
Nurse Rostering at the Hospital Authority of Hong Kong

Andy Hon Wai Chun

City University of Hong Kong
Department of Electronic Engineering

Tat Chee Avenue, Kowloon
Hong Kong

eehwchun@cityu.edu.hk

Steve Ho Chuen Chan, Garbbie Pui Shan Lam,
Francis Ming Fai Tsang, Jean Wong and

Dennis Wai Ming Yeung

Advanced Object Technologies Limited
Unit 602A, HK Industrial Technology Center

72 Tat Chee Avenue, Kowloon
Hong Kong

{steve, garbbie, francis, jean, dennis}@aotl.com

Abstract
This paper describes the Rostering Engine (RE) that we
have developed for the Hospital Authority (HA), Hong
Kong as part of their Staff Rostering System (SRS) using
AI constraint-programming techniques. The Hospital
Authority manages over 40 public hospitals in Hong Kong.
With close to 1500 wards total, the amount of resources
needed to produce weekly staff rosters for each ward is
tremendous and extremely time consuming. Previously,
most staff rosters were generated manually. Without
computer records, it was difficult for HA to produce
workforce statistics or to improve resource efficiency. In
early 1997, the Hospital Authority embarked on a strategic
Staff Rostering System project to provide automation
support in managing their large workforce of over 48,000
full-time hospital staff. The Staff Rostering System
performs ward-level rostering based on ward-specific
constraints, staff requests, and work patterns. Version 1 of
the system was completed early 1998 and Version 2 was
released early 1999. The system is gradually being
deployed in different public hospitals across Hong Kong.

Task Description

The Hong Kong Hospital Authority
(http://www.ha.org.hk) was established in 1990 as an
independent body to manage all public hospitals in Hong
Kong. It is accountable to the Hong Kong Government
through the Secretary for Health and Welfare. It provides
medical treatment and rehabilitation services to patients
through hospitals, specialist clinics and outreaching
services. At the end of 1997, the Authority managed over
26,400 hospital beds; representing roughly 4.06 public
hospital beds per 1,000 population. To fulfil its roles, the
Authority employs over 48,000 full-time staff. In 1997,
the Authority managed over 44 public
hospitals/institutions and 49 specialist outpatient-centers.

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The wards within each HA hospital schedules and
manages its own nurses and clinical supporting staffs.
Some staff members work across wards and need to be
scheduled at the departmental level. This is obviously a
very time-consuming task but needs to be performed
regularly. In 1997, the Hospital Authority started to work
with the City University of Hong Kong to design and
develop the core rostering engine of their Staff Rostering
System.

Ward managers use the Staff Rostering System (SRS)
to schedule, reschedule and manage different types of
staff such as nurses, student nurses and clinical supporting
staff. Since the SRS will be used by a wide variety of
different wards and hospitals which have their own
specific needs and requirements, in additional to the
standard Hospital Authority rules and constraints, the SRS
was designed to be flexible enough to capture different
types of operational needs. The way rostering is
performed may also be different from ward to ward. For
instance, rostering may be performed in stages for
different ranks and shifts – a night roster may be prepared
before the day duties are planned, or nursing officer’s
night shifts might be rostered first. For course, different
groups of staff and different shifts will have different sets
of rules and constraints. Rostering may also be performed
in different intervals. For example, night shift rostering
might be performed once every 4 weeks while other shifts
may be rostered on a weekly or bi-weekly manner.

SRS will be used to roster many different types of staff
and by many different types of wards and hospitals.
Designing a sufficiently comprehensive set of rules and
constraints and a rostering algorithm that is sufficiently
flexible to handle all the different types of rostering needs
were the main challenges in this project.

System Goals
Although many of the constraints used in SRS are unique
to the Hospital Authority, the main goals and objectives
of the SRS are similar to those of many other rostering
systems. For example, the SRS should ensure that there is

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



an adequate number and mixture of skilled staff present to
maintain committed level of service quality. At the same
time, each staff member should be assigned an
appropriate number of working hours in accordance with
their terms of appointment, i.e., should not be over-
worked or under-utilized.

For course the roster should also be as fair as possible
to all staff members. For example, each staff should be
equally given the same number of days off on weekends
and public holidays or the same number of night duties.
Understanding that each person has their individual needs,
staff requests and preferences should also be considered
during rostering and accepted as long as they do not
impact the overall roster.

