

Applying Learnable Evolution Model to Heat Exchanger Design

Kenneth A. Kaufman and Ryszard S. Michalski*
Machine Learning and Inference Laboratory

George Mason University
Fairfax, Virginia 22030-4444

{kaufman, michalski}@gmu.edu

* Also with the Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract

A new approach to evolutionary computation, called
Learnable Evolution Model (LEM), has been applied
to the problem of optimizing tube structures of heat
exchangers. In contrast to conventional Darwinian-
type evolutionary computation algorithms that use
various forms of mutation and/or recombination
operators, LEM employs machine learning to guide
the process of generating new individuals. A system,
ISHED1, based on LEM, automatically searches for
the highest capacity heat exchangers under given
technical and environmental constraints. The results
of experiments have been highly promising, often
producing solutions exceeding the best human
designs.

Introduction
This paper describes an application of a new approach to
evolutionary computation, called Learnable Evolution
Model (LEM), which employs machine learning to guide
the process of generating new populations (Michalski
1998; 2000). LEM integrates two modes of operation, a
Darwinian Evolution mode, which is based on traditional
evolutionary computation methods (e.g., Holland 1975;
Michalewicz 1996), and Machine Learning mode, which
generates new individuals through a process of theory
formation and instantiation. Specifically, Machine
Learning mode generates hypotheses that characterize
differences between groups of high performing and low
performing individuals, and then instantiates these
hypotheses to generate new individuals.

LEM has been applied to a range of function
optimization problems (Michalski and Zhang 1999;
Cervone 1999), and to the design of nonlinear filters
(Coletti et al. 1999). In both applications, LEM
significantly outperformed the evolutionary computation
algorithms used in the experiments, sometimes speeding
up the evolution process by two or more orders of
magnitude in terms of the number of births (or
generations).

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

This paper describes the application of LEM to the very
complex practical problem of optimizing heat exchangers.
The implemented program, ISHED1 (Intelligent System
for Heat Exchanger Design) searches for the best
arrangement of the evaporator tubes in the heat exchanger
of an air conditioner. This is a very difficult problem
because the search space is poorly structured and
extremely large (there are about 1080 possible tube
arrangements in a medium-sized heat exchanger). In
order to avoid the cost of solving this problem for different
operating conditions, manufacturers of air conditioning
systems currently assume in their models average
operating conditions (regarding the temperature,
humidity, airflow, etc.). Since real conditions are often
different from the assumed averages, such air conditioning
systems tend to perform sub-optimally.

ISHED1 does not make such assumptions. It evolves
toward structures that are best suited for any given
technical constraints and environmental conditions. In
the process of evolutionary design, it employs a heat
exchanger simulator that serves as an evaluator of the
proposed designs under the assumed conditions
(Domanski 1989).

Problem Description
The problem of heat exchanger design is to seek a
structure of tubes that provides the maximum heat transfer
given technical and environmental constraints. These
constraints include the size of the exchanger (the number
of rows of tubes and the number of tubes per row), the
refrigerant used, the outside air temperature and humidity,
the flow of air through the heat exchanger, and others.

In an air conditioner, refrigerant flows through a loop.
It is superheated and placed in contact with cooler outside
air (within the condenser unit), where it transfers heat out
and liquefies. Coming back to the evaporator, it comes
into contact with the warmer interior air that is being
pushed through the heat exchanger, thus cooling the air,
and heating and evaporating the refrigerant.

The heat exchanger itself consists of an array of parallel
tubes through which the refrigerant flows back and forth.
A typical model is shown in Figure 1. In this figure, there

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

are three rows of 16 tubes, with one inlet tube and two
outlet tubes. The path from the inlet tube to the outlet
tubes splits along the way. In general, there can be
multiple inlet tubes, and the paths from each of them to
the outlet tubes may or may not split. Individual tubes may
be connected to each other in many different ways. The
efficiency of the heat exchanger strongly depends on the

order in which the tubes are connected.

Figure 1: An Architecture of Evaporator Circuitry: A
sample16 x 3 configuration.

While the refrigerant flows through the tubes, air is
forced through the unit, whose velocity/volume profile
may be as illustrated in the figure. The air first comes
into contact with and is cooled by the refrigerant in the
first depth row, then in the subsequent rows.

