
DMML: An XML Language for Interacting  

with Multi-modal Dialog Systems 

Nanda Kambhatla, Malgorzata Budzikowska, Sylvie Levesque, Nicolas Nicolov,  
Wlodek Zadrozny, Charles Wiecha and Julie MacNaught 

 
IBM T.J. Watson Research Center 

 30 Saw Mill River Road, Hawthorne, NY 10532 
{nanda,sm1,nicolas,wlodz,wiecha,jmacna}@us.ibm.com, slevesqu@ca.ibm.com  

 
 

Abstract 
We present Dialog Moves Markup Language (DMML): an 
extensible markup language (XML) representation of 
modality independent communicative acts of automated 
conversational agents. In our architecture, DMML is the 
interface to and from conversational dialog managers for 
user interactions through any channel or modality. The use 
of a common XML interface language across different 
channels promotes high cost efficiency for the business. 
DMML itself has no application or domain specific 
elements; DMML elements embed elements representing 
application business logic. DMML captures the abstractions 
necessary to represent arbitrary multi-agent dialogs and to 
build cost-efficient, sophisticated natural language dialog 
systems for business applications. 

Introduction  

Our goal is to create a framework for building 
conversational dialog agents for business applications, 
where users can converse with the agents using any channel 
of interaction (e.g. web, telephone, PDA, cellular phone, 
etc.) or modality (speech, text, graphics, etc). 
Conversational dialog agents are automated software agents 
that can participate fully in natural dialog (Allen 1995) and 
whose internal state may include beliefs, desires, and 
intentions (BDI models; e.g. see (Bratman et al. 1988; 
Cohen et al. 1990) and references therein). Examples of 
conversational agents include natural language dialog based 
telephony banking and stock trading systems (Zadrozny et 
al. 1998) and planning systems for disaster handling 
(Ferguson and Allen 1998).  
 
We are building several multi-modal conversational agents 
for different business applications. In our architecture (see 
Figure 1), there are several presentation managers (PMs), 
one for each channel of interaction. A channel can 
encompass several modalities. For example, users may 
interact with web sites using speech, text, or graphics (the 
                                                 
Copyright © 2000, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

web presentation manager will handle all these 
interactions).  
 
Each presentation manager (PM) is responsible for 
interacting with the user through its specific channel, 
sending any user input to a conversational dialog manager 
(CDM) in a common dialog interaction format (which we 
call dialog moves markup language or DMML). The PM 
calls APIs to access natural language understanding and 
generation modules specific to the modalities in use and to 
generate or parse DMML messages. For example, a 
telephony PM might call APIs for accessing a speech 
recognition module. The PM receives DMML messages (if 
any) from the CDM and communicates to the user the 
relevant information though appropriate modalities over the 
same channel of interaction.  
 
The CDM is responsible for managing the dialog with the 
user. The CDM interacts with the PMs using a modality- 
and channel-independent language called DMML. The 
CDM uses a suite of APIs to interact with specialized 
services and managers to execute business transactions 
(through an action manager), to fetch or update the 
discourse history, to fetch application templates, etc.  
 

 

Manager Presentation  
Manager 

telephone 
PDA 

web 

Conversational  
Dialog Manager 

USER 

APIs 
speech,  

text,.. 

DMML 

NLP  
Services 

History 

Action  
Manager  

Application 
Action 

Templates 

etc... APIs 

Manager Presentation  
Manager 

telephone 
PDA 

web 

Conversational  
Dialog Manager 

USER 

APIs APIs 

speech,  
text,.. 

DMML 

NLP  
Services 

History 

Action  
Manager  

Application 
Action 

Templates 

etc... 

NLP  
Services 

Discourse  
History 

Action  
Manager  

Application 
Action 

Templates 

etc... APIs APIs 

Figure 1: Architecture for multi-modal, multi-
channel conversational agents for business 
applications. 

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



The Dialog Moves Markup Language (DMML) is a 
language designed for representing the communicative acts 
of conversational agents for communication between such 
agents. For successful multi-agent communication, the 
communicative intent of one agent must be recognized by 
the other agent. DMML attempts to capture such intentions. 
DMML can be used for messaging between a human (one 
kind of conversational agent) and a conversational dialog 
manager (another conversational agent). Notice how this 
view associates the PM with the human user to result in a 
software agent communicating with other software agents 
through DMML (cf. Figure 1). DMML can also be used for 
communication between any two (or more) agents that 
have a notion of intentions to communicate, actions they 
want to achieve through the communication, and a shared 
view of their environment. DMML can represent a 
synchronous turn taking dialog between two agents. We 
believe it is also general enough to represent arbitrary 
asynchronous multi-party dialogs. 
 
