
AI for the Web — Ontology-based Community Web Portals

Steffen Staaba,b, Jürgen Angeleb, Stefan Deckera,b, Michael Erdmanna, Andreas Hothoa,
Alexander Maedchea, Hans-Peter Schnurra,b, Rudi Studera,b, York Surea

email:fstaab, angele, decker, erdmann, hotho, maedche, schnurr, studer, sureg@aifb.uni-karlsruhe.de
aInstitute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

http://www.aifb.uni-karlsruhe.de/WBS
bontoprise GmbH, Hermann-L¨ons-Weg 19, 76275 Ettlingen, Germany

http://www.ontoprise.com

Abstract

Community web portals serve as portals for the information
needs of particular communities on the web. We here discuss
how a comprehensive, ontology-based approach for building
and maintaining a high-value community web portal has been
conceived and implemented. The ontology serves as a seman-
tic backbone for accessing knowledge on the portal, for con-
tributing information, as well as for developing and maintain-
ing the portal. In particular, the ontology allows for flexible
querying and inferencing of knowledge. Actual usage of our
technology is facilitated through a set of tools that are about to
turn our research system into a portal for wide-spread usage
right now. The development of these tools has greatly ben-
efited from some first experiences we had with actual users
of the community web portal of the knowledge acquisition
community.

1 Introduction
One of the major strengths of the World Wide Web is that
virtually everyone who owns a computer may contribute
high-value information — the real challenge is to make valu-
able information be found. Search machines help with this
task, but ultimately they fail to provide appropriatly struc-
tured views onto the web.

From the very beginning of the web, communities of in-
terest have formed that covered what they deemed to be of
interest to their members in — what we here call — com-
munity web portals. Community web portals are similar to
Yahoo!TM and its likes by their goal of presenting a struc-
tured view onto the web, however they are dissimilar by the
way knowledge is provided in a collaborative process with
only few resources (manpower, money) for maintaining and
editing the portal. Thus, their is a need for automation of
management of community web portals.

Community web portals try to weave loose pieces of in-
formation into a coherent presentation adequate for sharing
knowledge with the user. Support through ontologies ap-
pears as an appropriate means in order to facilitate the tool-
supported structuring of knowledge. The ontology formally
represents common knowledge and interests that people
share within their community. It is used to support the major
tasks of a portal, viz. accessing the portal through manifold,
dynamic, conceptually plausible views onto the information

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of interest in a particular community (Section 2), and pro-
viding information in a number of ways that reflect different
types of information resources held by the individuals (Sec-
tion 3). The subsequent Section 4 shows how an ontology-
based web portal may be developed and maintained using
our set of methods and tools and how the overall architec-
ture of the portal looks like. Before we conclude, we com-
pare our work with related approaches (Section 5).

The Example. The example that we draw from in the rest
of this paper is the portal for the“Knowledge Annotation
Initiative of the Knowledge Acquisition community”(KA2;
cf.(Benjamins, Fensel, & Decker 1999)). The KA2 initiative
has been conceived for semantic knowledge retrieval from
the web building on knowledge created in the KA commu-
nity. To structure knowledge, an ontology has been built in
an international collaboration of researchers. The ontology
constitutes the basis to annotate WWW documents of the
knowledge acquisition community in order to enable intelli-
gent access to these documents and to infer implicit knowl-
edge from explicitly stated facts and rules from the ontology.

Given this basic scenario, which may be easily transferred
towards other settings for community web portals, we have
investigated the techniques and built the tools that we de-
scribe in the rest of this paper. Nevertheless the reader may
note that we have not yet achieved a complete integration
of all tools and neither have we exploited all our technical
capabilities in our up and running demonstration KA2 com-
munity web portal (http://ka2portal.aifb.uni-karlsruhe.de).

2 Accessing the Community Web Portal
Navigating through a, maybe unknown, portal is a rather dif-
ficult task in general. Information retrieval may of course
help, but it may also be more of a hindrance, because the
user may not know the conceptualization that underlies the
portal. Hence, we provide query and navigating capabilities
and make the conceptual background transparent to the user.

