
The TheaterLoc Virtual Application

Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, Andrew Philpot, Cyrus Shahabi

Information Sciences Institute, Integrated Media Systems Center, and Department of Computer Science
University of Southern California

4676 Admiralty Way, Marina del Rey, CA, 90292
{ barish, knoblock, minton, philpot} @isi.edu { yishinc, shahabi} @pollux.usc.edu

Abstract

Although much has been written about various information
integration technologies, little has been said regarding how
to combine these technologies together to build an entire
“virtual” application. In this paper, we describe the design
and implementation of TheaterLoc, an information
integration application that allows users to retrieve
information about theaters and restaurants for a variety of
cities in the United States, including an interactive map
depicting their relative locations and video trailers of the
movies playing at the selected theaters. The data retrieved
by TheaterLoc comes from five distinct heterogeneous and
distributed sources. The enabling technology used to
achieve the integration includes the Ariadne information
mediator and wrappers for each of the web-based data
sources. We focus in detail on the mediator technologies,
such as data modeling, source axiom compilation, and
query planning. We also describe how the wrappers
present an interface for querying data on web sites, aiding
in information retrieval used during data integration.
Finally, we discuss some of the major integration
challenges we encountered and our plans to address them.

Introduction

There is a wealth of interesting data sources and
applications available on the World Wide Web, but it is
difficult to do much with the information except look at it
or build a specific application to process the data
available. Writing separate applications each time is a
time-consuming and redundant task. We have developed
a system called Ariadne (Knoblock et al. 1998) that
makes it possible to rapidly construct an information
agent that can integrate data sources that were not
originally designed to work together. The resulting
virtual application dynamically performs the integration
in order to minimize the problems associated with storing
and maintaining data. Ariadne includes tools for
constructing wrappers that make it possible to query web
sources as if they were databases and the mediator
technology required to dynamically and efficiently answer
queries using these sources.

 Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

We claim that Ariadne makes it possible to rapidly
build virtual applications and in this paper we describe
exactly what is involved. Specifically, we provide a
detailed, behind-the-scenes look at one of the recent
applications we have built. This application, called
TheaterLoc (Barish et. al. 1999a), integrates data related
to movie theaters and restaurants, allowing users to view
their locations on a map, look up restaurant reviews and
movie showtimes, and watch trailers of films.

There has already been substantial work on information
integration (Weiderhold 1996) and projects that focus on
applying this technology to the World Wide Web,
including Information Manifold (Levy et. al. 1996),
Occam (Kwok and Weld 1996), Infomaster (Genesereth
et. al. 1997), and InfoSleuth (Bayardo et. al. 1997), as
well as related work specifically on information
extraction (Hammer et. al. 1997; Doorenbos et. al. 1997;
Kushmerick 1997). But what is noticeably absent from
the literature is a study on what it takes to put together an
entire application using the various integration
technologies. To that end, we describe the details of how
TheaterLoc works and how it was developed.

The next section describes what the application does
from the user’s point of view. Then, we describe how it
works, including the domain modeling, the query
planning, and the wrappers for extracting the data from
web pages. Next, we enumerate TheaterLoc development
tasks and their costs. Lastly, we identify some remaining
challenges and how we are currently addressing them.

The TheaterLoc Application

TheaterLoc (http://www.isi.edu/ariadne/demo/theaterloc)
is a web site that allows users to retrieve information
about restaurants and movie theaters for various cities in
the United States. Users first choose the city in which to
query. The system then returns information about the
theaters and restaurants in that city, as well as a custom,
interactive map identifying their relative locations within
that city, illustrated in Figure 1.

Users can then click on any of the plotted points to be
taken to a web page containing further details about that
particular place. For example, when a restaurant is
chosen, users are taken to its corresponding CuisineNet
web page (as shown in Figure 2), which contains reviews,

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

pricing information, and ratings. Alternatively, choosing
a theater returns a listing of the current movies playing
there, along with their showtimes, and links to video
trailers, as shown in Figure 3.

The information integrated by TheaterLoc comes from
five distinct online sources. Restaurant information is
gathered from CuisineNet, theater and movie showtime
information from Yahoo Movies, and the trailers come
from Film.com. Construction of the interactive map is
facilitated by two sources: the E-TAK geocoder (to
geocode all addresses for plotting) and the US Census
Tiger Map Service. The TheaterLoc application is
effective because it saves the user from having to go to
these sites separately, navigate through different user
interfaces, and integrate the data manually. Instead, what
is presented is a single, cohesive application that
seamlessly integrates the useful data from these sources
and automatically correlates them as necessary.