DMML is an application of eXtensible Markup Language 
(XML; (Bray et al. 1998)), a standard for document and 
message markup. DMML has been designed to be an open 
markup language with no domain- or application-specific 
markup tags. It is open to enable developers to use further 
refinements of the basic speech acts in use. All application- 
and domain-specific markup is encoded using application-
specific tags, which reside underneath (i.e. are embedded 
in) the DMML markup.  This concept is explained in 
greater detail in section 3. 
 
The use of DMML as a standard common interface 
between conversational agents facilitates tremendous cost-
efficiency in developing dialog applications. DMML also 
enables relatively easy portability to new channels of 
interaction, since only presentation managers need to be 
developed for such channels. This is because there is only 
one conversational dialog manager managing conversations 
with users across different channels with different 
modalities. The use of well recognized and emerging 
standards like XML and XSL is crucial, since the DMML 
messages can be transformed using XSL (eXtensible 
Stylesheet Language; (Clark and Deach 1998)) with 
relative ease to channel or modality dependent languages 
like VoiceXML (VoiceXML 2000), HTML, or Wireless 
Markup Language. 
 
In this paper, we present the DMML language (Section 2) 
and show an example (Section 3) illustrating its 
components with a dialog between a human and an 
automated conversational agent for stock trading. We 
contrast DMML with some related work in section 4, such 
as the work in philosophy of language, the Elephant 2000 
programming language, KQML and agent markup 
languages. We explain our work in progress with DMML 
in section 5 and present some conclusions in section 6. 

Dialog Moves Markup Language (DMML) 

The basic elements of DMML are dialog profiles and 
dialog moves. Dialog profile elements enable agents to 
send to each other the constraints on their respective 
environments or the constraints on the communication 
itself. For instance, an agent may be unwilling (as a result 
of its internal decision making process) or unable (due to its 
environmental constraints) to process requests of a certain 
kind. Dialog profiles enable agents to communicate such 
constraints to each other. 
 
A dialog move by agent1 to agent2 represents a set of 
communicative acts by agent1 directed towards agent2, 
with the intention of changing agent2's model of the state of 
the world and/or convince agent2 to take actions based on 
agent2's revised model of the state of the world.  

Dialog profiles 
Dialog profiles enable dialog agents to communicate to 
each other the constraints of their respective environments 
and constraints on the communication itself. The basic 
elements of profiles are templates (e.g. XML Schemas 
(Thompson et al. 2000)) describing these constraints. 
DMML supports four basic types of templates—assertion 
templates, command templates, request templates and 
response templates—corresponding to the four basic types 
of dialog moves. These templates may contain “schemas” 
(Thompson et al. 2000) expressing constraints on the 
corresponding dialog moves. For instance, a response 
template contains a schema defining the syntax of a valid 
response. By exchanging such templates, dialog agents can 
negotiate the parameters of communication before or 
during a dialog. 
 
Shown below is a profile that defines a template for valid 
XML elements for representing stock transactions to a 
stock trading CDM (cf. Figure 1). Due to space constraints, 
we have only shown the schema for buy transactions. The 
notion is similar to that of defining valid types for 
communication. This template specifies that a valid BUY 
element must contain zero or one instances of a 
COMPANY element, a QUANTITY element, an 
ACCOUNT element, and a PRICE element. Each 
COMPANY element has a text string representing the 
name of the COMPANY, and so on. The CDM sends 
profiles like the one below to PMs that are requesting stock 
trading services. After receiving this profile, each receiving 
agent (PM) knows the syntax of the XML messages for 
buying shares, for selling shares, for inquiring about the 
price of certain shares, etc. Note that profiles are not 
required to be sent before dialog moves are communicated. 
DMML allows profiles to be sent at any point in a dialog 
session. This enables agents to dynamically communicate 
to each other any changes in their environments or any 
changes to the constraints of their communication. 