Another key objective is to make the roster as
“friendly” as possible. For example, it should maximize
the interval between performing two night duties. It
should prevent or avoid shift patterns that are not
desirable. For example, having to work two night duties
on consecutive Sundays or having to work an afternoon
shift just before a night shift.

The fundamental requirement that any rostering system
must follow is of course to ensure that all Government
labor regulations are followed and that all appointment
terms are met. The system should also produce rosters
within a reasonably short period of time.

Application Description

The Staff Rostering System (SRS) is a computer system
developed by HA’s Information Technology Division to
improve the delivery of health care services. It provides
assistance to HA hospitals at the ward level in assigning
shifts for nursing staff and supporting staff. Through
process re-engineering, the system supports the
streamlining of the rostering process and hence increases
productivity. The functions of SRS include:

� Generating rosters using constraint programming

� Printing rosters for distribution to staff

� Storing roster records into a database

� Generating management reports

SRS adopts a two-tiered client-server architecture.
Database operations such as retrieval, display, and
modification of rosters, personnel information, and
constraints are performed using Microsoft Visual Basic as
the front-end to the back-end Microsoft SQL Server
database. The Rostering Engine is a component of the
front-end and is invoked when rosters need to be
generated.

Typically, when a ward manager uses the Staff
Rostering System, he/she would first update the system
with any changes. These can be changes in ward
information, such as special duty days, or staff
information, such as promotions or resignations, etc. The
ward manager would also adjust any constraints or
parameters that might have changed. Normally, rules and
constraints, once set are fairly stable. The ward manager
then enters any staff requests, such as day off, leave
encashment, etc., and any pre-assigned duties, such as
training. Once all the pre-assignments, requests and
changes have been made, the ward manager then invokes
the Rostering Engine to produce a roster for a particular
set of staff, shifts, and rostering period.

Rostering Engine
Program

Staff rostering algorithm.
Contains hospital business
objects and business logic.

SRS User Interface
Program

Allow users to modify constraints,
rules and parameters, and to view/

modify results of staff rostering.

Database Server

Stores information on staff, duties,
and knowledge on rostering

constraints, rules, and parameters.

Figure 1. Overall system architecture.

The Rostering Engine creates business objects for the
ward being rostered using the following four main types
of information:

� Static information about the ward. This includes
the department this ward belongs to, the shifts
within a ward, the special duty days, and how
rosters should be generated.

� Staff information . This includes information on
rank, seniority, assigned wards, leave balances, and
personal requests.

� Constraints and parameters. These are the
constraints and parameters used during rostering.
Constraints are described in further detail in
Sections below.

� Historical information . This includes a set of
roster-related statistics, such as number of
accumulated leave, etc. and the previous roster
history.



- Ward Information

- Staff Roster
Input Requests

and Changes

- Staff Information
- Constraints/Parameters
- Historical Information

Figure 2. Typical operation of the Staff Rostering System.

Guided by the constraints of a ward, the past roster, and
staff requests, the Rostering Engine produces the desired
roster for the selected set of staff, shifts, and rostering
period using AI constraint programming techniques (Chun
1999, Puget 1994).

Uses of AI Technology

The nurse rostering problem is modeled as a constraint
satisfaction problem (CSP) (Cohen 1990, Kumar 1992,
Steele 1980, Van Hentenryck 1989). The key components
to any CSP algorithm are, of course, the variables, their
domains, and the constraints that restrict how these
variables may be assigned values from their domains. In
our Rostering Engine, each variable represents the
unknown shift that a nurse should work in, on a particular
day. The domain consists of all the shifts defined for the
group of staff that the roster is being generated for.

Our rostering constraints are classified as either hard or
soft. Hard constraints must be followed strictly, such as
enforcing labor regulations. Soft constraints represent
preferences. Users are allowed to define different levels
of preferences for each soft constraint. To further control
how rostering constraints are used, two “scoping”
mechanisms are provided – a “when-to-apply” scope and
a “who-to-apply” scope. The “when-to-apply” scope
defines when a constraint should be applicable, such as
only during weekends or on Mondays as examples. The
“who-to-apply” scope defines those staffs that are affected
by a constraint, such as a particular individual, a group of
staff, or staffs belonging to a particular rank.

The following highlights the key constraints considered
by our Rostering Engine:

� Manpower Demand Constraint

This type of constraint defines manpower requirement
for a specific rank, staff group, gender or their
combination in a particular shift, as well as the
alternative manpower demand patterns in case the
original demand cannot be satisfied. For example:

� Exactly 4 registered nurses on Monday morning
can be replaced by 3 registered nurses and 1

enrolled nurse or by 2 registered nurses and 1
student nurse.