System Architecture
TheaterLoc is a client/server application, where the server
side is composed of three major pieces: a web server, an
information mediator, and a set of wrappers to access data
sources. For the purposes of this paper, we will focus on
the details of the mediator and wrappers, since they are
the centerpiece of the integration effort.

The system architecture is shown in Figure 4. When a
user issues a query though the web interface, the HTTP
request is processed by the web server, and a
corresponding query is sent to Ariadne for resolution.
The mediator, in turn, constructs a plan indicating which
sources should be queried and how the data retrieved
should be integrated. This plan also contains information
about how to order the steps of information retrieval
(since there may be dependencies), which steps can be
executed in parallel, and what other data manipulation
functions (such as relational joins or projections) need to
be done to answer the query.

Many of the data sources comprising Ariadne
applications are web sites. Access to their data is
accomplished through communication with data source
wrappers, which provide a standard, flexible query
interface to a set of logically related web pages. Web
pages are considered semi-structured sources, in that they
contain useful information, organized in a predictable
manner, which can be extracted automatically.

Wrappers are used to parse the data from these web
pages, essentially providing a database-like interface to
the data contained on those pages. They allow the
mediator to interrogate web sites for information in a
standard and structured manner, specifically, a subset of
the SQL language. The TheaterLoc wrappers and their
underlying web site sources are listed in Table 1.

Example Query
To illustrate the details of integration within the system,
consider the following example. Suppose a user wants to
map restaurants and theaters in Cambridge, Massachusetts.

As described earlier, this HTTP request is translated by
the web server into an query sent to Ariadne, which then
plans a solution. The resulting plan consists of several

Figure 1: Theaters and restaurants in Cambridge, MA

Figure 3: Theater detail page

Figure 2: Restaurant detail page

subqueries to the various data sources that the mediator
knows about, so that the desired information can be
efficiently retrieved and integrated. For the example
query, this plan consists of retrieving information about
the various restaurants and theaters in Cambridge, and
retrieving a map showing their relative locations.

The detailed plan needed to accomplish these two tasks
includes a few additional steps, based on the information
sources available. Recall that it is not possible to simply
get all of this information from a single source. The
mediator must reason about what data the various sources
can offer and then construct a plan which retrieves the
desired information based on the features, limitations, and
dependencies between the sources. These detailed steps
are described below.
Retrieving Theaters and Restaurants. For our example
query, since the user has chosen to get information on all
theaters and restaurants in Cambridge, the mediator will
initially determine that it needs to query the Restaurant
and Theater wrappers to get demographic information
(names, addresses, and URLs) for both types of
establishments. In contrast, if the application interface
had allowed the user to search only for information about
theaters in Cambridge, the mediator would realize that
there would be no need to query the Restaurant wrapper,
as CuisineNet only provides data about restaurants.
Retrieving the Interactive Map. The next step in the
plan for our Cambridge query involves using the
Geocoder source to convert theater and restaurant street
addresses into latitudes and longitudes. This is necessary
in order to construct a query to the Map wrapper, which
retrieves a dynamic, interactive map indicating the
locations of these places.

The map returned is an HTML “ image map” , where
each plotted point is associated with a hyperlink to a page

containing more details about that location. Thus, users
can click on a particular point to explore more detail
about either a restaurant or theater. If they choose a
restaurant they are taken to the CuisineNet page for that
restaurant. If, on the other hand, they choose the URL
attribute for a theater, another Ariadne query is invoked to
collect movie showtime and video trailers for those
movies. Again, the web server translates an HTTP-based
request into a domain-level query.
Retrieving Movie Information. The query to Ariadne for
theater details contains the name of the theater chosen.
The corresponding plan that the mediator constructs to
solve this query consists of two steps: (a) interrogating the
Yahoo Movies site via the Showtimes wrapper for
information about movie showtimes and (b) for each
movie, querying the Trailer wrapper to locate the URL for
the video trailer, if any, associated with that movie. The
combined information is joined into a single relation and
subsequently returned to the user as an HTML table.
Users can then view the trailer by clicking on the link
provided in this table.

How TheaterLoc Works

We now take a detailed look at the inner workings of
TheaterLoc, focusing primarily on the Ariadne mediator
and wrapper technologies.

Data Modeling
In Ariadne, relationships between data are expressed in
the application domain model. This model contains
information about classes, their attributes, and their
relationship to other classes. The domain model provides
a unifying ontology for describing the contents of the
sources.

