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Abstract 

A new approach to evolutionary computation, called 
Learnable Evolution Model (LEM), has been applied 
to the problem of optimizing tube structures of heat 
exchangers.  In contrast to conventional Darwinian-
type evolutionary computation algorithms that use 
various forms of mutation and/or recombination 
operators, LEM employs machine learning to guide 
the process of generating new individuals.  A system, 
ISHED1, based on LEM, automatically searches for 
the highest capacity heat exchangers under given 
technical and environmental constraints.  The results 
of experiments have been highly promising, often 
producing solutions exceeding the best human 
designs.   

Introduction 
This paper describes an application of a new approach to 
evolutionary computation, called Learnable Evolution 
Model (LEM), which employs machine learning to guide 
the process of generating new populations (Michalski 
1998; 2000).  LEM integrates two modes of operation, a 
Darwinian Evolution mode, which is based on traditional 
evolutionary computation methods (e.g., Holland 1975; 
Michalewicz 1996), and Machine Learning mode, which 
generates new individuals through a process of theory 
formation and instantiation. Specifically, Machine 
Learning mode generates hypotheses that characterize 
differences between groups of high performing and low 
performing individuals, and then instantiates these 
hypotheses to generate new individuals.    

LEM has been applied to a range of function 
optimization problems (Michalski and Zhang 1999; 
Cervone 1999), and to the design of nonlinear filters 
(Coletti et al. 1999). In both applications, LEM 
significantly outperformed the evolutionary computation 
algorithms used in the experiments, sometimes speeding 
up the evolution process by two or more orders of 
magnitude in terms of the number of births (or 
generations).  
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This paper describes the application of LEM to the very 
complex practical problem of optimizing heat exchangers. 
The implemented program, ISHED1 (Intelligent System 
for Heat Exchanger Design) searches for the best 
arrangement of the evaporator tubes in the heat exchanger 
of an air conditioner.  This is a very difficult problem 
because the search space is poorly structured and 
extremely large (there are about 1080 possible tube 
arrangements in a medium-sized heat exchanger).  In 
order to avoid the cost of solving this problem for different 
operating conditions, manufacturers of air conditioning 
systems currently assume in their models average 
operating conditions (regarding the temperature, 
humidity, airflow, etc.). Since real conditions are often 
different from the assumed averages, such air conditioning 
systems tend to perform sub-optimally.  

ISHED1 does not make such assumptions.  It evolves 
toward structures that are best suited for any given 
technical constraints and environmental conditions.   In 
the process of evolutionary design, it employs a heat 
exchanger simulator that serves as an evaluator of the 
proposed designs under the assumed conditions 
(Domanski 1989). 

Problem Description  
The problem of heat exchanger design is to seek a 
structure of tubes that provides the maximum heat transfer 
given technical and environmental constraints. These 
constraints include the size of the exchanger (the number 
of rows of tubes and the number of tubes per row), the 
refrigerant used, the outside air temperature and humidity, 
the flow of air through the heat exchanger, and others. 

In an air conditioner, refrigerant flows through a loop.  
It is superheated and placed in contact with cooler outside 
air (within the condenser unit), where it transfers heat out 
and liquefies.  Coming back to the evaporator, it comes 
into contact with the warmer interior air that is being 
pushed through the heat exchanger, thus cooling the air, 
and heating and evaporating the refrigerant. 

The heat exchanger itself consists of an array of parallel 
tubes through which the refrigerant flows back and forth.  
A typical model is shown in Figure 1.  In this figure, there 

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



 

 

are three rows of 16 tubes, with one inlet tube and two 
outlet tubes. The path from the inlet tube to the outlet 
tubes splits along the way. In general, there can be 
multiple inlet tubes, and the paths from each of them to 
the outlet tubes may or may not split. Individual tubes may 
be connected to each other in many different ways. The 
efficiency of the heat exchanger strongly depends on the 

order in which the tubes are connected.  
 

Figure 1:  An Architecture of Evaporator Circuitry:  A 
sample16 x 3 configuration. 

While the refrigerant flows through the tubes, air is 
forced through the unit, whose velocity/volume profile 
may be as illustrated in the figure.  The air first comes 
into contact with and is cooled by the refrigerant in the 
first depth row, then in the subsequent rows. 

The amount of cooling the air conditioner provides is 
the aggregate of the heat transfer provided by each of its 
tubes. Each tube’s transfer is a function of the temperature 
and volume per unit time of both the air and the 
refrigerant coming into contact at that tube.  Different 
orderings of the tubes affect the temperature and pressure 
of the refrigerant passing through each tube. The results of 
prior air/refrigerant interactions affect their temperatures 
at later interactions. Additionally, the refrigerant loses 
pressure (and velocity) while passing through the bends 
between tubes; it thus helps in maximizing heat transfer if 
adjoining tubes are physically close to each other. 