The amount of cooling the air conditioner provides is
the aggregate of the heat transfer provided by each of its
tubes. Each tube’s transfer is a function of the temperature
and volume per unit time of both the air and the
refrigerant coming into contact at that tube. Different
orderings of the tubes affect the temperature and pressure
of the refrigerant passing through each tube. The results of
prior air/refrigerant interactions affect their temperatures
at later interactions. Additionally, the refrigerant loses
pressure (and velocity) while passing through the bends
between tubes; it thus helps in maximizing heat transfer if
adjoining tubes are physically close to each other.

In short, the goal of ISHED1 is to determine how to
order the flow through the tubes such that heat transfer is
maximized for the given constraints. Note that the number
of depth rows and the number of tubes per row are
mutable, and ISHED1 can handle different heat exchanger
sizes so long as there are equal numbers of tubes in each
row, the number of depth rows does not exceed 5, and the
total number of tubes does not exceed 130.

ISHED1 is able to apply background knowledge
reflecting the nature of the problem in order to constrain
the search to plausible architectures. A user-defined

parameter (or its default value) imposes limitations on the
lengths of most tube bends. ISHED1 also enforces six
real-world constraints on architectures, ranked from
suggested to essential. The program rejects structures that
violate a required constraint, and only under special
circumstances (namely when designing a more compliant
architecture is very difficult) generates structures that
violate the most lenient constraints.

Two of the six constraints state that inlet tubes should
not, and that tubes from which exit tubes receive their
refrigerant should, be located next to exit tubes. These
constraints allude to the fact that while through most of its
travels through the heat exchanger the refrigerant is a
mixture of liquid and gaseous coolant, and thus at a
temperature close to its evaporation point at its current
pressure, the refrigerant in the exit tube is all gas, and as
such is warmed rapidly to a higher temperature by the
exchange of heat (as opposed to the heat being used in a
phase shift). There is some noticeable conduction of heat
between the exit tubes and their immediate neighbors; this
is minimized when the refrigerant in those neighboring
tubes is also close to leaving the heat exchanger system.
Similarly another constraint, the constraint that exit tubes
should be in the first depth row, is based on the fact that
the overall cooling will be most effective when this
warmest refrigerant encounters some of the warmest air,
and the coolest refrigerant meets already cooled air.

A constraint limiting splits in refrigerant paths is based
on the unacceptable drops in refrigerant pressure that will
occur if a single path undergoes multiple splits. Another
constraint requiring inlets and outlets to be on the same
side of the heat exchanger manifold is based on the
structural requirements of the air conditioning unit, as is
one that forbids looping in the refrigerant path.

Overview of ISHED1
The goal of ISHED1 is to apply the recently developed
Learnable Evolution Model (Michalski 2000) to assist an
expert in designing optimal heat exchanger architectures
under given operating conditions. ISHED1 works in
conjunction with two other major systems, a simulator,
EVAP5, that evaluates the performance of given heat
exchanger architectures (Domanski 1989) and a general
purpose AQ-type inductive learning system (Michalski
1983, 2000; Kaufman and Michalski, 1998) that is
employed in the Symbolic Learning Module of ISHED1.
 Following the LEM methodology, ISHED1 integrates
two evolutionary strategies: Darwinian evolutionary
learning and Symbolic evolutionary learning. Figure 2
presents a general diagram of the implemented ISHED1
system. Darwinian evolutionary learning is performed by
the Evolutionary Learning Module, and Symbolic
evolutionary learning is performed by the Symbolic

Learning Module, which implements AQ-type inductive
learning and a hypothesis instantiation module.

The Control Module takes the current population of
candidate heat exchanger designs and determines which
evolutionary strategy to apply. The selected strategy
operates on the population, generates the subsequent
population, and passes it to the simulator for evaluation of
the individual structures. These structures and their
evaluations are returned to the Control Module for the
next generation (iteration).

Evaluations of
Architectures

Selected
Architectures

Candidate
Architectures

Candidate
Architectures

Rules Calls

Calls

SIMULATOR

Co nt r o l
Module

Ev ol ut io nar y
L earn in g
Module

Sym b o li c
Le arning
Mod ule

Archit ec ture
Generat ion
Submodule

Archit ec ture
Mo dif icat ion
Submodule

Figure 2: A general functional architecture of ISHED1.

