
Scaling Up Context-Sensitive Text Correction

Andrew J. Carlson Jeffrey Rosen Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
[ajcarlso, jrosen, danr@uiuc.edu]

Abstract

The main challenge in an effort to build a realistic system with
context-sensitive inference capabilities, beyond accuracy, is
scalability. This paper studies this problem in the context
of a learning-based approach to context sensitive text correc-
tion – the task of fixing spelling errors that result in valid
words, such as substituting to for too, casual for causal, and
so on. Research papers on this problem have developed al-
gorithms that can achieve fairly high accuracy, in many cases
over 90%. However, this level of performance is not suffi-
cient for a large coverage practical system since it implies a
low sentence level performance.
We examine and offer solutions to several issues relating to
scaling up a context sensitive text correction system. In par-
ticular, we suggest methods to reduce the memory require-
ments while maintaining a high level of performance and
show that this can still allow the system to adapt to new do-
mains. Most important, we show how to significantly in-
crease the coverage of the system to realistic levels, while
providing a very high level of performance, at the 99% level.

Introduction
Virtually all current day software systems that perform text
processing provide some spell checking facility. Word pro-
cessors, email and news readers, and even operating systems
provide tools to verify that the text contains valid words.
When an invalid word is discovered some form of distance
measure is used to select candidate correct words from a dic-
tionary. The shortcoming of all these spell checkers is that
they fail to detect errors that result in a valid word, as in I’d
like a peace of cake, where peace was typed when piece was
intended, or I took a walk it the park, where it was typed
instead of in, etc.

An earlier study (Kukich 1992) showed that errors that
result in valid words account for anywhere from 25% to
over 50% of observed spelling errors. Today, as our reliance
on text processing tools increases while fewer resources are
spent on editing published text - the Internet revolution has
resulted in additional pressure to shorten the time from writ-
ing to publishing - this could be a significant undercount.

However, identifying and correcting mistakes that result
in valid words requires awareness of the context in which

Copyright c 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

different words, such as piece and peace, tend to occur. The
problem of characterizing the linguistic context in which
even a single word tends to occur is a difficult problem and
a large scale one; it might depend on particular words near
the target word, the pattern of parts of speech around the tar-
get word and so on. A “knowledge engineering” approach
to this problem, therefore, is unlikely to succeed. Indeed, in
recent years, machine learning techniques have begun to be
applied to this problem and several of them were shown to
do quite well (Golding & Roth 1996; Golding & Roth 1999;
Mangu & Brill 1997).

Existing work along these lines has focused on develop-
ing learning methods that are appropriate for this problem
and thus concentrated on a relatively small number of words.
Restricting the problem this way (to – words, depend-
ing on the study) also allowed researchers to keep the exper-
iments manageable, given the large scale of the problem.

However, in order to be useful as a practical tool, systems
addressing this problem need to be able to offer wide word
coverage with reasonable performance and resource require-
ments. This work offers solutions to several issues relating
to the scaling up of these systems.

First, it is clear that almost every word in English could
be mistaken for some other valid word, and therefore a prac-
tical system needs to have a coverage of thousands of words.
Our first step in the current work is therefore to increase the
coverage of our system to roughly five-hundred words. The
approach taken by most of the existing work has been to
form confusion sets and treat the problem as a disambigua-
tion task over the members of a confusion set. Confusion
sets consist of words that are likely to be misused in place of
one another. In this paper we continue with this approach.
We seek to handle a number of confusion sets closer to the
scale of the real problem, but without having to fine-tune
parameters for each set.

Second, given that the number of features that might be
required to characterize the context of a word is very large,
scaling up to realistic coverage might introduce resource
problems - memory and evaluation time. We suggest a way
to avoid that and show its minimal effect on the perfor-
mance. A related issue involved in a practical approach to
context sensitive text correction is that different genres of
text might have different characteristics and might use dif-
ferent vocabulary; this could require different characteriza-

From: IAAI-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

tion of the context. We show that our approach can adapt to
new texts quickly and reliably.

