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Abstract

This paper describes issues related to integrating image anal-
ysis techniques into case-based reasoning. Although the ap-
proach is generic, a high-throughput protein crystallization
problem is used as an example. Our solution to the crystal-
lization problem is to store outcomes of experiments as im-
ages, extract important image features, and use them to auto-
matically recognize different crystallization outcomes. Sub-
sequently, we use the outcomes of image classification to per-
form case-based planning of crystallization experiments for
new proteins. Knowledge-discovery techniques are used to
extract general principles for crystallization. Such principles
are applicable to the adaptation phase of case-based reason-
ing. The motivation for automated image-feature extraction
is twofold: (1) the human interpretation/analysis of image
content is subjective, and (2) many problem domains require
reasoning with large databases of uninterpreted images. In
this paper we present the design and implementation of our
integrated system, as well as some preliminary experimental
results.

Introduction
This paper describes an application of image analysis tech-
niques to protein crystallization experiment classification.
We also describe how this is integrated into our case-based
reasoning (CBR) system for protein crystallization experi-
ment design. Image analysis is applicable in many domains
that require reasoning about cases (e.g., X-ray interpretation,
understanding of NMR images, geographic information sys-
tems, satellite image understanding, etc.). Image informa-
tion plays a crucial role in the domain of molecular biology,
where the understanding of the 3D geometry of a molecular
structure is often essential to problem solving (Leherte et al.
1997). Of particular concern are domains that require im-
age processing without human intervention due to the high
throughput (HTP) approaches used for data acquisition.

Case-Based Reasoning With Images A standard tech-
nique for human problem solving is to recall past experi-
ences that are in some way similar to the current situation.
These experiences, called cases, are then adapted and used to
construct a solution for a given problem. CBR systems are
computer programs that incorporate such past experiences
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as a guide to problem solving. CBR may involve adapting
old solutions to meet new demands, or using old cases to
explain new situations or to critique new solutions.

Cases capture problem-solving processes by storing “im-
portant” features of problems and their solutions. Unfortu-
nately, there is no one “right” scheme for representing im-
ages as cases; how we choose to represent an image depends
on the type of questions we seek to answer. By making par-
ticular features of the image explicit, we can provide for ef-
ficient pattern matching, retrieval and adaptation in our CBR
system. For example, consider the multiple representations
of a molecular structure illustrated in Figure 1. If we wish
to determine how many atoms of carbon are contained in a
molecule, then the formula in Figure 1 a) is sufficient. How-
ever, if we need to derive connectivity, angle, distance or
shape information, then more complex diagrammatic repre-
sentations, such as those in Figure 1 b) or c) are more appro-
priate.

We propose that image information may be stored ex-
plicitly (e.g., using a bit map representation) or implicitly
(e.g., using shape descriptors that capture some of the shape
features of the image). An image may be stored in a way
that preserves all relevant visual information, or a simplified
model (such as a graph or an array representation) might be
the most appropriate form to extract and compare image fea-
tures. Some form of indexing is required for sizeable image
databases where manual indexing is not an option. Follow-
ing we discuss several issues related to integrating image
representations and CBR, including image analysis, auto-
matic image feature extraction, and combining of symbolic
and visual information during case retrieval.

CBR with images may involve determining the similarity
of images as well as adapting image representations. Psy-
chological studies have provided evidence that suggests the
existence of an isomorphism between physical and imag-
ined image transformations (Shepard & Metzler 1971). Sim-
ilarly, we can propose a set of primitive computational trans-
formation operations that can form the basis for image adap-
tation. For example, Ohkawa et al. (1996) describe a protein
classification method using structural transformations, such
as deletion, creation, magnification, rotation, movement, ex-
change or change of kind. In their work, authors compute
similarity between proteins on the basis of the cost of in-
dividual transformations and their number. Thus, if many
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Figure 1: Alternative representations for molecule.

transformations are needed or expensive transformations are
required then protein structures are marked dissimilar.

A similar approach has been applied in spatial analogy to
the problem of comparing and classifying molecular struc-
tures (Conklin et al. 1996). The similarity between two
images can be measured in terms of the transformations nec-
essary to bring them into equivalence. Considered transfor-
mations may include replacing, deleting or moving a part, or
rotation of the entire image.