The model supports both functional sources and data
sources. The former essentially has a set of input and
output attributes: when given the required input attributes,
functional sources perform some computation and
produce the output attributes. Data sources, on the other
hand, simply contain a relation to be returned. There are
often instances when data sources require some input in
order to return a relation (for web sites, this is the case
when executing an HTTP POST request), so they can be
very similar to functional sources. However, in Ariadne,

Figure 4: TheaterLoc System Architecture

Web
Browser

ARIADNE
Information Mediator

Theaters
Wrapper

Showtimes
Wrapper

Restaurant
Wrapper

Trailer
Wrapper

Map
Wrapper

Geocoder
Wrapper

HTTP

Wrapper Source URL
Restaurant CuisineNet www.cuisinenet.com

Theater Yahoo movies.yahoo.com

Showtimes Yahoo movies.yahoo.com

Geocoder E-TAK www.geocode.com

Tiger USGS tiger.census.gov

Trailer Film.com www.film.com

Table 1: TheaterLoc wrappers and underlying sources

functional sources are typically local and they always
involve computation performed locally. Data sources are
either local or remote and, if they do involve computation,
that computation is performed remotely.

The TheaterLoc domain model is shown in Figure 5.
The model shows the domain level classes of Map, Place,
Movie, Restaurant, and Theater. Restaurant, for example,
is a class that has several attributes (such as cuisine) and
is related to other classes (such as Theater). Classes in the
domain model are mapped to zero or more actual
information sources. For example, in TheaterLoc, the
Restaurant class is mapped to the CuisineNet source.

The directed arc edge from Restaurant to Theater
indicates a covering, referring to the fact that the only
types of Place in TheaterLoc are either restaurants or
theaters. Since the Restaurant and Theater classes are
sub-classes of Place, they naturally inherit attributes of
their parent class, namely: street, city, state, city-state,
latitude, and longitude. The sources associated with each
class are shown as gray cylinders or cubes, near the class.
The cylinders indicate data sources, the cubes indicate
functional sources. Also shown for each source is a list of
the attributes it provides along with any binding
constraints (Kwok and Weld, 1996), the latter prepended
with a “$” character. Binding constraints are simply input
requirements that a source has before it can provide data.

The Geocoder is an example of a data source that has a
binding constraint. It requires street, city, and state
attributes in order to provide latitude and longitude
information about an address. Intuitively, this type of
constraint makes sense: one cannot geocode an address
without knowing the address first.

Functional sources can also have binding constraints.
The Article-Fn source, for example, takes as input an
attribute called raw-movie-nm and returns an attribute
called movie-name. This purpose of this source is to
normalize the ordering of the words of a movie title, so
that semantic equivalence can be detected with another
source. Specifically, this source is used to move any
grammatical article which might appear at the end of a
movie title to the front of the title. For example, the raw-
movie-nm might be “Bug’s Life, A” and the movie-name
returned would be “A Bug’s Life” .

Although data sources with binding constraints appear
similar to functional sources at the modeling level, they
are usually different at the implementation level.
Functional sources typically perform local computation
based on input and derive original data based on that
input. In contrast, data sources with binding constraints

typically use the input information as a means to either
perform remote computation or as a means to filter out a
logical subset of data from a much larger set.

Query Planning
Planning in Ariadne consists of two major steps: an initial
axiom compilation phase and then a run-time planning
phase. The first step is executed once, when the
application is first initialized. The second step is executed
each time the mediator receives a query.
Axiom Compilation. The reasoning done by the mediator
about the domain model leverages the results of an initial
domain axiom compilation step (Ambite et. al. 1998) that
generates rules about what source combinations can be
used to solve various domain queries. Specifically, axiom
compilation is based on applying a set of inference rules
to construct a lattice describing how various combinations
of data modeled at the domain level can be retrieved
given the available functional and data sources.

For example, consider the axioms for the TheaterLoc
Restaurant domain class, shown in Figure 6. Notice the
second axiom, which has a head declaring that various
attributes of restaurant (such as cuisine and latitude) can
be retrieved by combining the CuisineNet and Geocoder
sources, as shown in the body of the axiom. Essentially,
axioms represent how to map domain level terms onto
one or more source level terms.

The initial axiom compilation step significantly reduces
the run-time execution of the system. Instead of
performing a costly search to locate those sources

Figure 6: Partial list of TheaterLoc axioms

� ����� ���	� ��
	� � ���� � � ������� ��� � �
������������ ������
�������� ��� ���
������������ ��� ��� � ����������� � � ����� � ��� ����� � � ����������� � ��!
���"� � �
���
���� � � ��� � ������������ � ������� ��� �#��� ��������� �"� ���
������	� ������� ��� ���
����$����������
�������� � ���%����� ��� ��!