Finally, the most important issue is performance. Re-
search papers on context sensitive text correction have
shown different algorithms that can achieve fairly high ac-
curacy, in many cases over 90%. However, this level of per-
formance is not sufficient for a large coverage practical sys-
tem. Performing at the 90% level in a wide coverage system
means that the system will make, on average, one mistake
per sentence, and this would be unacceptable for most users.
We suggest a way to significantly increase the performance
of a wide coverage system by automatically reducing the
willingness of the system to alert the user for mistakes in
which it is less confident. This solution relies on the ability
of the algorithm to reliably assess its confidence in the pre-
diction, and, as we show, our approach can do that, yielding
an average performance of over 99% over a large corpus,
with prediction willingness of 85%.

Our algorithmic approach builds on one of the most suc-
cessful approaches studied for this problem (Golding &
Roth 1999), based on the SNoW learning architecture (Carl-
son et al. 1999; Roth 1998). We briefly describe how SNoW
is used here, discuss some methodological issues and then
interleave the scaling up discussion with the experiments
performed to exhibit the performance of the system.

Context-Sensitive Text Correction
Given a body of text, possibly like this paper, we would like
to scan it and locate errors resulting from the improper us-
age of real words. This task has typically been referred to as
context-sensitive spelling correction in earlier research, but
here we refer to it as text correction rather than spelling since
the techniques are not limited to simple single word substitu-
tions. Context-Sensitive Text Correction is the task of fixing
spelling errors that happen to result in valid words, such as
substituting to for too, casual for causal or simple word us-
age errors like in “There could be any amount of reasons he
didn’t show up.”, where amount was used instead of number.
Our definition of the task includes correcting not only “clas-
sic” types of spelling mistakes, such as homophone errors,
(e.g., peace and piece) and typographic errors, as in “I’ll
be ready in five minuets.” (where minuets was typed when
minutes was intended), or when from is replaced by form.
We can also fix mistakes that are more commonly regarded
as grammatical errors (e.g., “among” and “between”), incor-
rect forms of pronouns, as in “I had a great time with his.”,
where his was typed instead of him or errors that cross word
boundaries (e.g., maybe and may be).

Problem Formulation
We cast context-sensitive text correction as a disambigua-
tion task (Roth 1998). Given an input sentence and a dis-
tinguished word sequence (usually of size 1) - which we
call the target - within the sentence, we wish to predict
whether the target is correct, or whether it should be re-
placed by some other word sequence. The ambiguity among
words (or word sequences) is modeled by confusion sets. A
confusion set means that each word

in the set is ambiguous with each other word. Thus if
, then when we see an occurrence of either

hear or here in the target document, we take it to be am-
biguous between hear and here; the task is to decide from
the context which one was actually intended.

Applying SNoW to Context-Sensitive Text
Correction

Our study makes use of one of the more successful learning
approaches tried on the problem of context sensitive text cor-
rection (Golding & Roth 1999). SNoW (Roth 1998; Carl-
son et al. 1999) is a multi-class classifier that is specifically
tailored for large scale learning tasks. The SNoW learning
architecture learns a sparse network of linear functions, in
which the targets (elements in confusion sets, in this case)
are represented as linear functions over a common feature
space. Several update rules can be used within SNoW. The
most successful update rule, and the only one used here, is
a variant of Littlestone’s Winnow update rule (Littlestone
1988), a multiplicative update rule that we tailored to the
situation in which the set of input features is not known a
priori. SNoW has already been used successfully for a vari-
ety of tasks in natural language and visual processing (Gold-
ing & Roth 1999; Roth, Yang, & Ahuja 2000; Punyakanok
& Roth 2001). We refer the reader to these for a detailed
description of SNoW; here we briefly describe how it is ap-
plied to context-sensitive text correction and the modifica-
tions made relative to (Golding & Roth 1999).