Image Retrieval, Analysis and Use Human interpretation
of image content is subjective, and in many domains it may
not be feasible due to the complexity of the image or the
size of the image database. For such situations, we propose
an image-feature extraction system which provides image
segmentation tools to identify objects within the image, and
image analysis tools to analyze objects within the image.

Image segmentation has been used to locate objects within
an image (Xu, Olman, & Uberbacher 1996) and separate ob-
jects during classification (Agam & Dinstein 1997). Popu-
lar approaches are based on region-oriented or edge-oriented
segmentation. Region-oriented segmentation is based on
searching for connected regions with similar gray level val-
ues, while edge-oriented segmentation searches for abrupt
changes in gray levels that are likely to indicate edges be-
tween neighboring objects. An integration of knowledge-
based techniques for segmentation is presented in (Tresp et
al. 1996). Here, a knowledge base is used to determine what
objects should be recognized when they have fuzzy bound-
aries. One can also specify a bias, i.e., domain knowledge
about the object.

Image analysis can be used to automatically extract fea-
tures from images that can subsequently be used for more

efficient image retrieval or for decision support. Several
approaches have been proposed for the problem of iden-
tifying image features: (1) polynomial fitting of flexible
curves (McInerney & Terzopoulos 1996; 2000) or planes
(Leclerc 1997); (2) attributed relational graphs (ARG) (Pe-
trakis & Faloutsos 1997); (3) similarity invariant coordi-
nate systems (SICS) (Li 1997); and (4) transformational
approaches (Basri & Weinshall 1992; Conklin & Glasgow
1992; Ohkawa et al. 1996).

Next we introduce a CBR system for protein crystalliza-
tion. We focus on describing the automated image interpre-
tation and analysis module.

MAX: Protein Crystallization Experience
Management System

Proteins are macromolecules which are involved in every
biochemical process that maintains life in a living organ-
ism. Most disease processes and disease treatments are man-
ifested at the protein level. Through an increased under-
standing of protein structure we can gain insight into the
functions of these important molecules. However, elucida-
tion and understanding of the laws by which proteins adopt
their 3D structure is one of the most fundamental challenges
in modern molecular biology. Currently, the most powerful
method for protein structure determination is single crystal
X-ray diffraction. A crystallography experiment begins with
a well-formed crystal that ideally diffracts X-rays to high
resolution. For proteins this process is often limited by the
difficulty of growing crystals suitable for diffraction. This
is partially due to the large number of parameters affecting
the crystallization outcome (e.g., purity of proteins, intrinsic
physico-chemical, biochemical, biophysical and biological
parameters) and the unknown correlations between the vari-
ation of a parameter and the propensity for a given macro-
molecule to crystallize.

An ongoing problem in crystal growth is a historically
non-systematic approach to knowledge acquisition: “the
history of experiments is not well known, because crys-
tal growers do not monitor parameters” (Ducruix & Giege
1992, page 14). The Biological Macromolecular Crystal-
lization Database (BMCD) stores data from published crys-
tallization papers, including information about the macro-
molecule itself, the crystallization methods used, and the
crystal data (Gilliland et al. 1994). There have been several
attempts to analyze the BMCD in order to discover under-
lying principles of the crystal growth process. These efforts
include approaches that use cluster analysis (Farr, Perryman,
& Samuzdi 1998; Samuzdi, Fivash, & Rosenberg 1992), in-
ductive learning techniques (Hennessy, Gopalakrishnan, &
Buchanan 1994), and statistical analysis (Hennessy et al.
2000) to extract knowledge from this existing database of
crystallization experiments. Previous studies were limited
because negative results are not reported in the database
and because many crystallization experiments are not repro-
ducible due to an incomplete method description, missing
details, or erroneous data. Consequently, the BMCD is not
currently being used in a strongly predictive fashion.

To address these challenges, we are developing MAX, a



case-based reasoning system for the design and evaluation
of macromolecular crystal growing experiments. Our objec-
tive is that MAX will act as a decision-support system that
will incorporate a case base of prior crystal growing experi-
ments to assist an expert crystallographer in the planning of
experiments for a novel protein. We extend basic case-based
reasoning functionality by providing:

1. image-based processing to extend expressibility of case
representation, provide protein similarity measure, and to
assure an objective classification of crystallization experi-
ment outcomes with appropriate image-feature extraction;

2. database techniques for case retrieval to support scalabil-
ity;

3. knowledge-discovery techniques to support domain-
knowledge evolution and system optimization.