Two related parameters guide the Control Module in
determining which strategy to apply. Basically, ISHED1
applies Darwinian evolution until the population is no
longer improving. It then switches to symbolic learning
until similarly the performance (both in terms of the best
individual and the population overall) has plateaued,
continuing to alternate modes based on performance.
Experiments have indicated that the application of a new
strategy is often sufficient to remove the evolutionary
process from the point where it has stalled.

Because of the nature of the problem and the feasible
ways of internally representing heat exchanger structures,
both evolutionary modules required problem-specific
customization from previous LEM applications (e.g.,
Coletti et al. 1999; Michalski and Zhang 1999; Cervone
and Michalski 2000). Traditional genetic operators would
be, for the most part, unworkable in this domain, so eight
analogous domain-specific structure modifying (SM)
operators were implemented, such as swapping the
positions of two adjacent tubes in the flow, or moving the
source of a tube’s refrigerant further upstream, in the
process creating a split path. The SM operators change
the characteristics of the candidate exchangers in ways
that will most likely lead to admissible new structures,
that is, structures satisfying the given physical and
environmental constraints, as described above. A selected
operator is tried repeatedly with different operands in

order to generate a feasible structure, until it either
succeeds or “times out” (based on limits specified in the
user’s control parameters), in which case another
operator, hopefully more applicable, will be tried.

The second strategy, based on symbolic learning,
examines the characteristics of both well- and poorly-
performing designs, and automatically creates hypotheses
(in the form of attributional rules) that characterize the
better-performing architectures. These hypotheses are
then applied to generate a new population of designs.

Due to the complexity of the domain, the learning
program uses an abstract, rather than precise, specification
of the different structures. Consequently, the learned rules
also refer to abstract designs. These abstract rules allow
the system to instantiate them in many different ways to
produce specific designs. The rule instantiation process
must, however, follow the previously mentioned
constraints on designs. Generating heat exchanger
architectures satisfying these constraints from a
specification of inlet, outlet and split tubes is a
computationally complex problem. To simplify it, ISHED1
usually generates only one architecture from a given
specification of the key tubes.

To summarize, given instructions characterizing the
environment for the sought heat exchanger design, an
initial population of designs (either specified by the user,
randomly generated, or a combination of the two), and
parameters for the evolutionary process, ISHED1 evolves
populations of designs using the above two strategies for a
specified number of generations. At the end, it produces a
report stating the best designs (architectures) found and
their estimated capacity, as determined by the simulator.
The ISHED1 control module determines when to apply
each of the two evolutionary strategies (see Figure 2).

System Operation

Control Parameters
The first step of the ISHED1 operation is to read a file that
defines the control parameters for the program and the
characteristics of the desired architecture. These
parameters, which override defaults when read, allow
users latitude in controlling the system run. They can be
grouped into the following clusters (some individual
parameters are alluded to in multiple clusters):

• Parameters defining the characteristics of a heat
exchanger: its size and its shape

• Parameters defining the characteristics of the initial
population: its size, any user-specified first generation
individuals, and the nature of the individuals
randomly specified by the system

• Parameters defining the length of the evolutionary
process

• Parameters describing the airflow through the heat
exchanger, defined by a list of locations in the cross-
section of the exchanger, and the velocities of the air
at these locations. The velocities in other locations
are linearly interpolated.

• Run control parameters, including the persistence of
the Darwinian and symbolic learning modes,
parameters for guiding Darwinian mode operation
and symbolic mode architecture generation, and the
level of detail to be presented in the output file.

Defining the Initial Set of Structures
ISHED1 allows a user to define an initial set of heat
exchanger architectures. If the user does not define them,
the system generates the initial set randomly. The user
may define one or more initial architectures, and specify
the number of copies of each architecture to be generated
to fill the initial population. User-specified architectures
may be based either on previous ISHED1 runs, or draw
upon the user’s knowledge of the problem, so as to test
hypotheses or to try to improve upon industry models.

It is also possible that the user may define only a
portion of the initial population, in which case the system
randomly generates the remaining designs. The random
generation process creates different types of architectures
in proportions defined a priori in the program. These
proportions are determined through estimations of the
form promising architectures are likely to take, based on
the number of tubes in the target heat exchanger.