When SNoW is applied to context-sensitive text correc-
tion a target node is allocated to each word sequence that
is a member of a confusion set. Thus, each word sequence
is learned as a function of the context in which it correctly
appears. A SNoW unit corresponds to a confusion set; in
training, elements belonging to a unit are trained together in
the sense that they compete with each other - given a con-
fusion set element, it is viewed as a positive example to its
corresponding target and as negative to the targets in its unit.
At evaluation time, an element of one of the confusion sets
is identified in the text, and the competition is between the
targets’ corresponding elements in the confusion set.

In principle, a more general approach could use a sin-
gle confusion set containing all words. However, this is
not practical for a general text correction system. If we ig-
nore the confusion sets and present all examples to all tar-
gets for training, and then have all targets compete at eval-
uation time, we see great decreases in both computational
efficiency and performance (Even-Zohar & Roth 2000).

The key difference in the architecture used here from the
one used in (Golding & Roth 1999) is the fact that we use
only a single layer architecture without the notion of the
“clouds” used there. While, as shown there, the use of
clouds improves the performance somewhat, the simplified
architecture used here greatly reduces the learning time and
memory requirement. We get the performance level back
up in other ways, using a larger training corpus and, mainly,
using the confidence level enhancements described later. In
particular, that implies that we explicitly use the activation
level output by SNoW, rather than only the prediction.

Experimental Methodology
This work makes used of the concept of confusion sets and
treats the problem as a task of disambiguating the correct
set member. The confusion sets acquired for this work
were generated automatically by using simple edit distance
in both the character space and phoneme space. We later
pruned and edited the list manually. Overall, the experi-
ments used a set of different confusion sets (previous
works have used between 10 to 21). 244 of the confusion
sets were of size , 20 were of size , and 1 was of size .

The experiments were performed on data from the TDT2
English corpus that is available via the Penn treebank (Mar-
cus, Santorini, & Marcinkiewicz 1993). The corpus includes
text taken from six English news sources, which aids in the
generality of our system. It includes about 1,000,000 En-
glish sentences, providing a good amount of data for most
of the confusion sets we are interested in. Each experiment
was run using five-fold cross-validation, where in each case
80% of the corpus was used for training and the remaining
20% was used for testing.

Clearly, determining the type of features used by the
learning algorithm is crucial to its performance. The fea-
ture space needs to be expressive enough to allow good ap-
proximation of the target functions using linear functions but
without excessively increasing the resource requirements.
We use the type of features identified in previous research
on this problem - collocations: small conjunctions (size 2)
of words and part of speech (POS) tags around the target
word (up to three words away from the target) and context
words in a small window (five words away from the target)
around the target word. POS information is added to the text
using a SNoW-based POS tagger (Roth & Zelenko 1998).

To avoid a vast amount of rare features we used an el-
igibility mechanism during the feature extraction process,
which eliminated those that occurred less than times.
Overall, the feature space had 647,217 features, of which
495 were labels, 549,650 were collocations, and 97,072
were context words. All of the experiments were performed
using the Winnow update rule within SNoW, with the fol-
lowing parameters: , , , and a initial
weight of . Two full epochs (passes through the training
sample) were used.

Scaling Up
We describe several suggestions for handling issues that
arise in scaling up context sensitive text correction, along
with experiments exhibiting their effectiveness.

Network Pruning
Previous work on context sensitive text correction (Golding
& Roth 1999; Mangu & Brill 1997) has clearly shown that
learning with a larger number of features improves the per-
formance. We describe a method for selectively pruning the
effective number of features used, as part of the learning pro-
cess, and show its effectiveness in reducing the memory re-
quirements while minimally affecting the performance. It
also reduces the evaluation time, which scales linearly with
the number of active features in the example.