The repository of crystal growth experiments being devel-
oped for our project addresses both of the shortcomings of
the BMCD, since it comprises a comprehensive case base
of crystallographic experiments that contains both positive
and negative experiment outcomes. To build this reposi-
tory systematically, we combine a HTP crystallization setup
and evaluation in the wet lab with computational analysis
of the outcomes. We have implemented a scalable, con-
versational CBR system that uses prior crystal growing ex-
periments to assist an expert crystallographer in the plan-
ning of experiments for a novel protein. To support scal-
ability we use an incremental similarity-based retrieval al-
gorithm and the IBM DB2 database system as a back-end
storage manager. The information repository contains data
and knowledge. Data comprises existing databases (veri-
fied information from the Protein Data Bank (PDB) (Bhat
et al. 2001), the Biological Macromolecule Crystallization
Database (BMCD) (Gilliland et al. 1994), and GenBank
(Database of DNA sequences) (Benson et al. 2000)), as
well as specialized information about proteins (amino acid
sequence, protein properties, etc.), chemicals, and agents.

Knowledge in the system is represented as cases – ex-
periments with diverse crystallization outcomes, recorded
as a function of time, and rules – general principles ac-
quired from crystallographers, or principles derived using
knowledge-mining tools. Rules are used to adapt a previ-
ous plan to derive a crystallization recipe for a new protein.
A mature case base will be used to retrospectively search
the cases for interesting and unanticipated relationships. Us-
ing data visualization tools and formal knowledge-discovery
algorithms for numeric and conceptual cluster analysis, we
hope to uncover interesting trends in the outcomes that can
be exploited as we face new crystallization challenges.

Essential to building the repository systematically is the
automated analysis of experiment outcome. The wet lab
uses a robotic HTP crystallization setup with the capac-
ity to prepare and evaluate the results of over sixty thou-
sand (61.4K) crystallization experiments in a work week.
This creates a need for an automatic image analysis sys-
tem. Individual experiments are done in high density micro-
assay plates. Each protein is subjected to 1536 crystalliza-
tion cocktails, covering a wide range of crystallizing agents.

Experiments are evaluated automatically on a computer-
controlled XY table with micron positioning accuracy by
photographing each well with a 2Mpixels digital camera.
The XY stand can accommodate 28 plates of experiments,
allowing us to photograph 43,008 experiments in about 9
hours. Each photograph is saved as a JPG image (320 x 320
pixels in RBG). Photographs are taken at several time steps:
immediately following setup, one day later, two days later,
one week later and two weeks later. Each photograph is ana-
lyzed and classified according to the outcome, which can be
clear drop, amorphous precipitate, phase separation, micro-
crystals, crystals, and uncertain outcome. Next we describe
the processes of image analysis in more detail.

Image Processing
In addition to the issue of scalability, automated image pro-
cessing is necessary in the crystallization domain because
there is no general solution for quantitatively evaluating re-
action outcomes under a microscope. The major weakness
of existing scoring methods is the tendency to confuse micro
crystalline and amorphous precipitates. To increase objec-
tivity, we have implemented a system to extract image fea-
tures, and to use them to classify crystallization outcomes.
The system runs under Matlab on an IBM RS/6000 SP ma-
chine.

Figure 2: Different crystallization experiment outcomes.

An example of the problem is shown in Figure 2. Image
processing is done in four main steps: (1) drop recognition,
(2) drop analysis, (3) image-feature extraction, and (4) im-
age classification. Based on image processing, experiment
outcomes are classified into appropriate classes to form a
precipitation index, which is used to measure similarity be-
tween cases during CBR. A precipitation index is a vector
with 1536 positions representing crystallization outcomes
for one protein and 1536 different crystallizing agents. Its
binary representation has 0 for “clear drop” and 1 for “any
precipitate” (we also distinguish unknown). A precipitate
result can be further broken down into one of amorphous
precipitate, phase separation, microcrystals or crystal. Dur-
ing case retrieval, we use both versions of the precipitation
index. The binary precipitation index ensures scalability and
high recall, while a more detailed precipitation index im-
proves precision in case retrieval.