Our description of access capabilities in this section starts
with the query capabilities of our representation framework.
The framework builds on the very same F-Logic (Kifer,
Lausen, & Wu 1995) mechanism for querying as it does for
ontology representation and, thus, it may also exploit and ex-
plicate the ontological background knowledge. In addition
to these facilities for explanation and exploration, the on-
tology also acts as a mediator between proprietary informa-

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



tion sources that provide additional background knowledge
to the portal (cf. (Wiederhold & Genesereth 1997) on medi-
ators). Nevertheless, F-Logic is as poorly suited for presen-
tation to naive users as any other query language. Hence, its
use is mostly disguised in various easy-to-use mechanisms
that more properly serve the needs of the common user (cf.
Section 2.2), while it still gives the editor all the power of
the principal F-Logic representation and query capabilities.
Finally in this section, we touch upon some very mission-
critical issues of the actual inference engine that answers
queries and derives new facts by combining facts with struc-
tures and rules from the ontology.

2.1 Query Capabilities
Though information may be provided in a number of differ-
ent formats our underlying language for representation and
querying is F-Logic. For instance, using a concrete example
from our showcase the following query asks for all publica-
tions of the researcher “Steffen Staab”.

(1) FORALL Pub 
EXISTS ResID ResID:Researcher[NAME !!
\Steffen Staab"; PUBLICATION !!Pub]:

The substitutions for the variablePubare the desired pub-
lications. The expressiveness and usability of such queries
is strongly increased by the possibility to use a simple form
of information retrieval using regular expressions whithin
queries.

In addition, the query capabilities enable using the back-
ground knowledge expressed in the KA2 ontology using
rules. For example, one rule states that, two researchers co-
operate, if aResearcherX works at aProjectProj and if
a ResearcherY works at the sameProjectProj andX is
another person thanY . The rule is formulated in F-Logic as
follows:

(2) FORALL X;Y; Proj
X : Researcher[COOPERATESWITH !! Y : Researcher]
 
X : Researcher[WORKSATPROJECT!! Proj : Project]
AND
Y : Researcher[WORKSATPROJECT!! Proj : Project]
ANDNOT equal(X;Y ):

If we take a look at web pages about research projects,
typically information about the researchers (e.g.their names,
their affiliation, ...) involved in the projects is explicitly
stated in HTML. However, the fact that researchers who are
working together in projects are cooperating is not explicitly
stated on the web pages. A question might be: “Which re-
searchers are cooperating with other researchers?” Querying
for cooperating researchers the implicit information about
project cooperation of researchers is retrieved. The query
may be formulated using F-Logic:

(3) FORALL ResID1;ResID2 
ResID1: Researcher[COOPERATESWITH !!ResID2]:

The result set includes explicit information about a re-
searchers cooperation relationships, which are stored in the
knowledge warehouse, and also implicit information about
project cooperation between researchers derived using the
project-cooperation rule modeled in (2)..

2.2 Navigating and Querying the Portal
Usually it is too inconvenient for users to query the portal
using F-Logic. Therefore, we offer a range of techniques
that allow for navigating and querying the community web:

� A hypertext linkmay contain a query which is dynami-
cally evaluated when one clicks on the link. Browsing is
realized by defining views on the top-level concepts of the
KA2 ontology, such asPersons, Projects, Organizations,
Publications, Research TopicsandEvents. For example
clicking on theProjectshyperlink results in a query for all
projects known to the portal. The query is evaluated and
the results are presented to the user in a table.

� A choice of concepts, instances, or combinations of both
may be issued to the user inHTML forms. Choice options
may be selected through check boxes or radio buttons. For
instance, clicking on theProjectslink (cf. upper part of
Figure 1) an F-Logic query is evaluated and all projects
contained in the portal are retrieved. The results can be
restricted using topic-specific attributes contained in the
KA2 ontology for projects, such as topics of a project,
people involved etc. The selection list (e.g.for all people
involved in projects) is generated dynamically from the
information contained in the knowledge warehouse (cf.
Section 3.4).