Confusion Train WSJ Train TDT2 Train both
Set Test WSJ Test WSJ Test WSJ
accept, except 90.6 94.5 93.2
affect, effect 96.7 96.1 96.4
among, between 87.3 89.5 90.1
amount, number 84.8 79.0 88.5
cite, sight, site 85.1 90.1 90.1
country, county 93.8 95.2 96.1
fewer, less 90.6 91.8 92.6
I, me 98.1 98.9 98.9
it’s, its 98.8 99.0 99.2
lay, lie 74.3 85.1 83.8
passed, past 95.9 97.6 97.5
peace, piece 88.7 91.7 91.7
principal, principle 91.7 93.4 94.7
quiet, quite, quit 83.7 90.7 90.4
raise, rise 94.3 93.0 95.1
than, then 97.7 98.6 98.5
their, there, they’re 97.2 98.5 98.6
weather, whether 97.0 98.0 98.0
you’re, your 94.5 98.3 98.3
Set Average 96.0 96.7 97.2
All Sets Average 94.5 94.6 95.7

Table 2: Adaptation Results for Specific Confusion Sets:
The WSJ train / WSJ test column gives performance from
using the WSJ corpus only using 80-20% splits. The TDT2
train / WSJ test column gives performance for training on
TDT2 and testing on the same 20% splits of the WSJ cor-
pus. The “train both” column gives performance for training
on TDT2, then training on the same 80% of WSJ as in the
first experiment, then testing on the remaining 20%. These
experiments were done using 5-fold cross-validation, with a
10% eligibility ratio.

The approach is based on the intuition that we need not
rely on a feature that is observed with a given target very
rarely1. We refer to this method as eligibility. The key issue,
we found, is that this method of pruning needs to be done on
a per target basis, and has to be relative to the sparseness of
the target representation. We define an eligibility ratio, such
that only a specified percentage of the most active features
observed have a weight assigned and participate in predic-
tions. This is done by making a first training pass through
the data, creating a histogram of feature occurrences for each
target, and then eliminating the least active features until we
are left with the proper number of features. Another epoch
of training is then performed with the remaining features.

The experiments use eligibility ratios of 100% (no prun-
ing), 10%, and 1%. In each experiment, we used five-fold
cross-validation, running five 80%-20% splits for each con-
fusion set, so that each example for a given confusion set
appeared as a test example once and a training example four
times. Overall effects of eligibility on all our confusions
sets as well as the details for 19 different confusion sets are

1A second, also intuitive, option – to prune based on the weight
of the feature is not as effective for reasons we will not address
here.

Eligibility Ratio
Confusion 1.0 0.1 0.01
Set Examples Perf Links Perf Links Perf Links
accept-except 2910 95.7 8169 96.7 1174 94.4 85
affect-effect 3278 94.2 8202 95.3 1264 94.1 84
among-between 20458 88.5 33279 90.0 4241 85.1 340
amount-number 9134 90.0 14248 89.9 1773 86.0 147
cite-sight-site 3983 91.9 5634 92.9 866 88.7 59
county-country 11897 95.6 16242 95.4 2196 93.4 166
fewer-less 7445 92.0 14986 92.9 1861 92.0 156
I-me 74022 99.0 45906 99.2 5077 98.4 463
it’s-its 57843 97.3 62437 97.8 7321 96.8 633
lay-lie 1620 84.1 4479 85.8 692 77.7 48
passed-past 8772 95.6 15328 96.0 2011 92.9 158
peace-piece 7646 95.4 12018 96.3 1476 91.7 122
principal-principle 1270 87.2 4007 86.1 721 83.0 42
quiet-quite-quit 3836 89.6 7320 91.7 1203 87.7 78
raise-rise 3773 93.6 9120 93.8 1326 90.4 94
than-then 46651 97.0 53626 98.3 6692 97.5 544
their-there-they’re 85407 97.4 57138 98.2 6790 96.7 582
weather-whether 12234 98.6 17698 98.4 2081 96.7 180
you’re-your 14071 97.2 13668 97.8 2616 96.1 217
Set Average 376250 96.4 21639 97.1 2704 95.4 221
All Sets Average 6117483 95.5 17932 95.2 2233 89.5 183

Table 1: Effect of Eligibility on Specific Confusion Sets: We show results for 19 confusion sets for three eligibility ratios:
100% (no pruning), 10%, and 1%. Examples indicates the total number of examples for each confusion set. Each example was
presented using 5-fold cross-validation with an 80%-20% split of the data. For each ratio value, Perf indicates the accuracy for
the set, and Links are the average number of links (features) per target word.

shown in Table 1. We found that the size of the networks
could be reduced greatly without a significant decrease in
performance. Using a ratio of around 10% seemed to be a
good cutoff point for the tradeoff between performance and
size. This gives us an average across all confusion sets of
2,233 features per target, a substantial reduction from the
original 17,932, with a slight drop in accuracy.