� At least 1 male registered nurse in night shift.

� Working Hours Constraint

This type of constraint defines the total number of
working hours for a staff within the specified time
period. For example:

� An enrolled nurse should work exactly 88 hours
per fortnight.

� A registered nurse should work at least 40 hours
per week.

� Shift Distribution Constraint

This type of constraint defines the frequency that a staff
may be assigned a particular shift during the specified
time period. For example:

� At most 1 night shift on Sunday per fortnight.

� At least 1 day off on Sunday every 4 weeks.

� Days Between Same Shift Constraint

This type of constraint defines the number of days that
should elapse before a staff member takes another shift
of the same type. For example:

� Minimum 4 days between night shifts.

� Exactly 3 days between afternoon shifts.

� A night shift on Thursday must be followed by a
night shift on Sunday.

� Consecutive Day-Of-Week Constraint

This type of constraint defines the total number of
consecutive occurrences of a particular shift assigned to
a staff on a certain day. For example:

� Cannot assign night shifts on two consecutive
Sundays.

� Morning shifts must be assigned in two consecutive
Saturdays each time.

� Cannot assign day off on two consecutive public
holidays.

� Shift Sequence Pattern Constraint

This type of constraint defines a pattern of shifts to be
assigned on consecutive days.

� Afternoon shift is not preferred if before a night
shift.



� Prefer a day off right after a night shift.

� Prefer a morning shift to be followed by a day off
and then an afternoon shift.

� Should avoid assigning three morning shifts in a
row.

� Should not assign three night shifts in a row.

The Rostering Algorithm
The problem of nurse rostering or rostering in general
have been subjects for decades of scheduling research
(Abdennadher and Schlenker 1999, Martello and Toth
1886, Miller, Pierskalla, and Rath 1990, Randhawa 1983,
Rosenbloom and Goertzen 1987). The combinatorial
problems of shift assignment are well documented. It is
only in recent years that researchers have begun to look
into constraint programming as an alternative approach.
Several researchers have documented successful
applications of constraint programming to nurse and staff
rostering (Dresse 1995, Kusumoto 1996, Lau and Lau
1997, Lazaro and Aristondo 1995).

The scheduling algorithm we have created for the
Hospital Authority combines the power of constraint
propagation with intelligent heuristics to avoid
combinatorics associated with rostering. Constraint
propagation reduces the search space early on while our
heuristics guide the search through the remaining search
space. The technique we use is a combination of look-
ahead and intelligent scoring to determine which nurse to
roster next and which shift would satisfy most of the soft
constraints. Through half a year of pilot run, we have
refined our heuristics so that the scheduling algorithm
yields fairly good results within a short reasonable time.

Application Use and Payoff

Hospital Authority’s SRS has been in daily use in wards
of the Prince of Wales Hospital, Alice Ho Miu Ling
Nethersole Hospital, and Shatin Hospital for over a year.
Since then, Kwai Chung Hospital, Kwong Wah Hospital,
Bradbury Hospice, and the United Christian Hospital have
also gone live. Altogether, over 250 seats of SRS have
been installed. Over three hundred people have been
trained to use the system. Further deployment at other HA
hospitals are being scheduled.

There are numerous benefits in using AI techniques for
staff rostering. Some of the key application payoffs are
outlined below:

� Increased Productivity

Just the process of sitting down and drafting a weekly
roster for a single ward is already quite time
consuming, not to mention trying to make the roster
more efficient and “friendly.” Unfortunately, this

mundane task of staff rostering must be performed by a
highly experienced and skilled staff - the ward
manager. In a large hospital, there may be twenty to
thirty such ward managers each performing staff
rostering for their respective wards. The availability of
an automated system, such as the SRS, greatly
improves productivity by relieving ward managers of
the more mundane aspects of staff scheduling and lets
them focus on the actual management of staffs and
problem solving. SRS, by using intelligent AI
techniques, also produces rosters that assigns staff more
efficiently and hence improves the overall productivity
of the hospital.