� ����� ���	� ��
	� � ���� � � ������� ��� � �
�������� ��� � � �	&	����� � �'
�(�� � ��&"�%�������'
���� ��� �������
����)��� ��� ������� � ����������� � ���%����� ��� ��� ��� � ���������"� ����!
���"� � �
���
���� � � ��� � ������������ � ������� ��� �#��� ��������� �"� ���
������	� ������� ��� ���
����$����������
�������� � ���%����� ��� ��!���
�&
(���� ����&���� � ���� � � ��� � ��� � � ��&"�%��� �'
�(�� � ��&"�%������ ��� ��� ���� � ����� !

� ����� ���	� ��
	� � ���� � � ��� ��� � ����� � ��� ��� ����� � �
�������� ��� � � ��&"������� �
�(�� � ��&"���������
�������� ��� �#�
����)������� ��� �#� � ������� � � ��� ����� � � ����������� � ��!
����
�� ��� *
�� � ���� � ������� � ����� � ��� �%������ ��� ��!���
�&
���"� � �
���
���� � � ��� � ������������ � ������� ��� �#� � ������� ����� � �
���� ��� �'� �	� �������
����)��� �	���
������ � ��� ��!���
�&
(���� ����&���� � ���� � � ��� � ��� � � ��&"�%��� �'
�(�� � ��&"�%������ ��� ��� ���� � ����� !

+ , - . / 0 1 2 3�4
5 6 2 , 4 0 1 2 3�47 . 8 4 4 ., - . /
7 . 2 . 4. 9 4 2 . 4 8 0 : 8 6

+ . 9 4 2 . 4 8 0 : 8 68 2 ;#0 3�< = - 4 0 1 3
7 9 < ;�. - 3�4

+ 3�< = - 4 0 1 2 3�4. 8 2 - 6 4 8 0 : 8 6

+ 3�2 5 0 5 < - 1 . 73�2 5 0 : 8 6

+ , - . /+ 7 . 2 . 4, - . / 0 7 . 2 . 4

+ 7 . 8 4 4 .+ , - . /+ 7 . 2 . 46 < 1 > - . : ? 46 2 . - . ? : ? 4

+ 8 2 ;#0 3�< = - 4 0 1 33�< = - 4 0 1 2 3�4

+ 5 6 2 , 4 0 1 2 3�4+ . 9 4 2 . 4 8 0 : 8 63�< = - 4 0 @ : 4 8 / 0 : 8 6

+ , - . /, : - 7 - 1 45 9 < 1 45 8 - , 4

A	B C D E�F G�H I J

K�G�L�C M'N#B M'J�C O�P"Q H I�J

R S�G#M�C G B

T�G#U#E�U#V�G B

R D W G BX�S�U#YZC D [%G�L

R�B M D F G B
\�U'J�E#M�C H I J

]�^	^"_

` a'b�c d�e'` d�f#c

g)h	i'j k g)l�m

m"n l�o	k

p q k	l p k�r

s t u v w x y u z {
| y t } v ~� z w z | y t } v ~ v y u v ~ � w

Figure 5: TheaterLoc domain model

required to answer a given query, the planner can instead
quickly consult the pre-compiled axiom lattice.
Planning By Rewriting. When queries are posed to the
system, Ariadne reasons about the domain model and
source descriptions in order to develop an efficient plan
for retrieving and integrating the data. The method used
to accomplish this is called Planning-by-Rewriting (PBR)
(Ambite and Knoblock 1997). Under PBR, an initial,
sub-optimal plan is quickly generated and then iteratively
improved by applying a series of rewriting rules.
Rewriting relies on local search algorithms that can alter
both the sources used to resolve portions of a query as
well as the ordering of operations performed by the
mediator during information integration.

The resulting plans produced by PBR can significantly
optimize and simplify the linear portions of the plan, as
well as exploiting opportunities for parallelism between
tasks, where possible. For example, the planning for the
query about restaurants and theaters in Cambridge would
discover that the collection of demographic information
and the geocoding of that information was a necessarily
serial sequence, whereas the collection of the
demographic data from the Theater wrapper and the
collection of data from the Restaurant Wrapper were
independent plan steps that could be parallelized.