 
<profile> 
  <template type=”document”> 
    <schema id=”stock_transactions”>  
       <ElementType name=”COMPANY” model=”closed” 
content=”textOnly” 
     dt:type=”string”> 
   </ElementType> 
   <ElementType name=”QUANTITY” model=”closed” 
content=”textOnly” 
     dt:type=”number”> 
   </ElementType> 
       <ElementType name=”ACCOUNT” model=”closed” 
content=”textOnly” 
     dt:type=”string”> 
   </ElementType> 
       <ElementType name=”PRICE” model=”closed” content=”textOnly” 
     dt:type=”amount”> 
   </ElementType> 
       <ElementType name=”BUY” model=”closed” content=”eltOnly”> 
          <element type=”COMPANY” minoccurs=”0” maxoccurs=”1”/> 
          <element type=”QUANTITY” minoccurs=”0” maxoccurs=”1”/> 
          <element type=”ACCOUNT” minoccurs=”0” maxoccurs=”1”/> 
          <element type=”PRICE” minoccurs=”0” maxoccurs=”1”/> 
       </ElementType> 
       … 
    </schema> 
  </template> 
</profile> 
 

Dialog moves 
Currently, DMML includes four basic types of 
dialog_moves: assertions, commands, requests and 
responses. 

• Assertions represent unsolicited information by an 
agent that does not necessarily require a response: 
greetings, warnings, reminders, thanks and 
welcome messages, offers, etc. Assertions also 
include statements of fact by agents. 

• Commands represent speech acts where the 
commanding agent's expectation is of 
unconditional action execution: e.g. help, exit, 
cancel and operator commands. 

• Requests represent requests for information, 
confirmation, clarification, identification, action 
execution, notification, etc. Note that most request 
elements will have business/application elements 
as their descendents describing the specific things 
being requested for the given application. Request 
elements may also contain response template 
elements describing valid responses to the request 
and validation scripts (in a standard language like 
ECMAScript) that can verify the validity of 
responses with respect to some other (semantic) 
constraints. 

• Responses represent responses to request moves. 
Thus, a response element always contains an 
attribute referring to the id of the request move to 
which it is the response. DMML does not mandate 
response elements to immediately follow request 
elements; i.e. the responses can be asynchronous 
and out of turn. Responses may include 

notifications, clarifications, confirmations 
(confirmed or rejected), action_results, 
information, answer_lists and descriptions. 
Answer_lists include a list of answers. A 
description may include a summary, identity of 
responder, a rationale, and a list of suggestions. 
Suggestions are lists of alternative answers. Note 
that most response elements will have 
business/application elements as their descendants 
describing the specific things being sent as a 
response to the request for the given application. 

 
Currently DMML represents mostly directive and assertive 
communicative acts, due to the limitations of the 
conversational agents for which it is an interface language.  
However, in future we plan to also support commisive (e.g. 
promise), permissive (e.g. permit), prohibitive (e.g. forbid), 
declarative (e.g. declare), and expressive (e.g. wish) 
communicative acts (cf. Singh 1998).  
 
DMML is an open markup language. Thus, a user query 
“Can you tell me the price of IBM” could be represented as  
 

<REQUEST> 

    Can you tell me the price of IBM? 

</REQUEST> 
 
Or as 
 
<REQUEST> 

    <TELL> 

        the price of IBM? 

    </TELL> 

</REQUEST> 
 
Or as 
 
<REQUEST REQUEST_TYPE=”INFORMATION”> 

    <PRICE_INFO> 

        <COMPANY>IBM</COMPANY> 

    </PRICE_INFO> 

</REQUEST>.  
 
All the above fragments are valid DMML fragments. 
Allowing open markup enables developers to extend the 
pre-specified dialog moves by specifying their own sub-
categories of requests, commands, assertions, responses, 
notifications, etc. 
 
In DMML, all the application specific markup is embedded 
within the DMML markup to support heterogeneous agents 
and to ensure that DMML is not domain or application 
dependent. DMML can encapsulate any content as long as 
it is provided in XML compliant format. For example, in 
the last excerpt above, all the business application markup 
(within the request element) is shown in bold and is not 
part of DMML. This enables separate XSL transformations 



that can transform the ‘conversational style’ independent of 
the specific application or even the domain of the 
application. Thus, the same DMML message can be used 
for completely different applications or for different 
implementations of the same application. 
 