System Control
The control module starts in Darwinian evolution mode
using an elitist strategy (i.e., the best performing
architecture so far always gets passed to the next
generation as the first element of the new population).
Elitism also is used in Symbolic learning mode; there the
best architecture explored by the program so far and all
architectures that were in the “good” class for rule
learning propagate directly to the next generation. Elitism
has proven to be an important feature of evolutionary
computation processes and is used in many algorithms.

In Darwinian mode, the structure modifying operator
selected for application to a given structure is chosen
probabilistically, based on the topology of the heat
exchanger structure (the number of inlets, outlets and
splits). The probabilities are based on an estimate of how
likely an application of this operator is likely to result in a
favorable change. Typically, the less catastrophic
operators and those that will maintain architectures with
three inlets or fewer are favored.

Darwinian Evolution Module
A generation in the Darwinian Evolution Module follows
the same three-step pattern that is followed by traditional
genetic algorithms: a step in which individuals are
probabilistically selected to be the basis for the next
generation, with selection probability proportional to their
evaluated fitness; a step in which the selected individuals
are modified by various operators; and finally a step in
which the members of this new population are evaluated.

To guide the modification of structures in the
evolutionary design process in harmony with the heat
exchanger design constraints, we developed and
implemented eight Structure Modifying (SM) Operators
for ISHED1, each of which makes a change in the heat
exchanger design on which it is operating.

The system probabilistically selects an operator to
apply, based on the topology of the heat exchanger design
being operated on (the data representation maps out the
architecture precisely by encoding a vector of each tube’s
refrigerant source). It will search for a feasible
application of the operator, trying it with several different
sets of operands if necessary. If it seems that the operator
will not lead to a feasible change in the structure, another
operator is tried; if the system is unable to admissibly
apply an SM operator after a large number of iterations,
the program has an escape clause, so as not to get stuck in
an exit-less loop. In such a rare case, ISHED1 will apply
a null operator to the structure.

Symbolic Learning Module
When the Symbolic Learning module is applied, members
of the current population are divided into three classes
based on their cooling capacity. If all individuals have
identical performance, evolution in this mode is not
possible, and Darwinian evolution will take place instead.

The range from best performance level in the
population to the worst is examined. Individuals with
performance in the top HFT% of this range are placed in
the "good" class. Similarly, individuals in the bottom
LFT% are placed in the "bad" class, where HFT and LFT
(high and low fitness thresholds) are program parameters
(in ISHED1 HFT=LFT=25%). Other individuals are
placed in the "indifferent" class.

The AQ18 rule learning program (Kaufman and
Michalski, 2000) generates a set of rules that distinguish
"good" architectures from "bad", based on abstractions of
the specific architectures. These rules are then
instantiated in a different ways to generate new
architectures. During consecutive generations, rules are
used in the context of their predecessors, so as to further
focus the concept of design optimality.

Each new generation consists of the best architecture
discovered so far, architectures of the "good" class, and

new architectures generated by instantiating the learned
rules. If there are enough open slots in the population,
each rule is applied at least twice, by rotating among
them, ordered by the number of training examples
satisfying each rule (called t-weights, which are indicators
of the rule’s strength). Finally, any other individuals are
generated based on rules chosen probabilistically, with
rules’ probabilities proportional to their t-weights.

Experiments
During the course of ISHED1 development, many
experiments with the system were conducted. The initial
experiments concentrated on a well-known problem, using
a common heat exchanger size and a fairly uniform
airflow pattern. In these experiments, ISHED1 designs
were comparable to the industry standard. One concern in
some of these designs was that after many generations of
Darwinian evolution, the designs would become chaotic in
terms of their inter-tube connections. Nonetheless, using
available tools, an engineer can smooth the connections,
hopefully at little cost to the capacity of the exchanger.

In later experiments, the refrigerant was changed, and
the airflow pattern was defined as highly non-uniform.
Under such conditions, industry-standard heat exchangers
do not perform well. The best ISHED1-produced
architectures conformed intuitively to expectations of what
a successful architecture in a non-uniform airflow should
look like, and indeed performed far better than the
currently used expert-designed structures.

Subsequent experiments varied the size and shape of the
heat exchanger -- between 2 and 4 depth rows, with
between 40 and 90 total tubes. Similar results were
observed. During the final stage of development, we
began experimenting with pre-specified members of initial
populations. These results were to some degree mixed.
When a very large portion of the initial population was
pre-specified with known good architectures, further
improvement could often be found. To some degree, the
pre-specification is analogous to an initial symbolic
learning step using the prior background knowledge; as a
result, ISHED1 begins with a solid population.