In short, the goal of ISHED1 is to determine how to 
order the flow through the tubes such that heat transfer is 
maximized for the given constraints. Note that the number 
of depth rows and the number of tubes per row are 
mutable, and ISHED1 can handle different heat exchanger 
sizes so long as there are equal numbers of tubes in each 
row, the number of depth rows does not exceed 5, and the 
total number of tubes does not exceed 130. 

ISHED1 is able to apply background knowledge 
reflecting the nature of the problem in order to constrain 
the search to plausible architectures.  A user-defined 

parameter (or its default value) imposes limitations on the 
lengths of most tube bends.  ISHED1 also enforces six 
real-world constraints on architectures, ranked from 
suggested to essential.  The program rejects structures that 
violate a required constraint, and only under special 
circumstances (namely when designing a more compliant 
architecture is very difficult) generates structures that 
violate the most lenient constraints. 

Two of the six constraints state that inlet tubes should 
not, and that tubes from which exit tubes receive their 
refrigerant should, be located next to exit tubes. These 
constraints allude to the fact that while through most of its 
travels through the heat exchanger the refrigerant is a 
mixture of liquid and gaseous coolant, and thus at a 
temperature close to its evaporation point at its current 
pressure, the refrigerant in the exit tube is all gas, and as 
such is warmed rapidly to a higher temperature by the 
exchange of heat (as opposed to the heat being used in a 
phase shift).  There is some noticeable conduction of heat 
between the exit tubes and their immediate neighbors; this 
is minimized when the refrigerant in those neighboring 
tubes is also close to leaving the heat exchanger system.  
Similarly another constraint, the constraint that exit tubes 
should be in the first depth row, is based on the fact that 
the overall cooling will be most effective when this 
warmest refrigerant encounters some of the warmest air, 
and the coolest refrigerant meets already cooled air. 

A constraint limiting splits in refrigerant paths is based 
on the unacceptable drops in refrigerant pressure that will 
occur if a single path undergoes multiple splits.  Another 
constraint requiring inlets and outlets to be on the same 
side of the heat exchanger manifold is based on the 
structural requirements of the air conditioning unit, as is 
one that forbids looping in the refrigerant path. 

Overview of ISHED1 
The goal of ISHED1 is to apply the recently developed 
Learnable Evolution Model (Michalski 2000) to assist an 
expert in designing optimal heat exchanger architectures 
under given operating conditions. ISHED1 works in 
conjunction with two other major systems, a simulator, 
EVAP5, that evaluates the performance of given heat 
exchanger architectures (Domanski 1989) and a general 
purpose AQ-type inductive learning system (Michalski 
1983, 2000; Kaufman and Michalski, 1998) that is 
employed in the Symbolic Learning Module of ISHED1. 
  Following the LEM methodology, ISHED1 integrates 
two evolutionary strategies: Darwinian evolutionary 
learning and Symbolic evolutionary learning.  Figure 2 
presents a general diagram of the implemented ISHED1 
system. Darwinian evolutionary learning is performed by 
the Evolutionary Learning Module, and Symbolic 
evolutionary learning is performed by the Symbolic 



 

 

Learning Module, which implements AQ-type inductive 
learning and a hypothesis instantiation module. 

The Control Module takes the current population of 
candidate heat exchanger designs and determines which 
evolutionary strategy to apply.  The selected strategy 
operates on the population, generates the subsequent 
population, and passes it to the simulator for evaluation of 
the individual structures.  These structures and their 
evaluations are returned to the Control Module for the 
next generation (iteration). 
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Figure 2:  A general functional architecture of ISHED1. 

Two related parameters guide the Control Module in 
determining which strategy to apply.  Basically, ISHED1 
applies Darwinian evolution until the population is no 
longer improving.  It then switches to symbolic learning 
until similarly the performance (both in terms of the best 
individual and the population overall) has plateaued, 
continuing to alternate modes based on performance.  
Experiments have indicated that the application of a new 
strategy is often sufficient to remove the evolutionary 
process from the point where it has stalled. 