Figure 1: Accessing the Community Web Portal

� A query may also be generated by using thehyperbolic
view interface. The hyperbolic view visualizes the on-
tology as a hierarchy of concepts. The presentation is
based on hyperbolic geometry (cf. (Lamping, Rao, &
Pirolli 1995)). When a user selects a node from the hy-
perbolic concept hierarchy, a form is presented which al-
lows the user to select attributes or to insert values for the
attributes. A result of the user request searching for the
community member “Rudi Studer” and his photo is shown



in the left part of Figure 1. Based on the selected node and
the corresponding attributes, a query is compiled.

� Furthermore, queries created by the hyperbolic view in-
terface may be stored using the personalization feature.
Queries are personalized for the different users and are
available for the user in a selection list. The stored queries
can be considered assemantic bookmarks. By selecting
a previously created bookmark, the underlying query is
evaluated and the updated results are presented to the user.
By this way, every user may create a personalized view on
the portal.

� Finally, we offer an expert mode. The most technical (but
also most powerful and flexible) way for querying the por-
tal requires that F-Logic is typed in by the user. This way
is only appropriate for users who are very familiar with
F-Logic and the KA2 ontology.

2.3 The Inference Engine
The inference engine answers queries and it performs
derivations of new knowledge by an combination of facts
and the ontology. While the expressiveness of F-Logic and
its Java powered realization in our inference engine is one
of the major arguments for using it in a semantic commu-
nity web portal, wide acceptance of a service like this also
depends onprima facieunexciting features like speed of ser-
vice. The principal problem we encounter here is that there
exist worst case situations (not always recognizable as such
by the user) where a very large set of facts must be derived
by the inference engine in order to solve a particular query.
While we cannot guarantee for extremely fast response times
in all cases, unless we drastically cut back on the expres-
siveness of our representation formalism, we provide several
strategies to cope with performance problems:

� The inference engine may be configured to subsequently
deliver answers to the query instead of waiting for the en-
tire set of answers before these answers are presented to
the user. This has the consequence that answers which are
directly available as facts may be presented immediately
while other anwers which have to be derived using rules
are presented later.

� The inference engine caches all facts and intermediate
facts derived from earlier queries. Thus, similar queries
or queries that build on previously derived facts may be
answered fast.

� Finally, we allow the inference engine to be split into sev-
eral inference engines that execute in parallel. Every en-
gine may run on a different processor or even a differ-
ent computer. Every inference engine administers a sub-
set of the rules and facts. A master engine coordinates
user queries and distributes subqueries to the slave en-
gines. These slave engines either answer these subqueries
directly or distribute incoming subqueries to other infer-
ence engines.

3 Providing Information
An essential feature of a community web portal is the con-
tribution of information from all (or at least many) members
of the community. Though they share some common under-
standing, the pieces of information they may contribute may

come in many different (legacy) formats. Hence, one needs
a set of methods and tools that may account for the diversity
of information sources of potential interest to the commu-
nity portal. These methods and tools must be able to cope
with different syntactic mechanisms and they must be able
to integrate different semantic formats based on the common
ontology.

Considering the syntactic and/or interface side, we sup-
port three major, different, modes of information provision-
ing: First, we handlemetadata-based information sources
that explicitly describe contents of documents on a semantic
basis. Second, we align regularities found in documents or
data structures with the corresponding semantic background
knowledge inwrapper-basedapproaches. Third, we allow
the direct provisioning of facts through ourfact editor. All
the information is brought together in the knowledge ware-
house. Thus, it mediates between the original heterogeneous
information sources.

3.1 Metadata-based Information

Metadata-based information enriches documents with se-
mantic information by explicitly adding metadata to the in-
formation sources. Over the last years several metadata lan-
guages have been proposed which can be used to annotate
information sources. Current web standards can be handled
within our semantic web portal approach. On the one hand,
RDF (W3C 1999) facts serve as direct input for the knowl-
edge warehouse, on the other hand, RDF facts can be gen-
erated from information contained in the portal knowledge
warehouse. We developedSiLRI (Simple Logic-based RDF
Interpreter), a logic-based inference engine implemented in
Java that can draw inferences based on the RDF data model
(Deckeret al. 1998). XML provides the chance to get meta-
data for free,i.e. as a side product of defining the document
structure. For this reason, we have developed a method and
a tool calledDTDMaker for generating DTDs out of on-
tologies (Erdmann & Studer 1999). DTDMaker derives an
XML document type definition from a given ontology in F-
Logic, so that XML instances can be linked to an ontology.
The linkage has the advantage that the document structure
is grounded on a true semantic basis and, thus, facts from
XML documents may be directly integrated into the knowl-
edge warehouse.