An example: use of DMML for a stock trading 
application 

In this section, we present an example of a dialog between 
a user and a conversational agent for stock trading. We 
show a sequence of user utterances, the corresponding 
DMML messages sent by the PM (presentation manager) to 
the CDM (conversational dialog manager; see Figure 1), 
the DMML messages sent by the CDM to the PM, and the 
corresponding content of the user screen. While this 
example does not illustrate all the elements of DMML, it 
gives a flavor of the use of DMML elements and elements 
representing the embedded business logic. All application 
specific business logic encoding is shown in bold type and 
is not part of DMML. Note that the references to the 
schema “stock_transactions” in response-templates are to 
the example schema shown in the previous section that 
defines the syntax of valid XML messages for 
communication for this domain. 
---------------------------------------------------------------------- 

USER: Hi! I want to buy one hundred shares of IBM 
 
<dmml version="1.0"> 
  <move from="PM1" to="CDM "  
              channel="web" id="m1"> 
 <assertion type="greet" id="a1">  
  <xml schema=”assert_schema”> 
   <MESSAGE>Hi</MESSAGE> 
  </xml> 
 </assertion> 
 <assertion type="info" id="a2">  
  <xml  schema="logon_schema" > 
    <NAME>Steve</NAME> 
    <PASSWORD>adroit</PASSWORD> 
    <ACCOUNT>12345</ACCOUNT> 
  </xml> 
 </assertion> 
 <request type="action" id="r1"> 
  <xml  schema="stock_transactions"> 
   <BUY> 
    <COMPANY>IBM</COMPANY> 
    <QUANTIY>100</QUANTITY> 
   </BUY> 
  </xml> 
  </request> 
  </move>  
</dmml> 

-------------------------------------------------------------------- 

SYSTEM: Hello, Steve! 

      You said you wanted to buy 100 shares of IBM. 

      Do you want to use your checking account? 

      At what price do you want to buy these shares? 
 
<dmml version="1.0"> 
 <move from="CDM" to="PM1"  
   channel="web" id="i2"> 
  <assertion type="greet" id="a3”  

        previousmoveid="a2">     
   <xml schema=”assert_schema”> 
    <MESSAGE> 
      Hi Steve!!! 
    </MESSAGE> 
   </xml> 
  </assertion> 
  <request type="info" id="r2" previousmoveid="r1"> 
   <xml schema="stock_transactions"> 
    <BUY> 
     <COMPANY origin=”user_specified”> 
                            IBM</COMPANY> 
     <QUANTIY origin=”user_specified”> 
                            100</QUANTITY> 
     <ACCOUNT origin=”system_inferred”> 
                            12345</ACCOUNT> 
    </BUY> 
      </xml> 
   <responsetemplate> 
    <schema id=”stock_transactions/>  
   </responsetemplate> 
  </request> 
 </move>  
</dmml> 
------------------------------------------------------------------- 

USER: What is the current price of IBM? 
<dmml version="1.0"> 
 <move from="PM1" to="CDM" channel="web" id="i3"> 
  <request type="info" id="r3"> 
   <xml  schema="stock_transactions"> 
    <PRICE_INFO> 
     <COMPANY>IBM</COMPANY> 
    </PRICE_INFO> 
   </xml> 
   <responsetemplate> 
    <schema id=”stock_transactions”/>  
   </responsetemplate> 
  </request> 
 </move>  
</dmml> 

---------------------------------------------------------------------- 

SYSTEM: The current price of IBM is 110 1/2.  

                  Do you want to buy 100 shares at this price from your 

checking account? 

 
<dmml version="1.0"> 
 <move from="CDM" to="PM1" channel="web" id="i4"> 
  <response type="info" id="rp1" previousmoveid="r3"> 
   <xml schema="stock_transactions"> > 

    <PRICE_INFO> 

          <COMPANY origin=”user_specified”> 

                        IBM</COMPANY> 

     <PRICE origin=”system_specified”> 

                          110 ½</PRICE> 

         </PRICE_INFO> 
   </xml> 
  </response> 
  <request type="confirmation" id="r4" previousmoveid="r1">  
   <xml schema="stock_transactions"> 

    <BUY > 

            <COMPANY origin=”user_specified”> 

                       IBM</COMPANY> 

            <QUANTITY origin=”user_specified”> 

      100</QUANTITY> 

     <ACCOUNT origin=”system_inferred”> 



      12345</ACCOUNT> 

     <PRICE origin=”system_inferred”> 

      110 ½</PRICE 

    </BUY >      
   </xml> 
   </responsetemplate> 
    <schema id=”stock_transactions”/> 
   </responsetemplate> 
  </request> 
 </move>  
</dmml> 
 
-------------------------------------------------------------------------------- 

USER: Make that 75 shares. 
 
