base corresponding to domain entities. The
notebooks include reference documents, example catalogs,
summaries describing the state of the problem (program) af-
ter each level of refinement, and human-authored documents
automatically processed to convert selected references to hy-
perlinks.



(* Continuous knockout put, barrier X2,
leveraged by # samples below X1 *)

Region[SMin<=S<=X2 && 0<=L<=LMax &&
0<=t<=TMax, Cartesian[{S,L},t]];

When[Interior, BlackScholes1D[]];
When[Boundary,AutomaticBC];
When[max[S], V==0];
When[max[t], V==L*Max[0,K-S]/nsamp];
DiscreteEvents[
Path[direction[L],

function[L==SumOf[if[S<=X1,1,0]]],
ReadFile[tsample, "tsamp.dat"],
nsample==nsamp]];

Default[TaggedInputFile["DayCount.dat"]];
Output[V, "atSpot.out", spottable,

L==LSpot, Labelled, NoInitialOutput];
ReadTable[spottable, nspot,

"spottable.dat"];
CrankNicholson;

Figure 2: APSEN Specification - daycount problem

Examples of System Use. Quantitative analysts at risk-
management institutions, university professors, and indus-
try consultants use SciFinance to price custom equity-based
derivative securities instruments (such as convertible bonds)
and foreign exchange instruments. Some of these pricing
codes are embedded in production systems for securities val-
uations, and some are used in research or for validating other
approximations. Numerous examples have been published
(Gatheral et al. 1999), (Brown and Randall 1999), (Randall,
Kant, and Chhabra 1997). SciFinance is also used in univer-
sity classes in computational finance.

A typical SciFinance application is modeling a derivative
security. The model is specified in mathematical and nu-
merical terms familiar to a financial analyst. Many common
notions, such as equations, discretization methods, special
problem conditions, and numerical algorithms are denoted
by name, with variants specifiable via parameterization.

An Example Specification. The example in Figure 2
specifies a simple but non-trivial code that prices a “day-
count knockin, continuous knockout put option.” The gen-
erated code will solve the one-dimensional Black-Scholes
equation in a two-dimensional region defined by the under-
lying stock price S and the knockin path variable L, which
counts the number of days. AutomaticBC is an ASPEN
specification statement that defines linearity boundary con-
ditions. A specific boundary condition overrides this default
at max[S] to define the continuously monitored knock-
out boundary condition (at X2). The “put” is described by
the payoff condition When[max[t], V==L*Max[0,K-
S]/nsamp]; The knockin condition—the fraction of
samples (L/nsamp) for which the spot price is be-
low a second barrier (X1)—is given by the Discre-
teEvents[Path[...]]; specification. The tsample
in the Path descriptor defines the set of sampling dates, and
the ReadFile specifies their input source. By default, all
other inputs are read from the file DayCount.dat. The
output is the option value V interpolated to a specific series

80 85 90 95 100 105 110
S

-0.4

-0.2

0

0.2

0.4

V
-

V

b

80 85 90 95 100 105 110
S

0

5

10

15

20

25

V

a

Figure 3: (a) The present value of a daycount-knockin/continuous
knockout put option as a function of present stock price: the
smooth curve shows results from the finite difference code gen-
erated by SciFinance and the dots show the results of the Monte
Carlo (random number simulation) code. (b) The difference be-
tween the methods: the Monte Carlo code has a slight over-pricing
bias near the barrier at 110, is noisy, and is about a factor of 50
slower than the finite difference code.

of spot prices (read into the array spottable from spot-
table.dat) and on a specific value of L, namely L ==
LSpot. The specification of numerical methods is optional.
For example, The discretization scheme CrankNichol-
son is given, but since no solver is given, SciFinance will
make the choice. Given this simple ASPEN specification,
SciFinance generates about 1000 lines of C code. Figure 3
shows that the result produced by the SciFinance code is a
significant improvement over traditional methods.