An example plan to locate the theaters in Cambridge,
which represents a sub-plan of the original example
presented earlier, is shown in Figure 5. Generally, what is
illustrated here is that a list of theaters is being retrieved
from the Theaters wrapper, geocoded and the relevant
attributes returned as output. In addition, for each theater,
a movie-query-URL (which is the basis for the movie-
showtimes query) is derived. In looking at the figure, we
can identify a series of plan operators associated with
these general tasks. For example, notice that there is a
retrieval done for Theaters, the result used as the basis for
geocoding (Geocoder retrieve step), and the subsequent
results are joined along the street, city, and state
attributes. Later, there is a join done between this
information and the movie-query-URL information, based
on place-name. Finally, the output contains the attributes
of the class, provided by the integrated sources.

Wrapper-based Information Extraction
Wrappers, as described previously, provide a generic
mechanism by which a web site can be queried as a
traditional database, in a subset of the SQL syntax. In
TheaterLoc, for example, when querying the list of
restaurants from CuisineNet for Cambridge, the SQL
query:

sel ect name, addr ess, ur l f r om Cui si neNet
wher e ci t y=’ Cambr i dge’

is issued to the Restaurant wrapper by the mediator. The
wrappers work by using a page model to describe the
location and type of web page(s), an embedded catalog to
define the hierarchical relationship between data on a
page, and a set of extraction rules describing how to parse
data from that page (Muslea et. al.. 1999).

The page model describes how the pages should be
contacted in order to prepare for data extraction. For
example, the E-TAK Geocoding site consists of an
HTML form that requires address information as input to
return the geographic coordinates for that address. Thus,
the extraction of those coordinates is contingent on
submitting the form (an HTTP POST request). The
automatic entering of data onto the form and subsequent
POST request are described in the page model.

An embedded catalog is used to model the hierarchical
relationships between the attributes on a page. For
example, the Showtimes wrapper contains a two-level
embedded catalog which describes the fact that each
theater page contains a list of one or more movies. The
embedded catalog is used as a basis for how to parse a
given web page. Multiple levels in the catalog typically
indicate list-like structures on pages, so that nested lists of
information can be extracted in a structured manner.

Finally, the extraction rules describe how a page should
be split into a hierarchy of regions, and where the data is
located within each of these regions. Whereas the
embedded catalog describes the general tree-like structure
of a page, the extraction rules define how to locate the
nodes and leaves of that tree, the latter being the actual
data to be extracted. Rules are expressed in a regular-
expression like syntax, and are based on identifying

Retrieve

FROM: MovieQueryURL-fn
DATA: $place-name, $theater-
url, movie-query-url

Retrieve

FROM: Geocoder
DATA: $street,
$city, $state,
latitude, longitude

Project

street, city,
state

Project

place-name,
theater-url

Ordered-Join

street = street,
city = city,
state = state

Retrieve

FROM: Theater
DATA: place-name,
street, $city ,$state,
theater-url

Ordered-Join

place-name =
place-name

Output

place-name,
street,
city,
state,
theater-url,
movie-query-url,
latitude,
longitude

Figure 7: Part of the TheaterLoc query plan

landmarks near where the matching expression will
appear.

Generation of the page model, embedded catalog, and
extraction rules is accomplished through training the
system via a graphical user interface (GUI). Application
developers use the wrapper GUI to choose web pages
they want to extract data from, as well as where the
various parts of data on that page are located – they
actually point and click to indicate this information.
Using inductive learning, a system called STALKER
(Muslea et. al. 1998) generates the rules associated with
the user-defined catalog and model.

As an example of how wrappers extract data from a
web page, consider the TheaterLoc Showtimes wrapper.
As shown in Figure 8, the Yahoo Movies web page for a
theater shows a list of movies and their showtimes.
Obviously, there are some natural structures and patterns
associated with the data for that page. Wrappers take
advantage of this semi-structure to perform information
extraction. For example, the figure shows that on each
page there is a notion of a movielist, which is composed
of a list of movies.

Figure 9a shows the actual page model file for the
Showtimes wrapper. Notice that a binding pattern
relationship (indicated by the “?” symbol) exists: a URL
for a theater must be supplied in order to receive
information about movies and showtimes. Figure 9b
shows the hierarchical embedded catalog for the same
wrapper. The movielist/movie relationship, as described
above, is captured here. Finally, Figure 9c presents the
extraction rules. These rules describe how to locate
relevant data on a web page. Notice that they are
somewhat related to the embedded catalog, in the sense
that hierarchical relationships must have special rules
which show how to locate multiple child instances. For
example, the notion that movielist contains one or more
movies requires that the extraction rules specify not only
where the movielist can be found on the page, but also
how to iterate through it, so that multiple instances of its
children can be identified.