Because of the nature of the problem and the feasible 
ways of internally representing heat exchanger structures, 
both evolutionary modules required problem-specific 
customization from previous LEM applications (e.g., 
Coletti et al. 1999; Michalski and Zhang 1999; Cervone 
and Michalski 2000).  Traditional genetic operators would 
be, for the most part, unworkable in this domain, so eight 
analogous domain-specific structure modifying (SM) 
operators were implemented, such as swapping the 
positions of two adjacent tubes in the flow, or moving the 
source of a tube’s refrigerant further upstream, in the 
process creating a split path.  The SM operators change 
the characteristics of the candidate exchangers in ways 
that will most likely lead to admissible new structures, 
that is, structures satisfying the given physical and 
environmental constraints, as described above.  A selected 
operator is tried repeatedly with different operands in 

order to generate a feasible structure, until it either 
succeeds or “times out” (based on limits specified in the 
user’s control parameters), in which case another 
operator, hopefully more applicable, will be tried. 

The second strategy, based on symbolic learning, 
examines the characteristics of both well- and poorly-
performing designs, and automatically creates hypotheses 
(in the form of attributional rules) that characterize the 
better-performing architectures.  These hypotheses are 
then applied to generate a new population of designs. 

Due to the complexity of the domain, the learning 
program uses an abstract, rather than precise, specification 
of the different structures.  Consequently, the learned rules 
also refer to abstract designs. These abstract rules allow 
the system to instantiate them in many different ways to 
produce specific designs.  The rule instantiation process 
must, however, follow the previously mentioned 
constraints on designs. Generating heat exchanger 
architectures satisfying these constraints from a 
specification of inlet, outlet and split tubes is a 
computationally complex problem. To simplify it, ISHED1 
usually generates only one architecture from a given 
specification of the key tubes. 

To summarize, given instructions characterizing the 
environment for the sought heat exchanger design, an 
initial population of designs (either specified by the user, 
randomly generated, or a combination of the two), and 
parameters for the evolutionary process, ISHED1 evolves 
populations of designs using the above two strategies for a 
specified number of generations. At the end, it produces a 
report stating the best designs (architectures) found and 
their estimated capacity, as determined by the simulator.  
The ISHED1 control module determines when to apply 
each of the two evolutionary strategies (see Figure 2). 

System Operation  

Control Parameters 
The first step of the ISHED1 operation is to read a file that 
defines the control parameters for the program and the 
characteristics of the desired architecture. These 
parameters, which override defaults when read, allow 
users latitude in controlling the system run.  They can be 
grouped into the following clusters (some individual 
parameters are alluded to in multiple clusters): 

• Parameters defining the characteristics of a heat 
exchanger:  its size and its shape   

• Parameters defining the characteristics of the initial 
population: its size, any user-specified first generation 
individuals, and the nature of the individuals 
randomly specified by the system 



 

 

• Parameters defining the length of the evolutionary 
process 

• Parameters describing the airflow through the heat 
exchanger, defined by a list of locations in the cross-
section of the exchanger, and the velocities of the air 
at these locations.  The velocities in other locations 
are linearly interpolated. 

• Run control parameters, including the persistence of 
the Darwinian and symbolic learning modes, 
parameters for guiding Darwinian mode operation 
and symbolic mode architecture generation, and the 
level of detail to be presented in the output file. 

Defining the Initial Set of Structures 
ISHED1 allows a user to define an initial set of heat 
exchanger architectures.  If the user does not define them, 
the system generates the initial set randomly.  The user 
may define one or more initial architectures, and specify 
the number of copies of each architecture to be generated 
to fill the initial population.  User-specified architectures 
may be based either on previous ISHED1 runs, or draw 
upon the user’s knowledge of the problem, so as to test 
hypotheses or to try to improve upon industry models. 

It is also possible that the user may define only a 
portion of the initial population, in which case the system 
randomly generates the remaining designs. The random 
generation process creates different types of architectures 
in proportions defined a priori in the program.  These 
proportions are determined through estimations of the 
form promising architectures are likely to take, based on 
the number of tubes in the target heat exchanger. 

System Control 
The control module starts in Darwinian evolution mode 
using an elitist strategy (i.e., the best performing 
architecture so far always gets passed to the next 
generation as the first element of the new population).  
Elitism also is used in Symbolic learning mode; there the 
best architecture explored by the program so far and all 
architectures that were in the “good” class for rule 
learning propagate directly to the next generation.  Elitism 
has proven to be an important feature of evolutionary 
computation processes and is used in many algorithms. 

In Darwinian mode, the structure modifying operator 
selected for application to a given structure is chosen 
probabilistically, based on the topology of the heat 
exchanger structure (the number of inlets, outlets and 
splits).  The probabilities are based on an estimate of how 
likely an application of this operator is likely to result in a 
favorable change.  Typically, the less catastrophic 
operators and those that will maintain architectures with 
three inlets or fewer are favored. 