Uses of AI Technology
We attribute the success of SciFinance to the naturalness
of its high-level specification language and the extensibil-
ity of the specification language and of the implementation.
As noted previously, the implementation relies heavily on



the integration of object-oriented design with transforma-
tion rules, symbolic algebra, and plan-based scheduling. All
of these features are extremely useful for a system that is
easy to build and extend, has sufficient mathematical flex-
ibility, and is fully automated. For example, rather than
plan-based scheduling, the original prototype had a more
straightforward concept expansion and rule application pro-
cedure. But after attacking some very complex examples, it
became obvious the system had difficulty understanding and
controlling the rule interactions and rule firings when gen-
erating varied and sophisticated codes. Other approaches
to software synthesis such as automated deduction do not
seem appropriate here for a number of reasons. For exam-
ple, the numerical methods are only approximations, and the
error is not always known, so proving the methods or de-
riving them automatically would be extremely difficult and
time consuming. Given the high degree of accuracy needed,
automated learning of methods from examples also seems
impractical, although learning how to make some default
settings of numerical parameters based on experimentation
could be a useful new tool.

We selected Mathematica as the commercial implemen-
tation platform that provided the most of the capabili-
ties we need—a multi-platform, unified system including a
symbolic programming language with sophisticated pattern
matching, a computer algebra system, and a notebook inter-
face with a rich set of capabilities for displaying or entering
traditional-looking mathematical notation. Many of our po-
tential customers are already Mathematica users. We built
the missing object representation and user interface capabil-
ities as additional layers over Mathematica.

A declarative knowledge representation and good model
of the domain were key aspects in developing SciFinance.
The domain model includes problem structures, simulation
code structures, and the human code-construction process.
The synthesis process can thus be derived directly from the
domain model. The combination of a good model with easy
access to the declarative knowledge and meta-knowledge
unifies and simplifies many tasks.

SciFinance classes representing mathematical and pro-
gramming constructs have attributes corresponding to their
properties and various design choices, along with methods
for elaborating these attributes. The methods are elaboration
and transformation rules that sometimes include substantial
algebraic manipulations. The two technologies are appropri-
ately mixed; knowledge representation provides meaningful
locations for the methods, and robust, high-quality algebraic
transformations produce the needed results.

The planner exploits the knowledge and meta-knowledge
to set goals to decompose tasks or to instantiate objects and
then refine them by filling in attributes. Its agenda mecha-
nism schedules refinements and design decisions for algo-
rithms, numerical approximations, and data structures. The
planning system uses method descriptions to automatically
determine refinement orderings that ensure that all data to
make choices are in place before decisions are considered.
Currently, SciFinance customers provide the specification in
a file, but the knowledge representation and planner are for-

mulated such that it would be easy to develop specifications
interactively if that became desirable.

SciFinance’s reflective implementation does trade ease
and speed of development for performance. Fortunately, be-
cause the synthesis speed is roughly proportional to CPU
speed, given reasonable amounts of memory, we can take
advantage of the hardware improvement curve to increase
the practical problem size that SciFinance can handle with-
out major tuning.

Application Use and Payoff
SciFinance was first announced in October 1998, after some
beta testing, and the first commercial sale came in January
1999 when Merrill Lynch licensed the product for use by
quantitative analysts in its Global Equity-Linked Product
and Technology Unit. Some other customers we are permit-
ted to list are Bear Stearns, MeesPierson, and KBC Financial
Products. All report that specifying problems in a high-level
language and automating the code generation has many ad-
vantages, primarily the ability to quickly develop complex
models, focus precious human resources on the most critical
analytic tasks, and reap accurate, high-quality, and consis-
tent code. We have no way to obtain an exact count, but we
know that hundreds of codes have been generated.