It is also interesting to note the two-level embedded
catalog which mirrors the list-like structure of the actual
web page (Figure 8), where each theater contains a list of
movies, and each movie has a set of showtimes. Notice
that we also could have extended the catalog to a third-
level, to capture the list of showtimes, instead of just the
showtimes as one large string. But, that sort of

enumeration would not be useful at the application level
(we do not need to extract the individual showtimes), so
we used just two levels.

The Development Process

We constructed TheaterLoc in a very short amount of
time. Table 2 enumerates the time spent on each part of
the development process. In total, building TheaterLoc
required 3-4 days. One of the more important things to
note from this table is that, with the exception of the Tiger
Map wrapper, using our wrapper GUI tool to automate the
construction of all TheaterLoc wrappers cost about 3
hours of total project time. The Tiger wrapper required
special integration (coordinate translation) and ended up
taking us an entire day to complete.

The tools and approach that we used to build
TheaterLoc also make it an application that is easy to
maintain and extend. For example, adding a new source
into the application is simply a matter adding this source
to the domain model and using the wrapper GUI tool to
automate its construction. Similarly, dealing with
changes to the sources is also a straightforward process
that does not require re-engineering the entire system.

Table 2: Project development Time

Task Time Required

Application design 3-4 hours

Domain modeling 2-3 hours

Wrapping web sources (w/GUI) 2-3 hours

Tiger Map wrapper 1 day

Building functional sources 1-2 hours

Interface/HTML 2-3 hours

Web server integration 3-4 hours

Application testing 2-3 hours

Total 3-4 days

��� � � �

� � � � � � � � �

Figure 8: Web page for Yahoo! Movies

� � ��� � � � � ���'�������
� � ��� � � ���'�"� ���#�
� � � � � ����� � � ¡�¢�£�¤ �� ¥ ¦ § ¨ ©�ª «¬ ¢�®�¯�¤ ¡ � ¬ ¥ ¦ § ¨ ©�ª «

������ °�§ ±

²�� ¢�¢�¯	¡�¢�£�¤ ��� ¤ ¬ ¯
� ¡�¢�£�¤ � � ¤ ¬ ¯"¡�¢�£�¤ � ¬ ¢�®�¯�¤ ¡ � ¬

³�´�µ�¶ · � ¶ ¸ ¹ � � � º» � ² � ¼�½ � ��¾ �¬ ¿ ¨ À ¯�Á�Â ¡�Á Ã ¨ Ä ¥ Å ¬ ¿ ¨ À ¯�Á�Â Æ ©#Ç Å¬ ¿ ¨ À ¯�Á�Â ¬ È Á É ¦ ¨ ÊËÄ ¥ Å ¬ ¿ ¨ À ¯#Á Â Ì � �#Ä Í Î�Å· ¼�Ï ½ �'� ¾ ��½ »#· ½¬ ¿ ¨ À ¯�Á�Â Ê Á Ç °�± Ä Ê Á Ã ¨ Ä ¥ Å ¬ ¿ ¨ À ¯�Á�Â Ì#Ð ¦ Æ Ñ ± Ä Ò�Å¬ ¿ ¨ À ¯�Á�Â Ó © Ñ ¥ À�Ô Å ¬ ¿ ¨ À ¯�Á�Â Ó © Ñ ¥ À�Ô Å
½ ·#´�¶ ½
³�´�µ�¶ · � ¶ ¸ ¹ � � � �» � ² � ¼�½ � ��¾ �¬ ¿ ¨ À ¯�Á�Â Ì � � Ä Í Î Å· ¼�Ï ½ �'� ¾ ��½ Õ · Ö¬ ¿ ¨ À ¯�Á�Â Ì ¦ § Ò Å ¬ ¿ ¨ À ¯#Á Â Ì ¦ Ç�Ò�Å ¬ ¿ ¨ À ¯�Á�Â Ì È § Å
½ ·#´�¶ ½
³�´�µ�¶ · � � � º» � ² � ¼�½ � ��¾ �¬ ¿ ¨ À ¯�Á�Â Ì Ñ Ò�Å· ¼�Ï ½ �'� ¾ ��½ Õ · ½¬ ¿ ¨ À ¯�Á�Â Ì#Ð Ñ Ò Å
½ ·#´�¶ ½

× Ø�Ù

× ÚÛÙ

× Ü�Ù

Figure 9 (a) page model, (b) emedded catalog, (c) extraction rules

It is worthwhile to note the amount of reusability
inherent in virtual applications like TheaterLoc. The
wrappers, in particular, could be integrated into another
virtual application without any modifications. For
example, if some future application required plotting
hospitals and schools on an interactive map based on their
street addresses, the geocoder and map wrappers from
TheaterLoc could simply be reused for this purpose.