Darwinian Evolution Module 
A generation in the Darwinian Evolution Module follows 
the same three-step pattern that is followed by traditional 
genetic algorithms: a step in which individuals are 
probabilistically selected to be the basis for the next 
generation, with selection probability proportional to their 
evaluated fitness; a step in which the selected individuals 
are modified by various operators; and finally a step in 
which the members of this new population are evaluated. 

To guide the modification of structures in the 
evolutionary design process in harmony with the heat 
exchanger design constraints, we developed and 
implemented eight Structure Modifying (SM) Operators 
for ISHED1, each of which makes a change in the heat 
exchanger design on which it is operating.  

The system probabilistically selects an operator to 
apply, based on the topology of the heat exchanger design 
being operated on (the data representation maps out the 
architecture precisely by encoding a vector of each tube’s 
refrigerant source).  It will search for a feasible 
application of the operator, trying it with several different 
sets of operands if necessary.  If it seems that the operator 
will not lead to a feasible change in the structure, another 
operator is tried; if the system is unable to admissibly 
apply an SM operator after a large number of iterations, 
the program has an escape clause, so as not to get stuck in 
an exit-less loop.  In such a rare case, ISHED1 will apply 
a null operator to the structure. 

Symbolic Learning Module 
When the Symbolic Learning module is applied, members 
of the current population are divided into three classes 
based on their cooling capacity.  If all individuals have 
identical performance, evolution in this mode is not 
possible, and Darwinian evolution will take place instead. 

The range from best performance level in the 
population to the worst is examined.  Individuals with 
performance in the top HFT% of this range are placed in 
the "good" class.  Similarly, individuals in the bottom 
LFT% are placed in the "bad" class, where HFT and LFT 
(high and low fitness thresholds) are program parameters 
(in ISHED1 HFT=LFT=25%).  Other individuals are 
placed in the  "indifferent" class. 

The AQ18 rule learning program (Kaufman and 
Michalski, 2000) generates a set of rules that distinguish 
"good" architectures from "bad", based on abstractions of 
the specific architectures.  These rules are then 
instantiated in a different ways to generate new 
architectures. During consecutive generations, rules are 
used in the context of their predecessors, so as to further 
focus the concept of design optimality.   

Each new generation consists of the best architecture 
discovered so far, architectures of the "good" class, and 



 

 

new architectures generated by instantiating the learned 
rules. If there are enough open slots in the population, 
each rule is applied at least twice, by rotating among 
them, ordered by the number of training examples 
satisfying each rule (called t-weights, which are indicators 
of the rule’s strength).  Finally, any other individuals are 
generated based on rules chosen probabilistically, with 
rules’ probabilities proportional to their t-weights. 

Experiments 
During the course of ISHED1 development, many 
experiments with the system were conducted.  The initial 
experiments concentrated on a well-known problem, using 
a common heat exchanger size and a fairly uniform 
airflow pattern.  In these experiments, ISHED1 designs 
were comparable to the industry standard.  One concern in 
some of these designs was that after many generations of 
Darwinian evolution, the designs would become chaotic in 
terms of their inter-tube connections.  Nonetheless, using 
available tools, an engineer can smooth the connections, 
hopefully at little cost to the capacity of the exchanger. 

In later experiments, the refrigerant was changed, and 
the airflow pattern was defined as highly non-uniform.  
Under such conditions, industry-standard heat exchangers 
do not perform well.  The best ISHED1-produced 
architectures conformed intuitively to expectations of what 
a successful architecture in a non-uniform airflow should 
look like, and indeed performed far better than the 
currently used expert-designed structures. 

Subsequent experiments varied the size and shape of the 
heat exchanger -- between 2 and 4 depth rows, with 
between 40 and 90 total tubes.  Similar results were 
observed.  During the final stage of development, we 
began experimenting with pre-specified members of initial 
populations.  These results were to some degree mixed.  
When a very large portion of the initial population was 
pre-specified with known good architectures, further 
improvement could often be found.  To some degree, the 
pre-specification is analogous to an initial symbolic 
learning step using the prior background knowledge; as a 
result, ISHED1 begins with a solid population. 

But when fewer individuals were used to seed the initial 
population, improvement was hard to come by.  While 
further experimentation is needed to determine if this is a 
regular occurrence, and if so its cause, it is possible that a 
level of imbalance is reached in the population that 
hinders both the establishment of large numbers of seeded 
examples and their kin for improvement, and the 
blossoming of promising, but relatively weak, randomly 
generated individuals.  It is also possible that system 
parameters then  need to be adjusted from default values.  