Customers’ descriptions of benefits
Promoting a focus on the modeling tasks. Analysts at
Merrill Lynch have been using SciFinance for a year. In a
detailed case study co-authored with SciComp (Gatheral et
al. 1999), they write that software synthesis makes it much
easier to handle complex problems and allows them to focus
on the problem and modeling choices, rather than on pro-
gramming and debugging. In doing research, they can now
solve within a day or two problems that appeared too com-
plex to solve in a reasonable time using conventional tech-
niques. In addition, quick turnaround gives their busy ana-
lysts the time to experiment with alternative techniques and
fine-tune production codes. The analysts have also found
that automatically generating codes ensures a consistent set
of assumptions about the valuation of a portfolio and a con-
sistent style across all models, even when those models are
generated by different people over an extended period of
time.

Reducing labor in a risk-control environment. Dr.
Raymond Hawkins, Associate Director of Risk Control at
Bear, Stearns Securities Corporation, uses SciFinance in
a risk-control rather than trading environment. The risk-
control department performs risk analysis for clearance of
client portfolios on a daily basis, re-pricing every single se-
curity within a portfolio and doing a variety of stress tests to
determine the portfolio risk. For each security, the depart-
ment first develops an ASPEN specification that incorpo-
rates the terms and conditions of the security, then develops
a pricing tool from the code that SciFinance generates. Bear,
Stearns Securities previously depended on proprietary mod-
els for the pricing tools, but moved to SciFinance because
they felt it would be an extremely cost-effective approach.
For Dr. Hawkins, an important feature of software synthe-



sis is its ability to reduce labor while producing consistent,
highly accurate programs. With program synthesis, highly
trained analysts can focus their energy on the analysis and
risk control, not on programming.

Increasing code accuracy and development speed. Dr.
Anastasios Politis, currently a quantitative analyst at KBC
Financial Products, has been using SciFinance for a year and
a half to generate codes for pricing new options (both for
research and production) and to determine whether closed-
form solutions are precise enough. Dr. Politis says that
SciFinance makes code development faster and easier for
him, and that his bank benefits from more accurate models
and fewer deals lost because of slow pricing. SciFinance al-
lows Dr. Politis to develop many models within a single day
rather than over the course of a week. Using conventional
manual programming methods to develop finite difference
codes of the variety SciFinance produces, he says, is im-
mensely time consuming (exactly how time-consuming de-
pends on the resemblance to existing codes). By putting the
correct numerical elements, such as solvers, at his disposal,
SciFinance enables Dr. Politis to develop some new models
in just a few hours. For generating certain types of models
(those for American-style options and barrier options) Sci-
Finance has become Dr. Politis’ preferred method. He finds
codes generated by SciFinance to be superior to the more
traditional lattice-based codes. In addition, because certain
features can be expressed with a single ASPEN specifica-
tion statement, SciFinance greatly facilitates his pricing of
the varied complex features of options such as convertible
bonds.

Gaining confidence in models. MeesPierson analysts
use SciFinance primarily to gain confidence in their existing
models and to test new modeling approaches. They expect to
generate production pricing models in the future. With Sci-
Finance, analysts have been able to rapidly generate a vari-
ety of accurate, PDE-based codes to validate existing pricing
products. Also, they can more quickly and confidently test
new pricing models, which helps bring new exotic-option
products to market faster. MeesPierson analysts also use
SciFinance to research new pricing approaches and conduct
experiments that give them a better feel for more sophisti-
cated models.

Changes to business processes

For many financial institutions, using SciFinance would re-
quire changing the way they integrate codes into their pro-
duction environment. To minimize these changes, ASPEN
provides several integration constructs, both producing top-
level codes that are callable from spreadsheets or C++ meth-
ods and providing stub functions to call customer routines.
Customization of these interfaces is also relatively straight-
forward because ASPEN can be easily extended.

Merrill Lynch analysts, in addition to writing new codes
with SciFinance, expect to rewrite much of their existing
codes using the ASPEN specifications as documentation for
what the codes do. They consider the business process
changes to be positive, indicating an evolution from having
traders responsible for everything from designing models to

executing transactions into a mature industry characterized
by a cooperative division of labor. This division pairs the
customer’s regular uncovering of new mathematical prob-
lems in their derivatives structuring activity with SciComp’s
experience with numerical PDE solution techniques, thus
benefiting both parties.