Challenges and Extensions

Using the Ariadne technologies we have described allows
us to rapidly build information integration applications.
However, there are still some challenges that remain. In
this section, we list two of these challenges and briefly
describe our ongoing research at addressing them.

Resolving Data Inconsistencies
One problem frequently encountered when integrating
data from multiple sources involves semantically
equivalent objects that exist in inconsistent text formats
across these sources. With TheaterLoc, for example,
although the movie “A Bug’s Life” was listed by
Film.Com as such, Yahoo Movies listed it as “Bug’s Life,
A” . This made it difficult for us to correlate the two
objects, something we needed to do when associating a
movie and its showtimes with a video trailer. As
described earlier, we solved this problem for TheaterLoc
specifically by building a functional source that
normalized the textual format of this data. However, it is
clear that a more general solution is necessary.

Towards that end, we have been designing an approach
that identifies semantic equivalence by matching all of an
objects' shared attributes (Tejada et. al. 1998). With our
technique, certain attributes have more importance
(weight) in deciding a match than others. For example, in
TheaterLoc, we could resolve the similarity between “A
Bug’s Life” and “Bug’s Life, A” by computing a
similarity metric between all of the shared attributes (such
as movie title, director, and actors) and then judge
equivalence based on this metric. Since the manual
encoding of attribute weighting is time consuming and
error-prone, we are also developing an active learning
approach for tailoring attribute weighting rules, through
limited user input, for specific application domains.

Improving Performance and Scalability
Data Materialization. At their core, information
integration applications are only as fast as their most
latent sources. One slow website can substantially affect
overall application performance. For TheaterLoc, a major
bottleneck was the Tiger map source, which occasionally
took several seconds to render a map. In addition, web-
based data sources are not always reliable. For example,
there were times when CuisineNet was temporarily
unavailable or simply overloaded with requests.

As a remedy for these issues, we are investigating the
optimization of data access by selective pre-fetching and
caching of source data (Ashish et. al. 1998). Since
information integration applications are frequently
associated with very large databases, we must be careful
to cache only the subset of data that returns the greatest
improvement to overall application performance. Our
selective approach is based on the frequency of queries, as
well as other source-specific metadata, such as source
responsiveness. We are also exploring a solution for
highly fragmented classes, where a single class may be
associated with many sources. In this case, we would like
to collapse the cache into a minimal set of classes.
Dataflow Execution. Web-based information integration
usually involves retrieving data from multiple web sites at
once and applying a series of relational algebra operations
(i.e., Select, Join) to achieve a final result. Complicating
this are instances where retrieving a logical set of data (a
logical relation) involves extracting data from a series of
linked web pages. In general, execution could be
optimized by (a) parallelizing as much of the data
retrieval as possible and (b) streaming retrieved data back
to the plan so that it can be processed as soon as possible.

To accomplish this, we are developing the Theseus
plan execution system (Barish et. al. 1999b). Based on a
hybrid dataflow architecture, Theseus naturally supports
the high degree of parallelism and data pipelining that
web-based information integration demands. Eventually,
we intend to combine both Ariadne and Theseus, such
that former is responsible for plan generation and latter is
responsible for execution.

Discussion

In this paper, we have described TheaterLoc, an example
of a virtual application that integrates data from a set of
independent online data sources. We have also described
the details of the information integration technology that
was used to build TheaterLoc. In particular, we have
focused on how state-of-the-art artificial intelligence
techniques (planning, knowledge representation,
information extraction, and machine learning) were
combined to produce the final result. In addition, we
have shown that using Ariadne technology makes virtual
application development both simple and quick.

It is important to note that TheaterLoc is merely one
example of the type of virtual application that can be built
using Ariadne. The enabling technologies described in
this paper are generic enough to be readily applied to any
information domain. In addition, future applications can
easily reuse parts of existing ones, further expediting the
development process.

New applications are being deployed on the Internet at
a rapid rate. While many all offer some measure of
independent usefulness, they lack integration with each
other. The technology of information integration, such as
that embodied by Ariadne, promises a future in which
developers can have the power to mix-and-match useful

data from any number of these sources to create endless
types of novel virtual applications.