While it is not possible to include an entire run log from 
even a single experiment due to the space limitation, a 
small sample of the ISHED1 output may be useful to 

provide a flavor of the program’s operation.  Such an 
excerpt, with some annotations added for readability (in 
italics), is shown in Figure 3. Parameters t, u and q 
associated with a rule characterize the rule’s quality 
(Kaufman and Michalski, 2000). 
   In general, these experiments served to confirm the 
ability of ISHED1 to generate improved designs, and to 
adapt to different environmental situations. Thus, it has 
proven its potential to be a powerful tool for automating 
the heat exchanger design processes. 
Exchanger Size: 16 x 3 
Population Size: 15   Generations: 40 
Operator Persistence: 5 
Mode Persistence: GA-probe=2 SL-probe=1 
Initial population: 
Structure #0.3:  17 1 2 3 4 5 6 7 8 9 12 13 29 15 

31 I 18 33 20 36 22 38 24 40 26 42 11 2 7 
45 14 47 16 34 35 19 37 21 39 23 41 25 43 
44 28 46 30 48 32:  5.5376 

Structure #0.8:  17 1 20 3 4 22 6 24 8 26 10 28 
27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 
44 13 46 30 48 34 35 36 I 21 37 23 39 25 
41 27 43 29 45 31 47:  Capacity = 5.2099 

and 13 others 
 
Selected Members:  3, 2, 3, 7, 9, 3, 9, ... 
Operations: NS(23, 39), SWAP(8), SWAP(28), ..., 
          SWAP(29), SWAP(25), SWAP(1) 
 
Below is one of the structures created by the application of a SM operator 
in Darwinian mode (by swapping the two tubes following tube 29 in 
Structure #0.8)  

Generation 1:  

Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28 
27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4 
13 45 30 48 34 35 36 I 21 37 23 39 25 41 
27 43 46 29 31 47:  Capacity=5.2093 

and 14 others. 
 
Selected Members:  6, 15, 11, 3, 13, 1, ... 
. . . . . .  
The program soon shifts into Symbolic Learning Mode: 
Generation 5: Learning mode 
Learned rule: 

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x
15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x2
7.x28.x29.x30.x31.x32.x33.x34.x35.x36.x37.x38
.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regu
lar] & [x10=outlet]&[x16=inlet] (t:7,u:7,q:1) 

 
An example of a generated structure: 
Structure #5.1:  17 1 2 3 4 5 6 7 8 9 12 29 45 30 

31 I 18 33 20 36 22 38 24 40 26 42 11 27 
13 15 47 48 34 35 19 37 21 39 23 41 25 43 
44 28 46 14 32 16:  Capacity=5.5377 

. . . . . . . . .  
Below is a structure from the 21st generation: 
Generation 21: Learning mode 
Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 

31 I 33 17 35 36 22 39 24 40 42 25 11 44 
30 46 32 47 34 19 20 37 21 23 38 41 26 43 
28 27 29 14 48 16:  5.5387 

and 14 others 
 
Selected Members:  11, 4, 4, 13, 15, 10, 12, 13, 
15, 15, 12, 2, 3, 5, 10.  
. . . . . . . . .  
Finally, ISHED1 achieves: 



 

 

Generation 40: 
Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 

29 46 45 47 I 1 34 20 36 22 38 24 3 
42 43 44 27 13 15 32 16 18 11 19 37 
21 32 23 25 40 26 28 35 30 14 48 31: 
Capacity=6.3686 

Figure 3:  An excerpt from the log of an ISHED1 run. 

Conclusion 

A method and system ISHED1 was described that assists 
engineers in optimizing heat exchanger designs. The 
method is based on the Learnable Evolution Model, which 
uses machine learning to guide evolutionary computation.  

Among the areas for potential improvement of ISHED1 
are several aspects of the Symbolic Learning module.  One 
of them concerns the rule instantiation process, which is 
currently fixed and may constrict the diversity of the 
population generated. It is also not clear how well the 
representation space we chose reflects the realities of the 
design task.  An interesting topic for future development 
is the integration of constructive induction into the 
symbolic learning engine in order to find the best fit 
between the representation space and the problem at hand. 

Experiments with ISHED1 have demonstrated that it is 
capable of generating designs equal or superior to the best 
human designs, particularly in cases of non-uniform 
airflow.  It thus provides a powerful new tool for assisting 
engineers in designing heat exchangers based on the 
synergistic application of Darwinian evolution and 
symbolic learning from examples. It is believed that the 
described methodology can also be applied to other 
problems in engineering design. 

ISHED1 was developed in collaboration with the 
National Institute of Standards and Technology (NIST), 
which is currently conducting extensive experiments with 
ISHED1 and introducing it to the air-conditioning 
manufacturing industry (Domanski 2000) for use in their 
design processes. 
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