Drop recognition Drop recognition is performed by locat-
ing the well in the image, finding the droplet within the well,
and selecting the largest square region contained within the
properly illuminated portion of the droplet. The region of
interest is then passed on to the drop analysis routine.

The tricky part is identifying the boundaries of the
droplet. Our approach generates several feasible outlines of
the drop and then uses a weighting mechanism to remove



unlikely candidates. The drop is expected to be of a cer-
tain shape, a certain size, and in a certain position (although
variations do exist and must be recognized). Figure 3 shows
several alternative droplet outlines and Figure 4 presents two
examples of processed images, with the oval and square rep-
resenting the recognized droplets and largest areas of inter-
est respectively. Each image is processed in about 8 seconds,
which matches the rate of the HTP capture of crystallization
experiment results. Experimental results suggest that the av-
erage error rate of the recognition process is ≤0.4%.

Figure 3: Drop identification process.

Figure 4: Selecting the area of interest for further image pro-
cessing.

Drop analysis The goal of analyzing the region of interest
is to process the image in a way that enables us to later ex-
tract image features that discriminate among different possi-
ble crystallization experiment outcomes.

At the moment, we use Fourier transformations to analyze
the content of the drop, as seen in Figure 5. In the future,
we plan to experiment with alternative techniques, such as
wavelet analysis, neural networks, CBR, and combinations
of the above approaches.

Image-feature extraction The third step in image pro-
cessing involves extracting image properties for statistical

Figure 5: Analysis of the drop content: the recognized drop;
the largest square; the spectrum of the Fourier analysis; anal-
ysis of the spectrum.

analysis and classification. Currently, we use two types of
features: (1) spatial domain features extracted from the 2D
intensity map of the image, and (2) frequency domain fea-
tures extracted from the 2D frequency spectrum of the im-
age.

The spatial domain features correspond to the quadtree
decomposition of the image using three different threshold
levels. The quadtree decomposition involves splitting the
image into four squares and examining the difference be-
tween the minimum and maximum values of the pixels in
each square. If the difference is greater than a given thresh-
old then the square is further subdivided into four squares,
and the quadtree function is called on each square. This pro-
cess repeats until the minimum and maximum value in each
square differs by less than the threshold. We store the num-
ber of squares examined.

Other features that are extracted from the spatial domain
include the length of edges, the number of bends found in
edges, the ratio of the length of edges to their minimum
length, and the intensity of edges. We are also experiment-
ing with including the length of edges in a contour plot of
the image, and features extracted from the wavelet decom-
position of the image.

Frequency domain features are calculated by using a
Fourier transformation to find the 2D frequency spectrum
of the image, which is then normalized to yield a 2D map of
intensity values ranging from 0 to 1. The map is converted
to a boolean mask by comparing each value to a threshold
constant (currently the value is 0.00007). which is selected
empirically so that the shape of the spectrum is well charac-
terized by the boolean mask.

After thresholding, isolated values are filtered out of the
mask to simplify the measurements. Measurements are
made to parameterize the features of this shape. The height
of the horizontal bar of the cross is measured at five different
locations chosen to capture the variations in the height of the
bar. The width of the vertical bar of the cross is measured



at five different locations, chosen to capture the variations in
the width of the bar. The ratio of the height of the horizon-
tal bar to the width of the vertical bar and the ratio of the
length of the horizontal bar to the length of the vertical bar
are computed. Radial measurements made from the center
of the mask to the edge of the cross at varying degrees, along
with their variance, are computed and stored as parameters.
Finally the number of pixels in the mask is stored in the area
parameter.

Features are also extracted from the frequency domain by
calculating the circular average. The 2D frequency domain
is reduced to a 1D vector by taking the average intensity of
all values at different radial distances from the center of the
image. The resulting vector is then sampled at three different
locations. A fifth-degree polynomial is then fit to the curve
and its third derivative and roots are calculated. Currently,
about 70 features are extracted to classify experimental out-
comes.

Classification of experiment outcomes Extracted fea-
tures comprise an image description of a case (see Figure 6).
Since none of the extracted features is a sole predictor of
experiment outcome, the weighted contribution of extracted
features is used to automatically classify the outcome of the
experiment. We have used CBR to identify the appropriate
combination of features and their relative contribution to ex-
periment classification. The example presented in Figure 7
shows the classification of three outcomes. Currently, the
accuracy of the experiment outcome classification is 85%.