Future benefits
As synthesis from high-level languages becomes more
widely used, we can expect continued extensions in the va-
rieties of financial and numerical methods made available
and continued improvements in the efficiency of the gener-
ated codes. We also expect analysts to increasingly delegate
the responsibility for design choices about numerical meth-
ods and parameters to automated systems with expertise in
these areas. And as more knowledge is incorporated into the
systems, specifications will be couched in even more natural
“deal-sheet” terms.

The ASPEN language itself can become a useful com-
munication tool within a large company or even industry-
wide. It provides a clear conceptual framework for compu-
tational models that separates the problem from numerical
algorithms and is free from unimportant implementation de-
tails. ASPEN could become a concise vehicle for auditors,
risk managers, and regulators to assess portfolio risk at a
high level of abstraction. Yet because it is tied to a code gen-
erating tool, the exchange and refinement of ASPEN spec-
ifications can lead directly into producing high quality ex-
ecutable models. We also see a possibility for ASPEN to
evolve into the next-generation language for more general
mathematical modeling.

Application Development and Deployment
A Brief History
SciFinance and its underlying SciNapse technology evolved
over about eight years with an average of two or three com-
puter scientists as implementors and one or two mathemati-
cians and physicists as advisors, testers, and users. The pre-
cursor project, called Sinapse, began at Schlumberger in late
1990 with the application of modeling seismic and acous-
tic logging tools and with a target language of Connection
Machine Fortran. Several generated codes (after some hand
tuning) were used in internal logging tool design projects.
In 1995, Elaine Kant, the head of the Schlumberger Sinapse
project, acquired the rights to the code and founded Sci-
Comp to further develop the system. A three-year NIST
Advanced Technology Program award funded additional re-
search to advance software synthesis technology for scien-
tific computing on multiple architectures. After about two
years, the focus began to narrow to financial applications
and the generation of C code. After some venture funding
from the Verticality Investment Group and about a year of
additional development and beta testing, full-fledged com-
mercial sales of SciFinance began in October 1998.

The development process, though not formal, is close in
spirit to a spiral model. After initial prototyping, system
evolution was essentially incremental, adding new mathe-
matical constructs and new programming or optimization



knowledge based on project plans and customer demand.
Major replacement of the specification language and parser,
the planning system, and the code generator occurred with-
out interruption to system availability. After every major
change, a growing set of regression tests (based on exam-
ples generated in-house and examples that customers chose
to share) is run. Subsets of the tests are run after smaller
changes.

Development Issues
Building a rapidly extensible underlying technology has al-
ways been a goal and has occupied much of the first years
of SciNapse development. Success has been based on
the object-oriented design with an emphasis on making the
system interface, specification language, and documenta-
tion self-generative from the knowledge base (it took three
tries to develop the most workable specification language).
Also, the template representation of algorithms brings regu-
larity and discipline to the definition of new algorithms and
their availability in specifications. And Mathematica, de-
spite its shortcomings in execution speed, programming en-
vironment, and user interface modifiability, has served as
a flexible programming language that integrates program-
ming, computer algebra and notebook interface in a single
system.

Focusing on the application area and involving users in
the process began early, though even earlier would have
been better. After we published some textbook-level fi-
nancial modeling examples in August 1996, potential cus-
tomers started sending us challenge problems. We generated
some increasingly sophisticated financial modeling codes,
and eventually committed ourselves to finance as our initial
application area. At that time, we stopped new work on par-
allel computing and Fortran, both useful for numerical mod-
eling but not necessary for SciFinance. We tried, but to date
have failed, to set up any formal development partnerships.