<dmml version="1.0"> 
 <move from="PM1" to="CDM" channel="web" id="i5"> 
  <request type="correction" id="r5" previousmoveid=”r4”> 
   <xml schema="stock_transactions"> 
    <BUY > 
     <QUANTITY origin=”user_specification”> 
      75</QUANTITY> 
    </BUY> 
   </xml> 
   </responsetemplate> 
    <schema id=”stock_transactions”/> 
   </responsetemplate> 
  </request> 
 </move>  
</dmml> 
 

-------------------------------------------------------------------------------- 

SYSTEM: Do you want me to execute a buy order of 75 shares of IBM at 

110 1/2 from your checking account? 
… 
As suggested by the example above, the use of DMML for 
messaging between PM and CDM enables tremendous 
cost-efficiency for the development of multi-modal and 
multi-channel stock trading systems. The development 
costs are greatly reduced since we need to build one dialog 
manager instead of one for each channel. Also, enabling 
conversational access through new channels is relatively 
easy, since it entails only the building of another PM (e.g. 
using XSL) and not another dialog engine. Moreover, 
DMML gives us a mechanism to specify business specific 
syntactic and/or some semantic constraints using XML 
Schemas and ECMAScript.  

Related Work 

The act of uttering a sentence (through speech, typed in 
text, etc.) is called a speech act. When a speech act occurs, 
the following acts are preformed (Austin 1962): 

• locutionary act: the act of the utterance being 
produced, 

• illocutionary act: the act the speaker performs in 
uttering the words, and 

• perlocutionary act: the act that actually occurs as a 
result of the utterance. 

In DMML, we attempt to capture the illocutionary acts of 
human users when they interact with a conversational agent 
and the illocutionary acts of conversational agents when 

interacting with other conversational agents or a human 
user.  
 
The Elephant 2000 programming language (McCarthy 
1998) is a language sharing some of the design goals of 
DMML. However, while Elephant is intended to be a 
declarative programming language (based on speech act 
theory) for building intelligent agents, DMML is intended 
to be an interface language between such agents.  
 
DMML can also be used for representing human-to-human 
dialogs. When used for this purpose, DMML is similar in 
spirit to the SGML annotation scheme (Isard et al. 98) used 
in the new version of the Edinburgh Map Task corpus1 for 
providing abstract annotations for sophisticated human-to-
human task-oriented dialogs. The annotations include 
dialog moves, dialogue games, dialog transactions, POS 
tagging etc. DMML offers additional constructs (like 
profiles) that facilitate the annotation of environmental (and 
other) constraints that the above work lacks. 
 
DMML can also be used as a general agent communication 
markup language (e.g. KQML (Finin et al 1994)). DMML 
provides a standard (e.g. XML, XSL, XML Schemas, etc.) 
interface for interacting with dialog agents with certain 
characteristics. DMML satisfies Singh’s (Singh 1998) 
criteria for a flexible and powerful agent markup language. 
DMML is an open language since its syntax can be 
extended (e.g. by defining different kinds of requests) and 
it allows open application markup embedded within the 
speech acts. DMML also satisfies the heterogeneity 
criterion since it allows agents of different design to talk to 
each other by exchanging their respective constraints. 
However, DMML does not satisfy the requirement that it's 
semantics be based on social agency, because (currently) 
DMML does not allow for the specification of norms of 
interpretation. For DMML-based languages, such norms 
have to be developed independently of specifying 
communication protocols (cf. Singh 1998). The DMML 
design assumes that the automated agents using DMML for 
communication are working together--without necessarily 
having knowledge of each other’s environment--to achieve 
common business goals. Thus, (currently) there is an 
implicit assumption that the agents are benign, honest, 
cooperative, and share the semantics of the business 
transactions. These assumptions alleviate the need for a 
more rigorous semantic specification. 

Work in progress 

We are planning to use DMML in our architecture for 
building multi-modal multi-channel software applications. 
The goal is to build an architectural framework and tools 
that empower an application developer to author a business 
                                                 
1 Currently the annotation scheme is being converted to 
XML. 



application that can scale to multiple channels of 
interaction and modalities with relative ease. We intend to 
use this broad architecture as a platform to developing a 
series of conversational systems that can be accessed by 
multiple channels and modalities, e.g. web, telephone, etc. 
 
In our architecture, DMML provides a modality- and 
channel-independent mechanism for describing 
communicative intent and environmental constraints of 
agents. The use of XML and related standards like XSL, 
ECMAScript, XML Schemas promotes inter-operability 
across heterogeneous platforms and software vendors. 
 
We are currently finalizing a specification of version 1 of 
DMML, and implementing a series of APIs and accessory 
modules—as suggested in Figure 1—for use in the 
architecture described above. We plan to have a prototype 
system ready by fall 2000. 