HTML-A, our HTML extension, adds annotations to
HTML documents using an ontology as a metadata schema.
HTML-A has the advantage to smoothly integrate semantic
annotations into HTML and prevents the duplication of in-
formation. To facilitate the annotation of HTML, we have
developed an HTML-A annotation tool calledOntoPad.

3.2 Wrapper-based Information

In general, annotating information sources by hand is a time
consuming task. Often, however, annotation may be auto-
mated when one findes regularities in a larger number of
documents. The principle idea behind wrapper-based in-
formation is that there are large information collections that
have a similar structure. We here distinguish between semi-
structured information sources (e.g.HTML) and structured
information sources (e.g.relational databases).



Semi-structured Sources. In recent years several ap-
proaches have been proposed for wrapping semi-structured
documents, such as HTML documents. Wrapper factories
(cf. (Sahuguet & Azavant 1999)) have considerably facil-
itated the task of wrapper construction. In order to wrap
directly into our knowledge warehouse we have developed
our own wrapper approach OntoWrapper that directly aligns
regularities in semi-structured documents with their corre-
sponding ontological meaning.

Structured Sources. Though, in the KA2 community web
there are no existing information systems, we would like to
emphasize that existing databases and other legacy-systems
may contain valuable information for building a community
web portal.

3.3 Fact Editor
The process of providing new facts into the knowledge ware-
house should be as easy as possible. For this reason we offer
theFact Editor, which is another mode in which the hyper-
bolic interface tool may be used. At this time the forms are
not used to ask for values, but to introduce values for at-
tributes of instances of a corresponding concept from the
ontology. The Fact Editor is also used for maintaining the
portal to add, modify, or delete facts.

3.4 Knowledge Warehouse
The different methods and tools we have just described feed
directly into the knowledge warehouse or indirectly when
they are triggered by a web crawl. The warehouse itself
hosts the ontology,i.e. the metadata level, as well as the data
proper. The knowledge warehouse is indirectly accessed,
through a user query or a query by an inference engine such
as described in Section 2. Hence, one may take full advan-
tage of the distribution capabilities of the inference engine
and, likewise, separate the knowledge warehouse into sev-
eral knowledge bases or knowledge marts. Facts and con-
cepts are stored in a relational database, however, they are
stored in areified format that treats relations and concepts
as first-order objects and that is therefore very flexible with
regard to changes and amendments of the ontology.

4 Development of Web Portals
4.1 The Development and Maintenance Process
Even with the methodological and tool support we have de-
scribed so far, developing a web portal for a community
of non-trivial size remains a complex task. Strictly ad-hoc
rapid prototyping approaches easily doom the construction
to fail or they easily lead up to unsatisfactory results. Hence,
we have thought about a more principled approach towards
the development process that serves as means for document-
ing development, as well as for communicating principal
structures to co-developers and editors of the web portal. We
distinguish different phases in the development process that
are illustrated in Figure 2. For the main part this model is a
sequential one. Nevertheless, at each stage there is an eval-
uation as to whether and as to how easily further develop-
ment may proceed with the design decisions that have been
accomplished before. The results feed back into the results
of earlier stages of development.

Require-
ment

Eliciation

WebSite Design

Ontology Engineering

Termi-
nology

Rule
Development

Query

Form-
ation

PORTAL

Prov. facts

Maintain

Dyna-
mic

Web
Pages

Figure 2: The Development Process of the Community Web
Portal

The main stages of the development process and their key
characteristics are given in the following:

� The process starts with theelicitation of user require-
ments in the requirements elicitation phase. In this phase,
requirements about important and interesting topics in the
domain are collected, the information goals of potential
users of the portal are elicited, and preferences or expecta-
tions concerning the structure and layout of presented in-
formation is documented. Results of this very first phase
constitute the input for the design of the web site and for
preliminary HTML pages and affect the formal domain
model embodied in the ontology.