But when fewer individuals were used to seed the initial
population, improvement was hard to come by. While
further experimentation is needed to determine if this is a
regular occurrence, and if so its cause, it is possible that a
level of imbalance is reached in the population that
hinders both the establishment of large numbers of seeded
examples and their kin for improvement, and the
blossoming of promising, but relatively weak, randomly
generated individuals. It is also possible that system
parameters then need to be adjusted from default values.

While it is not possible to include an entire run log from
even a single experiment due to the space limitation, a
small sample of the ISHED1 output may be useful to

provide a flavor of the program’s operation. Such an
excerpt, with some annotations added for readability (in
italics), is shown in Figure 3. Parameters t, u and q
associated with a rule characterize the rule’s quality
(Kaufman and Michalski, 2000).
 In general, these experiments served to confirm the
ability of ISHED1 to generate improved designs, and to
adapt to different environmental situations. Thus, it has
proven its potential to be a powerful tool for automating
the heat exchanger design processes.
Exchanger Size: 16 x 3
Population Size: 15 Generations: 40
Operator Persistence: 5
Mode Persistence: GA-probe=2 SL-probe=1
Initial population:
Structure #0.3: 17 1 2 3 4 5 6 7 8 9 12 13 29 15

31 I 18 33 20 36 22 38 24 40 26 42 11 2 7
45 14 47 16 34 35 19 37 21 39 23 41 25 43
44 28 46 30 48 32: 5.5376

Structure #0.8: 17 1 20 3 4 22 6 24 8 26 10 28
27 15 16 32 33 2 18 19 5 38 7 40 9 42 11
44 13 46 30 48 34 35 36 I 21 37 23 39 25
41 27 43 29 45 31 47: Capacity = 5.2099

and 13 others

Selected Members: 3, 2, 3, 7, 9, 3, 9, ...
Operations: NS(23, 39), SWAP(8), SWAP(28), ...,
 SWAP(29), SWAP(25), SWAP(1)

Below is one of the structures created by the application of a SM operator
in Darwinian mode (by swapping the two tubes following tube 29 in
Structure #0.8)

Generation 1:

Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28
27 15 16 32 33 2 18 19 5 38 7 40 9 42 11 4
13 45 30 48 34 35 36 I 21 37 23 39 25 41
27 43 46 29 31 47: Capacity=5.2093

and 14 others.

Selected Members: 6, 15, 11, 3, 13, 1, ...
.
The program soon shifts into Symbolic Learning Mode:
Generation 5: Learning mode
Learned rule:

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x
15.x17.x18.x19.x20.x21.x22.x23.x24.x25.x26.x2
7.x28.x29.x30.x31.x32.x33.x34.x35.x36.x37.x38
.x39.x40.x41.x42.x43.x44.x45.x46.x47.x48=regu
lar] & [x10=outlet]&[x16=inlet] (t:7,u:7,q:1)

An example of a generated structure:
Structure #5.1: 17 1 2 3 4 5 6 7 8 9 12 29 45 30

31 I 18 33 20 36 22 38 24 40 26 42 11 27
13 15 47 48 34 35 19 37 21 39 23 41 25 43
44 28 46 14 32 16: Capacity=5.5377

.
Below is a structure from the 21st generation:
Generation 21: Learning mode
Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15

31 I 33 17 35 36 22 39 24 40 42 25 11 44
30 46 32 47 34 19 20 37 21 23 38 41 26 43
28 27 29 14 48 16: 5.5387

and 14 others

Selected Members: 11, 4, 4, 13, 15, 10, 12, 13,
15, 15, 12, 2, 3, 5, 10.
.
Finally, ISHED1 achieves:

Generation 40:
Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12

29 46 45 47 I 1 34 20 36 22 38 24 3
42 43 44 27 13 15 32 16 18 11 19 37
21 32 23 25 40 26 28 35 30 14 48 31:
Capacity=6.3686

Figure 3: An excerpt from the log of an ISHED1 run.

Conclusion

A method and system ISHED1 was described that assists
engineers in optimizing heat exchanger designs. The
method is based on the Learnable Evolution Model, which
uses machine learning to guide evolutionary computation.