Deployment Issues
Customers typically evaluate SciFinance for several months
before deciding to buy. During this period, quantitative an-
alysts learn how to write ASPEN specifications and deter-
mine how easy it is to produce the codes they need. Usually
they generate the equivalent of some of their own codes and
compare them for accuracy and efficiency. When convinced
that automatically generated codes are of at least compara-
ble quality, they move on to a current problem of substan-
tially greater difficulty to ensure that it too can be specified
and correctly generated. The last step is usually to deter-
mine whether they can easily adapt the generated codes to
the bank’s production environment. In some cases this in-
volves a customization of the ASPEN interface specification
features to the particular information technology needs of
the bank.

Convincing analysts that they can spare the time to try
a new paradigm is a continuing hurdle. Enormous conse-
quence falls on the appropriateness and accuracy of their
models, and they are accustomed to working with familiar
methods in a tightly controlled way. Some analysts do not

regularly use PDE methods. Although time is still a ma-
jor issue, the initial skepticism about whether SciFinance
could generate sophisticated and accurate codes is rapidly
diminishing as our customer list and technical publication
list grow. We must, however, continually increase the scope
of the system’s applications and mathematical sophistication
in order to keep existing customers and attract the new cus-
tomers that already have substantial bases of existing codes.

Rapidly developing interfaces to customers’ proprietary
environments is an important part of making the system use-
ful to a broad range of institutions. Unfortunately, there are
no industry standards for trading system interfaces or error
handling. There are too many different commercial and in-
house developed back-office systems to develop in advance
for all possibilities. Instead we provided some basic solu-
tions and developed tools to simplify customization. AS-
PEN has many constructs for reading and otherwise initial-
izing data, specifying external calls to user functions, and
making the generated codes callable. It also has ways to
specify dynamic memory management (in C) and an error-
handling scheme that propagates error codes. Based on cus-
tomer requests, we have created half a dozen parameteri-
zations for the structure of the top-level generated routine,
and we have modified the original error-handling scheme to
make it thread-safe.

Maintenance
SciFinance serves a competitive market with rapidly evolv-
ing needs. As a commercial product, it will grow and be
maintained for a long time. Evolution includes not only bug
fixes, but also the addition of new algorithms, performance
enhancements, better design choice heuristics, new design
choice options, and interface extensions. As previously dis-
cussed, SciFinance was designed with continuous update in
mind, and many system features are derived directly from
the knowledge base, which also has many internal consis-
tency checks. We update the internal development version
continually, with commercial releases about once every two
months. A release typically includes about a half dozen new
or extended features as well as several bug fixes.

Users can make some extensions through specification
macros, and eventually we will make an algorithm descrip-
tion language available. More extensive additions to the
knowledge base must be made by the developers based on
suggestions from customer or staff mathematicians and fi-
nancial analysts. Typically, staff mathematicians and com-
puter scientists must work together to devise the most
appropriate generalizations of the financial-construct and
mathematical-optimization suggestions before they are im-
plemented. In addition to keeping up with new financial con-
structs and improvements in numerical methods, we plan the
more intensive addition of a new class of methods, Monte
Carlo simulations. Over the long term, we may expand into
additional areas of financial modeling, produce generic PDE
packages for students and professional engineers, extend the
system to specific applications, and provide interfaces for
less technically oriented users.

It is crucial that SciFinance generate correct code, which



is especially challenging because the system is most attrac-
tive to people who push the limits with complex, marginally
tractable problems (professional practitioners already have
solutions to the easy problems). We attack the correct-
ness problem with the specification parsing previously de-
scribed and with automated development-time tests and re-
gression tests. During development, the template transla-
tor employs extensive semantic checking, providing diag-
nostic assistance like that of a helpful compiler. The object
methods are checked for circularity and type conformance.
Synthesis-time appropriateness checks encoded in our ob-
ject methods help guarantee that the process is running as ex-
pected. An object examiner and various process-monitoring
tools assist in unit testing and debugging. Much of the doc-
umentation is re-generated from the system’s semantic net-
work of information whenever it changes, minimizing main-
tenance effort and eliminating the possibility of making cer-
tain kinds of errors. A mechanical validity check of the
information network verifies that every alleged node refer-
ence is to a node that actually exists and checks that every
node in the network can be reached. We always subject pro-
posed system updates to extensive regression testing, which
compares the regenerated codes with previous versions, runs
them through PurifyR, tests the numerical results, and mon-
itors execution times. We test widely over the cross product
of new features, including incorrect specifications, to ensure
graceful error recovery and cogent diagnostics.