Classification of crystallization experiment outcomes is
used to compute the precipitation index (see Figure 8),
which in turn is used to measure similarity between pro-
teins. MAX constructs a solution for the current crystal-
lization problem by using appropriate descriptors from rel-
evant experiments, i.e., both successful and failed crystal-
lization experiments of proteins that have similar precipita-
tion indices. The solution is a recipe for crystallization (i.e,
crystal growth method, temperature and pH ranges, concen-
tration of protein, and crystallization agent). Once a novel
set of experiments for a protein has been planned, executed
and the results recorded, a new case, which reflects this
new experience, is added to the case base. Cases with both
positive and negative outcomes are equally valuable for fu-
ture decision-making processes and for the application of
machine-learning techniques to the case base.

Case-Based Reasoning for Crystallization
Experiment Planning
We address the hurdle of protein crystal growth by combin-
ing a HTP wet lab work and computational approaches to
systematically create and use a comprehensive repository of
protein crystallization experiments (Jurisica et al. 2000). We
apply CBR to plan new crystallization experiments. Our ap-
proach is based on a generic system called TA3 (Jurisica &
Glasgow 1997; Jurisica, Glasgow, & Mylopoulos 2000).

Crystallization experiments contain experiential informa-
tion, such as initial input information about the protein at the
beginning of the experiment, the process of carrying out the
experiment, the outcome of the experiment, which we rep-

Figure 6: Part of the case describing the crystallization ex-
periment, which is created using features extracted from the
drop.

Figure 7: Classification of experiment outcome.



Figure 8: Precipitation index, white represents crystals, light
grey (green) is clear drop, black is precipitate, dark grey
(red) is unknown.

resent as cases. Thus, we need to address issues of how to
represent crystallization experiments flexibly, how to mea-
sure similarity among experiments, and how to adapt rele-
vant crystallization recipes to better fit current problem (Ju-
risica et al. 2001).

In general, a case represents knowledge of how a spe-
cific task was carried out and the outcome for that specific
situation. For our domain, an individual case captures the
problem-solving process of a crystal growth experiment by
representing an episode of such a process: input param-
eters, results of the initial precipitation experiments, and
the final results. Cases are represented as a set of descrip-
tors – attribute-value pairs, organized into attribute cate-
gories. Category membership is determined using informa-
tion about the usefulness of individual attributes and their
properties. This information is obtained either from domain
knowledge or with help of a knowledge-mining algorithm.
Categories bring additional structure to a case representa-
tion. This reduces the impact of irrelevant attributes on sys-
tem competence by selectively using individual categories
during matching. A context explicitly defines attributes that
are used during similarity assessment and any constraints
that may be applicable to attribute values. Thus, context de-
fines how similarity is measured.

As discussed earlier, we use still images to describe indi-
vidual crystallization experiments. Since our goal is to pro-
vide a high-quality information repository cases are linked
to external information sources, such as articles describing
crystallization methods used, databases of protein informa-
tion, and chemical properties of agents.

Case retrieval is a primary process for partial pattern
matching of an input case to cases in the case base. A sim-
ilarity function is used to determine which cases are most
relevant to the given problem. In MAX case retrieval func-
tion is used to locate successful and unsuccessful crystal-
lization experiments that have similar precipitation indexes.
The process has two stages. In the first stage, only a binary
classification of crystallization outcomes is used (i.e, noth-
ing happened, something happened). In the second stage,
a more detailed classification of the result is used to par-
tially order retrieved experiments based on their relevance.
Retrieved cases are presented to the user, at which time the
user can modify the selection criteria dynamically and thus
alter the set of retrieved cases. The retrieval process is in-
teractive and iterative. The retrieval function used in MAX
is flexible, effective, and scalable (Jurisica, Glasgow, & My-
lopoulos 2000).

The adaptation process in CBR manipulates the solution

from a set of source cases to solve the target case. MAX
constructs a solution for the current crystallization problem
by using appropriate descriptors from relevant experiments.
The solution is a recipe for crystallization (i.e, crystal growth
method, temperature and pH ranges, concentration of pro-
tein, and crystallization agent). We propose two functions:
1) to suggest almost-right solutions to problems, which can
be modified automatically (or by the expert user) to suit the
new protein situation, and 2) to warn of potential errors or
failures in a proposed experimental plan.