� The requirements determine,e.g., which views and
queries are useful for users of the portal, which navigation
paths they expect, how different web pages are linked, or
which functionality is provided in different areas of the
portal. Requirements like these are realized in theweb
site design. This design phase may be performed indepen-
dently to a very large extent from the underlying formal
structuring,i.e. the ontology.

� In parallel to the development of the structure and lay-
out of the web site anontology engineeringprocess is
started. The first phase elicits relevantdomain termsthat
need to be refined and amended in the ontology engineer-
ing phase. First, the static ontology parts,i.e. the concept
hierarchy, the attributes, and relations between concepts
are formally defined. Thereafter,rulesand constraints are
developed. Rule development may incur a major revision
of the concept hierarchy as consequence.

� In thequery developmentstep the views and queries de-
scribed in one of the earlier phases are formalized. At
first, their functionality is tested independently from the
web site design. To express the information needs for-
mally, the developer has to access the ontology, whereby
additional rules or relations that define new views or ease
the definition of queries may become necessary.

� Finally, web pages are populated,i.e. the queries and
views developed during website design, and formalized
and tested during query formalization are integrated into
the operational portal. Information may be accessed via
the portal as soon as a sufficient amount has been made
available as outlined in Section 3.

During operation of the community portal it must be fed
and maintained:

� The user community provides facts via numerous input
channels (cf. Section 3).



� These facts may contain errors or undesired contents, or
the integration of different sources may lead to inconsis-
tencies. To counter problems like these a person is re-
sponsible to detect these cases and act appropriately. The
detection of inconsistencies is supported by the inference
engine via constraints formulated in F-Logic. The editor
then has to decide how to proceed. He may contact re-
sponsible authors of conflicting information, he may sim-
ply ignore it, or he may manually edit the information.

� Changing requirements of the community must be re-
flected in the portal,e.g. popularity increasing in new
fields of interests or technologies or viewpoints that shift
may incur changes to the ontology, new queries, or even a
new web site structure. In order to meet such new require-
ments, the above mentioned development process may
have to be partially restarted.

4.2 Tools for Development and Maintenance
The previous subsection has described the principal steps for
developing a community web portal. For efficient develop-
ment of a community web portal, however, the process must
be supported by tools. In the following, we describe the most
important tools that allow us to facilitate and speed up the
development and maintenance process. The tools cover the
whole range from ontology engineering (OntoEdit), query
formulation (Query Builder), up to the creation of dynamic
web pages with the help of HTML/JavaScript templates. An
overview of the tool suit is given in Table 1.

Table 1: Tool Suit for Community Portals

Tool Description
OntoEdit Ontology Engineering Environment
OntoPad HTML Annotation Tool
Inference Engine Reasoning service for query answering
OntoWrapper Extracting information from semi-

structured documents
Query Builder Visual creation of queries
Fact Editor Manual provision and maintenance of facts
Knowledge Ware-
house

Fact base of the community web portal

HTML and Java-
Script templates

Support the development of virtual HTML
pages

Hyperbolic View Visual querying the community web portal

OntoEdit. OntoEdit is a Ontology Engineering Environ-
ment delivering a wide range of functionalities for the en-
gineering of ontologies including the modeling of concepts,
relations, rules, and general ontology metadata (cf. (Maed-
cheet al. 2000)). It includes several views on the model-
ing primitives that enable the user to state common legalities
(e.g.the symmetry of the cooperation relationship between
two persons).
Query Builder. While queries with low complexity can be
expressed in F-Logic using the rule debugger alone, in other
cases it is more convenient to create queries using our Query
Builder tool. Such queries may then be integrated as links
in a web page within a web editor by copying and pasting
it into the web editors form. The Query Builder also con-
tains a rule debugger, providing different views on different

levels of detail to the proof tree that visualize relevant rules
and rule parts for tracing the derivation process. In addi-
tion, generated queries by the Query Builder can be directly
embedded into HTML/JavaScript Templates.
HTML/JavaScript Templates. Another time consuming
activity is the development of the web pages that assemble
queries from parts and that display the query results. For
that purpose we have developed a library of template pages:

� Templates with check boxes, radio boxes, and selection
lists are available. These HTML forms produce data
which are used in Javascript functions to generate queries.