Summary
SciFinance brings an integrated set of AI, knowledge-based,
and computer-algebra techniques to bear on the real-world
problems of numerical modeling, providing a commercial
software synthesis system for solving PDEs in computa-
tional finance. Customers testify that the system increases
productivity, reduces development time, and yields consis-
tently high-quality codes that can conform to institutional
environments. The system’s mathematical knowledge can
lower the entry barrier for non-mathematicians, and the ex-
tensive data structure and programming knowledge com-
pletely relieve the user of coding burdens. The system’s
common knowledge base minimizes maintenance efforts.
The evolution of the target application from sonic and seis-
mic modeling to computational finance demonstrates the
adaptability of the system’s fundamental design. This flex-
ibility also allows developers to respond rapidly to user
needs, a necessity in the fast-moving world of securities op-
tion pricing.

Acknowledgments
SciFinance would not exist as a product without contribu-
tions from our consultants and other SciComp team mem-
bers; thanks to Stanly Steinberg, David Johansen, Larry
Schumann, Miriam Boral, and Monica Garcia. We also are
grateful to Elaine Rich and the IAAI reviewers for critical
readings of this paper, and to our customer/colleagues who
have graciously shared their experiences.

This work was supported in part by the National In-
stitute of Standards and Technology under Advanced

Technology Program Cooperative Agreement Number
70NANB5H1017.

References
Akers, R.; Kant, E.; Randall, C.; Steinberg, S.;
and Young, R. 1997. SciNapse: A Problem-Solving
Environment for Partial Differential Equations. IEEE
Computational Science and Engineering. 4(3):32-42.

Akers, R.; Baffes, P.; Kant, E.; Randall,C.; Steinberg,
S.; and Young, R. 1998. Automatic Synthesis of
Numerical Codes for Solving Partial Differential
Equations. Special Issue Non-Standard Applications
of Computer Algebra of Mathematics and Computers
in Simulation 45(1-2):3-22.

Brown, G. and Randall, C. 1999. If the Skew
Fits. Risk Magazine 12(4):62-65.

Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.; and
Greeley, R. 1999. Using Artificial Intelligence Plan-
ning to Automate Science Data Analysis for Large
Image Databases. Intelligent Data Analysis 3:159-176.

Gallopoulos, E., and Sameh, A. 1997. CSE: Content
and Product. IEEE Computational Science and Engi-
neering 4(2):39-43.

Gatheral, J.; Epelbaum, Y.; Han, J.; Laud, K.;
Lubovitsky, O.; Kant, E.; and Randall, C. 1999.
Implementing Option-Pricing Models Using Software
Synthesis. Computing in Science and Engineering
1(6):54-64.

Johnson, W. L., and Nuseibeh, B., eds. Automated
Software Engineering: An International Journal.

Kant, E. 1993. Synthesis of Mathematical Mod-
eling Software. IEEE Software 10(3):30-41.

Lowry, M. R., and McCartney, R. D., eds. 1991.
Automating Software Design. Menlo Park, CA:AAAI
Press/The MIT Press.

Randall, C.; Kant, E.; and Chhabra, A. 1998.
Using program synthesis to price derivatives. Journal
of Computational Finance 1(2):97-129.

Wolfram, S. 1999. The Mathematica Book. Wol-
fram Media/Cambridge University Press.

Young, R. L; Kant, E.; and Akers, L. A. 2000.
A Knowledge-Based Electronic Information and
Documentation System. In Proceedings of the 2000
International Conference on Intelligent User Inter-
faces, 280-285. New Orleans, LA:ACM Press.