Among the areas for potential improvement of ISHED1
are several aspects of the Symbolic Learning module. One
of them concerns the rule instantiation process, which is
currently fixed and may constrict the diversity of the
population generated. It is also not clear how well the
representation space we chose reflects the realities of the
design task. An interesting topic for future development
is the integration of constructive induction into the
symbolic learning engine in order to find the best fit
between the representation space and the problem at hand.

Experiments with ISHED1 have demonstrated that it is
capable of generating designs equal or superior to the best
human designs, particularly in cases of non-uniform
airflow. It thus provides a powerful new tool for assisting
engineers in designing heat exchangers based on the
synergistic application of Darwinian evolution and
symbolic learning from examples. It is believed that the
described methodology can also be applied to other
problems in engineering design.

ISHED1 was developed in collaboration with the
National Institute of Standards and Technology (NIST),
which is currently conducting extensive experiments with
ISHED1 and introducing it to the air-conditioning
manufacturing industry (Domanski 2000) for use in their
design processes.

Acknowledgments
The authors express their deep gratitude to Dr. Piotr
Domanski from the National Institute of Standards and
Technology for introducing to them the problem of
designing optimal heat exchangers, for his excellent
collaboration on the project, and for providing the heat
exchanger simulator used in ISHED1. They also thank
the National Institute of Standards and Technology and
International Intelligent Systems, Inc. for their support of
this project. The LEM methodology and the basic machine
learning algorithms used were developed in the Machine
Learning and Inference Laboratory at George Mason
University, which is supported by the National Science
Foundation under grants IIS-9904078 and IRI-9510644.

References

Cervone, G. 1999. An Experimental Application of the
Learnable Evolution Model to Selected Optimization
Problems. Master’s Thesis. Reports of the Machine
Learning and Inference Laboratory, MLI 99-8, George
Mason University, Fairfax, VA.
Cervone, G. and Michalski, R.S. 2000. Design and
Experiments: LEM2 Implementation of the Learnable
Evolution Model. Reports of the Machine Learning and
Inference Laboratory, MLI 00-2, George Mason
University, Fairfax, VA.
Coletti, M., Lash, T., Mandsager, C., Michalski, R.S., and
Moustafa, R. 1999. Comparing Performance of the
Learnable Evolution Model and Genetic Algorithms on
Problems in Digital Signal Filter Design. Proceedings of
the 1999 Genetic and Evolutionary Computation
Conference (GECCO).
Domanski, P.A. 1989. EVSIM - An Evaporator
Simulation Model Accounting for Refrigerant and One
Dimensional Air Distribution. NISTIR 89-4133.
Domanski, P.A. 2000. Evaporator Model with A Visual
Interface. Presentation at Winter Meeting of the American
Society of Heating, Refrigeration and Air-conditioning
Engineers (ASHRAE), Dallas, TX.
Holland, J. 1975. Adaptation in Artificial and Natural
Systems. Ann Arbor: The University of Michigan Press.
Kaufman, K.A. and Michalski, R.S. 2000. The AQ18
System for Machine Learning: User’s Guide. Reports of
the Machine Learning and Inference Laboratory, MLI 00-
3, George Mason University, Fairfax, VA.
Michalewicz, Z. 1996. Genetic Algorithms+Data
Structures = Evolutionary Programs. Springer Verlag, 3rd

edition.
Michalski, R.S. 1983. A Theory and Methodology of
Inductive Learning. In Michalski, R.S. Carbonell, J. and
Mitchell,T., eds., Machine Learning: An Artificial
Intelligence Approach. Palo Alto: TIOGA Publishing Co.,
83-134.
Michalski, R.S. 1998. Learnable Evolution: Combining
Symbolic and Evolutionary Learning. Proceedings of the
Fourth International Workshop on Multistrategy Learning
(MSL’98), 14-20.
Michalski, R.S. 2000. LEARNABLE EVOLUTION
MODEL: Evolutionary Processes Guided by Machine
Learning. Machine Learning 38, 9-40.
Michalski. R.S. and Zhang, Q. 1999. Initial Experiments
with the LEM1 Learnable Evolution Model: An
Application to Function Optimization and Evolvable
Hardware. Reports of the Machine Learning and
Inference Laboratory, MLI 99-4, George Mason
University, Fairfax, VA.