� The results of a query are fed into a template page as
Javascript arrays. From these data different presentation
forms may be generated:

– A general purpose template contains a table that
presents answer tuples returned by the inference engine
in a HTML table. The template provides functions to
sort the table in ascending or descending order on dif-
ferent columns. Substitutions of certain variables may
be used as URLs for other entries in the table. Different
data formats are recognized and processed according to
their suffixes,i.e. a “.gif” or “.jpg” suffix is interpreted
as a picture and rendered as such (cf. Figure 1 for an
example).

– Results may also be fed into selection lists, radio boxes,
or check lists. Thus, query results can provide the ini-
tial setting of further HTML form fields.

� As a personalization feature of our web portal users store
queries by assigning a personal label. All stored queries
can be accessed through a selection list, to restart the
query and retrieve the most up to date answers. This list
of stored queries provides individual short cuts to often
needed information.

5 Related Work
Our work combines approaches from different areas and ex-
tends these concepts in many directions. We here just give a
short survey of this related work — a more detailed compar-
ison may be found in (Staabet al. 2000).
Portals: Typically, portals like Yahoo!TM are indices of web
pages that are maintained by editors that manually classify
web documents into a tree-like taxonomy of topics. In con-
trast to our approach those portals only utilize a very light-
weight ontology that solely consists of categories arranged
in a hierarchical manner. Due to its weak ontology Yahoo!
cannot extend given information with facts derived by onto-
logical axioms.

A community focused and ontology-based portal is Ri-
boWeb (Altmannet al. 1999) that offers ribosome data and
computational models for their processing. RiboWeb spec-
ifies ontologies in OKBC (Chaudriet al. 1998). The pri-
mary source of data is given by scientific literature which is
manually linked to the different ontologies. Both systems,
RiboWeb and our community portal, rely on ontologies for
offering a semantic-based access to the stored data. How-
ever, the OKBC component of RiboWeb does not support
the kind of automatic deduction that is offered by the in-
ference engine of Ontobroker. Furthermore, RiboWeb does



not include wrappers for automatically extracting informa-
tion from the given published articles. On the other hand, the
computational modules of RiboWeb offer processing func-
tionalities that are not part of (but also not intended for) our
community web portal.
Database approaches: STRUDEL (Fernandezet al.
1998) and Hyperwave (Maurer 1996) apply concepts from
database management systems to the process of building
Web sites. They use database queries to generate web pages
from database contents — allowing for multiple views onto
the same content. When compared to our approach, these
systems lack the semantic level that is provided in our ap-
proach by the domain ontology and the associated inference
engine.
Knowledge representation for the web: The Ontobroker
project (Deckeret al. 1999) lays the technological founda-
tions for the KA2 portal. Similar to Ontobroker are SHOE
(Luke et al. 1997) and WebKB (Martin & Eklund 1999).
All three systems aim at providing intelligent access to Web
documents (though, with different means). However, they
all lack an environment of methods and tools that are needed
to build a community portal on their top and, thus, to make
an application out of a core technology.

From our point of view, our community portal system is
a rather unique AI application with respect to the collection
of methods used and the functionality provided. Our ap-
proach for accessing information, providing information and
maintaining the portal are more comprehensive than those
found in other portals. We are able to offer this function-
ality since our backbone system Ontobroker and its add-ons
provide more powerful techniques fore.g.inferencing or ex-
tracting information from various sources than those offered
by comparable systems.

6 Conclusion
We have demonstrated in this paper how a community may
build a community web portal. The portal is centered around
an ontology that structures information for the purpose of
presenting and provisoning information, as well as for the
development and maintenance of the portal. We have de-
scribed a particular application, the KA2 community web
portal, that illustrates some of our techniques and meth-
ods.In particular, we have developed a set of ontology-based
tools that allow to present multiple views onto the same in-
formation appropriate for browsing, querying, and personal-
izing web pages. Queries are responded to by an inference
engine for F(rame)-Logic that integrates knowledge from
many different sources.