Adaptation
In order for a general text correction system to be useful, it
needs to be able to perform well in domains other than the
one on which it was trained. This is clearly an important
issue in natural language processing given the diversity of
text genres in terms of vocabulary and style. For a learning
system there is an additional issue. There is a clear trade-
off between pruning the feature base of the hypothesis and
its ability to adapt to new text (Herbster & Warmuth 1998).
Intuitively, features which are rarely present in one domain
could be important in another, but if they are pruned when
trained on the first domain, the hypothesis will not be able
to adapt its weights given the new texts.

We implemented an adaptation mechanism that is based
on suggestions in (Golding & Roth 1999) and performed
several experiments in order to examine the adaptation prop-
erties of our system in the presence of significant pruning
(10%) and a large and diverse training corpus, the TDT2.

As a baseline, we ran experiments using 5-fold cross-
validation on the Wall Street Journal corpus, using 80-20%

splits. This gave us an overall performance of 94.5% for the
weighted average across all 265 confusion sets. The WSJ
corpus is rather small compared to the TDT2 corpus, and so
we wondered if the extra data might help a network trained
on the TDT2 corpus perform better on the WSJ test data. We
found that the system was able to adapt even after signifi-
cant pruning of features. Using all 265 confusions sets and
5-fold cross-validation, we trained on only the TDT2 corpus
and tested on the same 20% slices of the Wall Street Journal
as before. This gave overall accuracy of 94.6%, which was
slightly better than the 94.5% obtained by training on WSJ
only. This suggests that training on a large corpus such as
TDT2 countered the effects of testing outside of the train-
ing domain. Finally, we tried to boost performance on the
WSJ test data by adapting our already trained system to the
new corpus by training it on the other WSJ data. When we
trained on the TDT2 corpus as before, then trained on 80%
of WSJ, and then tested on the leftover 20% of WSJ (the
same test data as before), we reached 95.7% performance
over all 265 confusion sets – a significant improvement over
the results obtained when just WSJ is used in the training,
which are 94.5%. The results are summarized in table 2.

These results indicate that even in the presence of sig-
nificant feature pruning, the system can adapt well to new
domains. Moreover, it suggests that in order to enhance per-
formance on specific domains, it is beneficial to “fine-tune”
it to this domain. We emphasize that this is costless, since
context-sensitive text correction requires no annotation of
the text - it assumes that the text is correct and uses this

Prediction Threshold
Confusion 0.05 0.125 0.2
Set Examples Perf Will Perf Will Perf Will
accept-except 2910 97.9 96.4 99.1 88.1 99.6 80.1
affect-effect 3278 96.7 95.9 97.4 88.3 97.6 75.9
among-between 20458 93.0 91.1 96.3 77.6 98.2 63.1
amount-number 9134 93.0 91.2 96.2 76.8 98.0 61.8
cite-sight-site 3983 95.3 93.2 97.4 81.5 98.6 66.8
county-country 11897 96.6 96.4 97.6 89.7 98.4 77.3
fewer-less 7445 89.9 94.6 96.7 85.9 98.0 73.7
I-me 74022 99.5 99.2 99.7 97.7 99.9 95.2
it’s-its 57843 98.6 98.0 99.2 94.2 99.4 87.9
lay-lie 1620 89.9 88.8 93.4 71.3 96.8 57.0
passed-past 8772 97.6 95.7 99.0 88.6 99.5 80.0
peace-piece 7646 97.9 96.4 99.1 90.3 99.5 82.4
principal-principle 1270 90.3 87.5 94.1 68.4 96.3 51.5
quiet-quite-quit 3836 94.7 92.4 98.0 78.2 99.5 63.1
raise-rise 3773 96.0 94.7 97.7 84.4 98.7 72.4
than-then 46651 98.9 98.3 99.4 94.8 99.7 88.9
their-there-they’re 85407 99.0 98.2 99.5 94.8 99.8 89.3
weather-whether 12234 98.9 98.6 99.4 95.8 99.7 91.7
you’re-your 14071 98.5 98.1 99.2 93.8 99.6 87.4
Set Average 376250 98.1 97.3 99.0 92.6 99.5 85.9
All Sets Average 6117483 97.3 94.6 99.0 86.2 99.6 77.0