Acknowledgements. This work was supported in part by
the Integrated Media Systems Center, a NSF Engineering
Research Center, in part by research grants from NCR and
General Dynamics Information Systems, in part by
NASA/JPL under contract number 961518, in part by the
Rome Laboratory of the Air Force Systems Command
and the Defense Advanced Research Projects Agency
under contract number F30602-98-2-0109, and in part by
the United States Air Force under contract number
F49620-98-1-0046. Views and conclusions contained in
this article are the authors’ and should not be interpreted
as representing the official opinion or policy of the above
organizations or any person connected with them.

We would like to also thank the rest of the Ariadne
team: José Luis Ambite, Yigal Arens, Naveen Ashish,
Dan DiPasquo, Kristina Lerman, Ion Muslea, Maria
Muslea, Jean Oh, and Sheila Tejada. We are also grateful
for the help of Chris Stuber, at the USGS Tiger Mapping
Service, for his coordinate system translation assistance.

References
Ambite, J.L. and Knoblock, C.A. 1997. Planning by Rewriting:
Efficiently Generating High-Quality Plans. AAAI-97,
Providence, RI.

Ambite, J.L. and Knoblock, C.A. 1998. Flexible and Scalable
Query Planning in Distributed and Heterogeneous
Environments. Proc of 4th Intl Conf on Artificial Intelligence
Planning Systems, Pittsburgh, PA.

Ambite, J.L.; Knoblock, C.A.; Muslea, I.; and Philpot, A. 1998.
Compiling Source Descriptions for Efficient and Flexible
Information Integration. USC/ISI Technical Report.

Ashish, N.; Knoblock, C.A.; and Shahabi, C. 1999 Selective
materializing data in mediators by analyzing user queries.
Fourth IFCIS Conference on Cooperative Information Systems.

Barish, G.; Knoblock, C.A.; Chen, Y-S.; Minton, S.; Philpot, A;
Shahabi, C. 1999a. TheaterLoc: A Case Study in Information
Integration. IJCAI-99 Information Integration Wkshp.

Barish, G.; DiPasquo, D.; Knoblock, C.A.; Minton, S. Efficient
Execution for Information Management Agents. 1999b. ACM
CIKM Workshop on Web Information and Data Management.
Kansas City, MO, USA.

Bayardo Jr., R.J.; Bohrer, W.; Brice, R.; Cichocki, A.; Fowler,
J.; Helal, A.; Kashyap, V.; Ksiezyk, T.; Martin, G.; Nodine, M.;
Rashid, M.; Rusinkiewicz, M.; Shea, R.; Unnikrishnan, C.;
Unruh, A.; and Woelk, D. 1997. InfoSleuth: Agent-based
semantic integration in open and dynamic environments.
Proceedings of ACM SIGMOD-97.

Doorenbos, R.B.; Etzioni, O.; and Weld, D.S. 1997. A scalable
comparison shopping agent for the world-wide-web. Agents-97.

Genesereth, M.R.; Keller, A.M.; and Duschka, O.M. 1997.
Infomaster: An information integration system. Proceedings of
ACM SIGMOD-97.

Hammer, J.; Garcia-Molina, H.; Nestorov, S.; Yerneni, R.;
Breunig, M.; and Vassalos, V. 1997. Template-based wrappers
in the TSIMMIS system. Proceedings of ACM SIGMOD-97.

Knoblock, C.A.; Minton, S; Ambite, J.L.; Ashish, N.; Modi, J.;
Muslea, I.; Philpot, A. and Tejada, S. 1998 Modeling Web
Sources for Information Integration. AAAI-98, Madison, WI.

Kushmerick, N. 1997. Wrapper Induction for Information
Extraction. PhD Thesis, Computer Science Dept. University of
Washington.

Kwok, C.T and Weld, D.S. 1996. Planning to gather
information. In Proceedings of AAAI-96.

Levy, A.Y; Rajaraman, A.; and Ordille, J.J. 1996. Query-
answering algorithms for information agents. Proceedings of
AAAI-96.

Muslea, I.; Minton, S.; and Knoblock, C.A. 1998. STALKER:
Learning Extraction Rules for Semistructured, Web-based
Information Sources. AAAI-98 Workshop on "AI & Information
Integration", Madison, WI.

Muslea, I.; Minton, S.; and Knoblock, C.A. 1999. A
Hierarchical Approach to Wrapper Induction. Agents-99,
Seattle, WA.

Tejada, S.; Knoblock, C.A.; and Minton, S. 1998. Handling
inconsistency for multi-source integration. Technical Report,
AAAI-98 Workshop on "AI & Information Integration",
Madison, WI.

Weiderhold, G. 1996. Intelligent Integration of Information.
Kluwer.