For the future we are planning to integrate several semi-
automatic information extraction-based approaches support-
ing the information provisoning part of our portal frame-
work. Ontology revision and maintenance and the impact
on the facts stored in the knowledge warehouse are currently
not well understood and have to be researched further.

References
Altmann, R.; Bada, M.; Chai, X.; Carillo, M. W.; Chen, R.; and
Abernethy, N. 1999. RiboWeb: An Ontology-based System
for Collaborative Molecular Biology.IEEE Intelligent Systems
14(5):68–76.
Benjamins, R.; Fensel, D.; and Decker, S. 1999. KA2: Building
Ontologies for the Internet: A Midterm Report.International
Journal of Human Computer Studies51(3):687.
Chaudri, V.; Farquhar, A.; Fikes, R.; Karp, P.; and Rice, J. 1998.
OKBC: A Programmatic Foundation for Knowledge Base Inter-
operability. InProceedings 15th National Conference on Artifi-
cial Intelligence (AAAI-98), 600–607.
Decker, S.; Brickley, D.; Saarela, J.; and Angele, J. 1998. A
Query and Inference Service for RDF. InProceedings of the W3C
Query Language Workshop (QL-98), December 3-4.
Decker, S.; Erdmann, M.; Fensel, D.; and Studer, R. 1999.
Ontobroker: Ontology Based Access to Distributed and Semi-
Structured Information. In Meersman, R., et al., eds.,Database
Semantics: Semantic Issues in Multimedia Systems. Kluwer Aca-
demic Publisher. 351–369.
Erdmann, M., and Studer, R. 1999. Ontologies as Conceptual
Models for XML Documents. InProceedings of the 12th In-
ternational Workshop on Knowledge Acquisition, Modelling and
Mangement (KAW’99), Banff, Canada, October.
Fernandez, M.; Florescu, D.; Kang, J.; and Levy, A. 1998. Catch-
ing the Boat with Strudel: Experiences with a Web-Site Man-
agement System. InProceedings of the 1998 ACM Int. Conf. on
Management of Data (SIGMOD’98) , Seattle, WA.
Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical Foundations
of Object-Oriented and Frame-Based Languages.Journal of the
ACM42.
Lamping, L.; Rao, R.; and Pirolli, P. 1995. A Focus+Context
Technique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies. InProceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems.
Luke, S.; Spector, L.; Rager, D.; and Hendler, J. 1997. Ontology-
based Web Agents. InProceedings of First International Confer-
ence on Autonomous Agents.
Maedche, A.; Schnurr, H.-P.; Staab, S.; and Studer, R. 2000.
Representation language-neutral modeling of ontologies. In
Modellierung-2000: Proceedings of the German Workshop on
Modeling. Koblenz, April, 2000. Fölbach-Verlag.
Martin, P., and Eklund, P. 1999. Embedding Knowledge in Web
Documents. InProceedings of the 8th Int. World Wide Web Conf.
(WWW‘8), Toronto, May 1999. Elsevier Science B.V.
Maurer, H. 1996.Hyperwave. The Next Generation Web Solution.
Addison Wesley.
Sahuguet, A., and Azavant, F. 1999. WysiWyg
Web Wrapper Factory (W4F). Technical Report.
http://db.cis.upenn.edu/DL/WWW8/index.html.
Staab, S.; Angele, J.; Decker, S.; Erdmann, M.; Hotho, A.; Maed-
che, A.; Studer, R.; and Sure, Y. 2000. Semantic Community
Web Portals. InProceedings of the 9th World Wide Web Confer-
ence (WWW-9), Amsterdam, Netherlands.
W3C. 1999. RDF Schema Specification.
http://www.w3.org/TR/PR-rdf-schema/.
Wiederhold, G., and Genesereth, M. 1997. The Conceptual Ba-
sis for Mediation Services.IEEE Expert / Intelligent Systems
12(5):38–47.