Table 3: Confidence Results for Specific Confusion Sets: Here we see results for three specific prediction thresholds. For each
prediction threshold, Perf refers to the overall accuracy for predictions, and Will gives the Willingness of the system to make a
prediction. Set Average refers to the average for the 19 sets shown here, and All Sets Average refers to the average across all
265 sets. All experiments were run using 5-fold cross-validation and a 10% eligibility ratio.

to label its training examples. And, as we show, it yields
significantly better performance if the system is previously
trained on the diverse corpus.

97

97.5

98

98.5

99

99.5

100

020406080100

Pe
rf

or
m

an
ce

 (
%

)

Willingness (%)

Figure 1: Performance vs. Willingness for 19 Confusion
Sets

Prediction Confidence
We have seen that we can perform context-sensitive text cor-
rection with an accuracy of greater than 90%, and maintain
that accuracy while scaling up to hundreds of confusion sets,
and while pruning our networks to compact representations.
However, performing at the 90–95% level is not sufficient

for a practical system with wide coverage (that is, where
many of the words in each sentence are in one of the con-
fusion sets). In this case, if we make only 5 predictions
per sentence, then our sentence level performance is only
50–75%. Even the most tolerant user would object to a sys-
tem that makes a mistake every couple of sentences. Until
we develop methods with basic performance in the range
of 98–99%, our solution is to assign a confidence to pre-
dictions and make a prediction only when our confidence
in that prediction is high. This approach requires that the
learning approach assign a robust measure of confidence to
its predictions so that this can be done reliably. Given that,
our hope is that we can improve performance if we sacrifice
some coverage; but, this will only be in cases in which we
are not confident enough to voice our prediction. This will
not annoy users but rather serve to increase their confidence
in the system. An orthogonal benefit of this is that it also
provides a mechanism for the user to adjust the confidence
threshold at prediction-time. Users can adjust the behavior
of the system to suit their personal preferences and abilities.
Also, in most practical applications the user’s word choice
will be correct more often than not, and so abstaining from
uncertain predictions will slightly favor the correct choice.

In order to explore this notion of confidence, we note that
the activation of a target node is computed using a sigmoid
function over the linear sum of active weights. Specifically,

the activation of the target is given by

(1)

where is the set of features that are active
in an example and are linked to the target node , is the
weight on the edge connecting the th feature to the target
node , and is the threshold for the target node . With
this, one can verify that the output behaves as a distribution
function. A prediction is made only when

where and are the two highest activations in the confu-
sion set, and is the confidence threshold. If the confidence
function does not exceed the threshold then no prediction is
made. In a practical system, this is the equivalent of leaving
the text as is – if we are not certain of our prediction, we
leave the user’s original word choice there.

For the experiment we used the same subset of 19 confu-
sion sets presented in the previous experiments. The results
are shown in figure 1. The performance axis is the percent-
age of predictions the system actually makes that are correct
and the willingness is defined as the percentage of queries
(occurrences of confusion set members) on which the sys-
tem makes a prediction. So for example, a willingness of
80% means that the system is passive on 20% of the queries.
The actual threshold used () is held fixed for all confusion
sets. The experiment use five-fold cross validation as before
and a 10% eligibility ratio.