� Increased Morale

Because the rules, constraints and parameters used by
our Rostering Engine for each ward are clearly
specified and well publicized, suspicions of favoritism
are eliminated. Having a set of open criteria, by itself,
has already greatly improved staff morale in general. In
addition, our Rostering Engine ensures that all staffs
are treated fairly by using different types of historical
statistics to generate the roster. The statistics indicate
how “well” each staff has been treated so far, in terms
of the number of more desirable or less desirable shifts
assigned in the past. Based on the statistics, the
Rostering Engine tries to evenly assign “good” shifts to
balance out the statistics. Using fairness measures is
another way of improving staff morale. Furthermore,
the Rostering Engine also tries to satisfy as many staff
preferences and requests as possible without violating
the fairness criteria, which provides a better sense of
belonging. Due to complexity of all the computations
involved, the time needed to produce rosters of this
quality manually will be overly time consuming.

� Facilitate Quality Management

Previously, many wards used only manual approaches
to staff scheduling with only paper records of staff
work assignments and leave schedules. Trying to
produce any management statistics or reports from the
paper records was difficult and prone to errors. SRS,
with its connected databases, allows the Hospital
Authority to quickly and accurate produce any type of
management reports at a click of a button. This allows
senior management instant access to statistics on
workforce productivity and utilization for planning and
review.

� Improved Quality of Service

The most important objective of any workforce
scheduling system is, of course, to improve the quality
of service provided by the organization. This quality of
service can be ensured by scheduling an adequate



number of staff with a well-balanced set of skills and
experiences to handle any potential work that might be
needed in the ward. The most important criterion
considered by the Rostering Engine is to ensure that all
workload requirements are satisfied first.

Application Development and Deployment

The SRS project began in early 1997 and was considered
as one of the key strategic IT projects of the Hospital
Authority.

The project began with an extensive user requirement
study. Several larger hospitals within Hong Kong were
selected for requirement analysis. The objective was to be
able to obtain a board set of requirements that balanced
the needs of a wide variety of wards across Hong Kong.

Based on the results of the requirement study, a set of
generalized rules and constraints was extracted that
encapsulated a majority of the rostering knowledge used
by different wards in Hong Kong. Although the Hospital
Authority has a fixed set of rules and guideline governing
the scheduling of staff, each ward operates slightly
differently and has additional constraints and parameters
that must also be considered.

Software and database design of the Staff Rostering
System began mid-1997. A set of Booch Diagrams
(Booch 1994) was used to document the design of the
Rostering Engine. Actual software development began
soon after that and lasted roughly nine months.
Development was performed in parallel; the Hospital
Authority designed and implemented the backend
database and the front-end Visual Basic graphic user
interfaces, while we focused on the C++ Rostering
Engine. Total project team size was roughly fifteen
people.

The Rostering Engine was developed using the MS
Visual Studio development environment. C++ class
libraries from RogueWave (http://www.roguewave.com)
were used to create the foundation classes and hospital
business objects. Class libraries from ILOG
(http://www.ilog.com) were used to implement the CSP
algorithm and to provide constraint-programming
capabilities.

The Hospital Authority began to field test the Staff
Rostering System early 1998 in a few selected sites
including Prince of Wales Hospital and Alice Ho Miu
Ling Nethersole Hospital. During this period, comments
and feedback from end users were used to refine the user
interfaces, reporting facilities and the backend rostering
component. The Rostering Engine was extended, in terms
of its scheduling algorithm and heuristics, to better match
the needs for individual test wards but without loosing
generality. After half a year of field-testing and

refinement, Version 1 of the system was officially
deployed in mid-1998.

By end of 1998, SRS was deployed in all the general
wards of Alice Ho Miu Ling Nethersole Hospital and all
the wards of the Shatin Hospital. The Prince of Wales
Hospital also began to roll out SRS in all its wards
starting early 1999. Also within 1999, over a hundred
seats of SRS were installed at Kwai Chung Hospital and
Kwong Wah Hospital. In early 2000, SRS began roll out
at Bradbury Hospice and the United Christian Hospital.
The Staff Rostering System is now in daily use at seven of
the larger hospitals in Hong Kong, with a total application
installation base of roughly 250 wards total. The
implementation of SRS at other public hospitals are still
underway.

The Staff Rostering System is an ongoing HA strategic
project. New enhancements and software features were
added in 1999 and also planed for 2000. One potential
enhancement is departmental-level rostering that further
enhances staff utilization by sharing staff across wards
depending on workload requirements of the wards and the
skill sets of the available staff. There are numerous other
areas, within the hospital environment, that can also
benefit from AI constraint programming technology. For
instance, scheduling and managing operation theatres,
radiology rooms and operators, hospital beds, ambulance
dispatching, etc. The Hospital Authority is now looking
into some of these potential areas as well.