Adaptation is guided by domain knowledge (i.e., adapta-
tion rules, concept hierarchies, or extensive number of ex-
amples) that is stored in the MAX information repository or
by information provided by the user (in the later scenario,
MAX will store the new information for later reuse).

Conclusions
The idea of combining image-based reasoning and CBR is
novel, and there are many avenues that need to be explored.
Above we have presented just a brief overview of some of
the issues involved in integrating these two approaches to
reasoning and problem solving. In particular, we have fo-
cused on how CBR could be applied in image domains. In
some such domains, the combination brings objectivity, in
other domains, it is needed to cope with scalability of HTP
applications.

We are currently considering the use of CBR in several
domains involving image data. In particular, we have con-
sidered CBR for the problem of molecular scene analysis
(Glasgow, Conklin, & Fortier 1993). This work focuses on
determining how structural protein data can be organized
to permit efficient and rapid retrieval from a case base of
molecular scenes. CBR is used to anticipate 3D substruc-
tures that might occur within a novel protein image (con-
structed from an X-ray diffraction experiment).

Medicine is another area with potential for integrating
CBR and image-based reasoning. Earlier it was shown that
CBR can be successfully applied for prediction and diagno-
sis in in vitro fertilization (Jurisica et al. 1998). This sys-
tem initially worked only with symbolic patient data. Later,
more detailed information was collected, including oocyte
and embryo images. These images were analyzed by embry-
ologists and the extracted information is used by doctors to
potentially provide an explanation of multiple failed implan-
tations. Computer-based image analysis has been used to
evaluate morphology and developmental features of oocytes
and embryos (including cell number, fragmentation, cellu-
lar appearance, zona thickness, etc.) objectively (Jurisica
& Glasgow 2000). Although humans can analyze images
more flexibly, computer vision techniques help to make the
process more objective and precise.

We have implemented MAX using a generic CBR shell
called TA3 in Java 2, with both memory and JDBC drivers.
Cases can be stored in a hierarchical manner to support more
efficient storage (as one protein may be part of multiple
crystallization experiments), improved case retrieval perfor-
mance, and knowledge discovery through exploiting mean-
ingful structure of case base. A web-based interface and



relational schema to store the information about crystalliza-
tion experiments has been implemented. We are working
on improving its performance and extending its knowledge-
discovery capabilities. Currently, knowledge discovery sup-
ports only case similarity explanation, and TA3 optimiza-
tion by case schema refinement and domain knowledge anal-
ysis. Once the repository contains more experiments, we can
use knowledge-discovery algorithms to support the extrac-
tion of general principles of experimental crystal growing
plans. In order to extract principles from the crystallization
repository, we apply two steps: searching for patterns and
describing their properties. We will use conceptual prox-
imity techniques to organize protein crystallization informa-
tion into groups that reflect reoccurring patterns. Concep-
tual clustering methods determine clusters not only by at-
tribute similarity but also by conceptual cohesiveness, as de-
fined by background information. We will use an interactive,
context-based, nearest-neighbor clustering that supports ex-
plicit background knowledge and works with symbolic at-
tributes. Interactive clustering algorithms prove to be useful
especially in evolving domains, such as crystallization. Fol-
lowing group analysis we will apply summarization tech-
niques to describe characteristic properties of the identified
clusters. These sets of properties can be used to differen-
tiate individual clusters, to identify associations among the
clusters, and to identify relationships between properties and
individual items (i.e., associations). In addition, we will ex-
plore relationships between the outcomes observed in crys-
tallization experiments and other characteristics of the pro-
teins, such as their sequences, observed biophysical proper-
ties, which could also be useful in predicting probable crys-
tallization recipes.

Future work in the crystal growth domain involves the im-
plementation of a distributed storage management system
using a robotic tape library attached to the IBM RS/6000
SP, Tivoli storage management system and IBM DB2 EEE
database. This is essential to keep up with the increasing
volume of image data and to support archiving of important
information (we already have over 200GB of compressed
images containing crystallization experiment outcomes). By
improving the quality of the image capture process, we also
hope to improve the current error rate of drop recognition
(0.4%) and classification accuracy (85%). Our approach has
the potential to significantly reduce the time spent looking
for initial conditions. The results of our research may thus
eliminate a primary bottleneck in modern structural biology.
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