We see that for the subset of 19 confusion sets, the perfor-
mance rises above 99% when the willingness is around 92%
(that is, by abstaining in only 8% of predictions).

Table 3 gives the results for both the 19 confusion sets and
the average for all 265 sets. Each column represents a dif-
ferent value for the prediction threshold. Some sets which
tend to do well in general (for example,), have
high accuracy and tend to have higher willingness than other
sets for a given prediction threshold. In general, though, we
see each set gaining substantially in accuracy as its willing-
ness decreases. The averages for all 265 confusion sets show
that we reach accuracy of 99% with willingness above 85%.
These confidence experiments were all performed using a
10% eligibility ratio, demonstrating that we can effectively
boost performance while cutting down on our resource re-
quirements at the same time.

Conclusions
Intelligent human-machine interaction relies heavily on the
ability to perform context-sensitive inferences. These are
knowledge intensive tasks that are hard to perform without
a significant learning component. The main challenge in an
effort to build a realistic system with context-sensitive infer-
ence capabilities, beyond accuracy, is scalability.

In this work we study a learning approach to context sen-
sitive text correction and directly address the crucial issue of
scalability. While we have chosen to use a proven learning
approach tailored towards large scale processes, significant
enhancements in terms of both data and computation are still
required before this can support a practical approach.

This paper has explored several issues relating to the scal-
ing up of this task to provide wide word coverage while
limiting resource requirements to reasonable levels and in-
creasing the performance levels to those that are acceptable
to users. The most significant finding is that a robust pre-
diction confidence can be used to trade coverage for perfor-
mance and a moderate reduction in willingness can increase
the overall performance to over 99% – a level usable in a
real-world system.

Acknowledgments
This research is supported by NSF grants IIS-9801638 and
IIS-9984168 and a gift from IBM Research.

References
Carlson, A.; Cumby, C.; Rosen, J.; and Roth, D. 1999. The

SNoW learning architecture. Technical Report UIUCDCS-
R-99-2101, UIUC Computer Science Department.

Even-Zohar, Y., and Roth, D. 2000. A classification approach to
word prediction. In NAACL-2000, The 1st North American
Conference on Computational Linguistics, 124–131.

Golding, A. R., and Roth, D. 1996. Applying Winnow to context-
sensitive spelling correction. In Proc. of the International
Conference on Machine Learning, 182–190.

Golding, A. R., and Roth, D. 1999. A Winnow based approach
to context-sensitive spelling correction. Machine Learning
34(1-3):107–130. Special Issue on Machine Learning and
Natural Language.

Herbster, M., and Warmuth, M. K. 1998. Tracking the best regres-
sor. In Proc. 11th Annu. Conf. on Comput. Learning Theory,
24–31. ACM Press, New York, NY.

Kukich, K. 1992. Techniques for automatically correcting words
in text. ACM Computing Surveys 24(4):377–439.

Littlestone, N. 1988. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learn-
ing 2:285–318.

Mangu, L., and Brill, E. 1997. Automatic rule acquisition for
spelling correction. In Proc. 14th International Conference
on Machine Learning. Morgan Kaufmann.

Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank.
Computational Linguistics 19(2):313–330.

Punyakanok, V., and Roth, D. 2001. The use of classifiers in
sequential inference. In NIPS-13; The 2000 Conference on
Advances in Neural Information Processing Systems. MIT
Press.

Roth, D., and Zelenko, D. 1998. Part of speech tagging using a net-
work of linear separators. In COLING-ACL 98, The 17th In-
ternational Conference on Computational Linguistics, 1136–
1142.

Roth, D.; Yang, M.-H.; and Ahuja, N. 2000. Learning to recognize
objects. In CVPR’00, The IEEE Conference on Computer
Vision and Pattern Recognition, 724–731.

Roth, D. 1998. Learning to resolve natural language ambiguities:
A unified approach. In Proc. National Conference on Artifi-
cial Intelligence, 806–813.