Conclusions 

In this paper, we have presented Dialog Moves Markup 
Language (DMML), an XML language for interaction 
between conversational dialog agents. The elements of 
DMML are dialog moves representing communicative acts 
like requests, responses, assertions and commands, and 
dialog profiles representing constraints on dialog moves. 
DMML is designed to be an open markup language that 
allows agents to define and use their own sub-
categorizations of the basic dialog moves. Hence DMML 
supports multiple levels of granularity/abstractions in 
representing natural language and multi-modal dialogs. 
Moreover, DMML supports communication between 
heterogeneous agents, because of the use of shared, 
common speech acts for communicating intentions and 
goals, rather than procedures for achieving these goals. All 
application specific markup is embedded within DMML 
elements and is in itself not part of DMML.  
 
DMML supports multi-party, multi-modal, multi-channel 
interactions with a single dialog engine. The constructs of 
DMML are modality- and channel- independent by design 
and represent the abstract intentions of communicating 
agents. The use of XML enables relatively easy 
transformation to modality specific presentation languages 
such as VoiceXML and HTML. Thus, DMML enables 
tremendous cost efficiency in building conversational 
systems. 
 
We believe DMML can be the basis for developing a 
standard XML based language for representing the 
communicative acts of arbitrary multi-modal multi-agent 
dialogs. However, currently DMML represents mainly 
assertive and directive communicative acts. In future work, 
we plan to evolve DMML to include other categories of 
communicative acts and representations of the social 
context shared by all communicating agents in the 
environment. 

Acknowledgments 

We thank all of our colleagues in the conversational 
machines group and in the DMML project team for many 
valuable insights and for their constant help. 

References 

 Allen J. 1995. Natural Language Understanding. The 
Benjamin/Cummings Publishing Company, Inc., Redwood 
City, CA, USA. Second Edition. 

 Austin, J. L. (1962). How to do things with words. Oxford: 
Clarendon Press. 

 Bratman, M. E.; Israel, D.; and Pollack, M. E. 1988. Plans and 
resource-bounded practical reasoning. Computational 
Intelligence, 4:349—355. 

 Bray, T.; Paoli, J.; and Sperberg-McQueen, C., M. 1998. 
Extensible Markup Language (XML) 1.0. Technical Report 
http://www.w3.org/TR/REC-xml, World Wide Web 
Consortium Recommendation. 

 Clark, J. and Deach, S. 1998. Extensible Stylesheet Language 
(XSL) 1.0. Technical Report, http://www.w3.org/TR/WD-xsl-
19980818.html, World Wide Web Consortium Working 
Draft. 

 Cohen, P. R.; Morgan, J.; and Pollack., M. E. eds., 1990. 
Intentions in Communication, The MIT Press, Cambridge, 
Massachusetts, USA. 

 Ferguson, G.; and Allen, J. 1998. TRIPS: An Integrated 
Intelligent Problem-Solving Assistant, Proceedings of AAAI-
98 and IAAI-98, AAAI Press/ MIT Press, pp 567-572. 

 Finin, T.; Fritzson, R.; McKay, D.; and McEntire, R. 1994. 
KQML – A Language and Protocol for Knowledge and 
Information Exchange. Technical Report CS-94-02, Computer 
Science Department, University of Maryland and Valley 
Forge Engineering Center, Unisys Corporation. 

 Isard, A.; McKelvie, D.; and Thompson, H. 1998. Towards a 
minimal standard for dialogue transcripts: A new SGML 
architecture for the HCRC Map Task Corpus. Proceedings of 
ICSLP’98. Sydney. 

 McCarthy, J. 1998. Elephant 2000: A Programming Language 
Based on Speech Acts, Stanford University, 
http://www.formal.stanford.edu/jmc/elephant/elephant.html. 

 Singh, M.P., (1998). Agent Communication Languages: Re-
thinking the principles. IEEE Computer, 31(12), pp 40-47. 

 Thompson, H. S.; Beech, D.; Maloney, M.; and Mendelsohn, 
N. (2000). XML Schema Part 1: Structures, 
http://www.w3.org/TR/xmlschema-1/. 

 VoiceXML (2000). Web site: www.voicexml.org, v1.0 
specification: http://www.voicexml.org/specs/VoiceXML-
100.pdf 

 Zadrozny, W.; Wolf, C.; Kambhatla, N.; and Ye, Y. (1998), 
Conversation Machines for Transaction Processing, 
Proceedings of IAAI’98, AAAI Press/MIT Press, pp 1160-
1166. 