Maintenance

The rules and constraints used by the Rostering Engine
were designed to be fully maintainable by the hospital
end-user, which are mainly the ward managers. A set of
simple-to-use MS Visual Basic screens and menus allow
HA staff to quickly and conveniently display and update
the knowledge base. All ward-specific knowledge,
constraints, parameters and data are stored in the local MS
SQL Server database. Changes in the knowledge base to
reflect changes in operational needs can be routinely
performed without any Rostering Engine source code
modification. HA’s IT Department provides front-line
technical and end-user support while we provide
additional assistance whenever needed. The City
University of Hong Kong (http://www.cityu.edu.hk) and
its subsidiary Advanced Object Technologies Limited
(http://www.aotl.com) provides development and
consulting services on enhancements to the Rostering
Engine.

Conclusion

This paper provided a brief overview of the Rostering
Engine, which is part of the Hong Kong Hospital
Authority’s Staff Rostering System. The Rostering



Engine is the scheduling program that generates a roster
using constraint-programming techniques given a set of
rostering parameters and constraints. The paper described
the general architecture of the SRS and the key
constraints considered by the RE. Given that there are
over a thousand public hospital wards in Hong Kong, our
Rostering Engine might eventually become one of the
largest installation of any AI system in the Asia Pacific
region.

Acknowledgements

The authors would like to thank the Hospital Authority,
Hong Kong for providing us with an opportunity to
participate in this crucial project. We would also like to
thank HA for allowing us to include information on the
Rostering Engine in this paper. In particular, we would
like to thank Barbara Kwan and her team members
Deirdre Chiu and Derek Tang for suggestions made to an
earlier version of this paper.

Research performed was funded in part by a Hong
Kong RGC Earmarked Grant and a Strategic Research
Grant provided by the City University of Hong Kong.

References

Abdennadher, S. and Schlenker, H. 1999. Nurse
Scheduling using Constraint Logic Programming. In
Proceedings of the Eleventh Conference on Innovative
Applications of Artificial Intelligence, 838-843. Menlo
Park, Calif.: AAAI Press.

Chun, H.W. 1999. Constraint Programming in Java with
JSolver. In Proceedings of the First International
Conference and Exhibition on the Practical Application
of Constraint Technologies and Logic Programming.
London.

Cohen, J. 1990. Constraint Logic Programming.
Communications of the ACM33(7):52-68.

Booch, G. 1994.Object-Oriented Analysis and Design
with Applications, 2nd ed. Benjamin/Cummings
Publishing Company Inc.

Dresse, A. 1995. A Constraint Programming Library
Dedicated to Timetabling. InProceedings of the First
ILOG Solver and Scheduler Users Conference. Paris:
ILOG.

Kumar, V. 1992. Algorithms for Constraint Satisfaction
Problems: A Survey.AI Magazine13(1):32-44.

Kusumoto, S. 1996. Nurse Scheduling System Using
ILOG Solver. InProceedings of the Second ILOG Solver
and Scheduler Users Conference. Paris: ILOG.

Lau, H.C. and Lau, S.C. 1997. Efficient Multi-Skill Crew
Rostering via Constrained Sets. InProceedings of the
Second ILOG Solver and Scheduler Users Conference.
Paris: ILOG.

Lazaro, J.M. and Aristondo, P. 1995. Using Solver for
Nurse Scheduling. InProceedings of the First ILOG
Solver and Scheduler Users Conference. Paris: ILOG.

Martello, S. and Toth, P. 1986. A Heuristic Approach to
the Bus Driver Scheduling Problem.European Journal of
Operations Research24 (1):106-117.

Miller, H.E., Pierskalla, W.P. and Rath, G.J. 1990. Nurse
Scheduling Using Mathematical Programming.Naval
Research Logistics37:559-577.

Puget, J.-F. 1994. A C++ Implementation of CLP. In
ILOG Solver Collected Papers. ILOG SA, France.

Randhawa, S.U. and Sitompul, D. 1983. A Heuristic
Based Computerized Nurse Scheduling System.
Computers and Operations Research20(8):837-844.

E.S. Rosenbloom, E.S. and Goertzen, N.F. 1987. Cyclic
Nurse Scheduling.European Journal of Operations
Research31:19-23.

Steele, G.L. Jr. 1980. The Definition and Implementation
of a Computer Programming Language Based on
Constraints, Ph.D. Thesis, MIT.

Van Hentenryck, P. 1989.Constraint Satisfaction in Logic
Programming, MIT Press.


