From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.
A Structure Based Configuration Tool:

Drive Solution Designer - DSD

Christoph Ranze’, Thorsten Scholz', Thomas Wagner', Andreas Gunter’,
Otthein Herzog', Oliver Hollmann?®, Christoph Schlieder', Volker Arlt*

encoway GmbH & Co KG’
Universitatsalle 21-23,
D-28359 Bremen
{hollmann, ranze}
@encoway.de
Tel: +49 421 246 770
Fax: +49 421 246 7710

University of Bremen, TZI',
Universitaetsallee 21-23,
D-28359 Bremen
{cs, herzog, scholz, twagner}
@tzi.de
Tel: +49 421 218 7090
Fax: +49 421 218 7196

Abstract

In this paper, we describe the configuration tool Drive Solu-
tion Designer (DSD). The DSD is used by sales engineers of
the company Lenze AG (www.lenze.com) for the configura-
tion of complex drive systems in order to make on-site of-
fers together with the customer. The aim of this process is to
generate a consistent solution which fulfills the functional
requirements of the user along with optimization criteria
such as price and delivery time. The preparation of a tech-
nical offer requires fundamental knowledge of complex
physical and in particular technical correlations of drive
components, in depth knowledge of the product catalog as
well as high empirical knowledge about the order of the pa-
rameterization of the components. In order to meet these re-
quirements knowledge-based Al-techniques are required. In
the DSD we use a domain independent incremental struc-
ture-based configuration approach with different knowledge
representation mechanisms and a sophisticated declarative
control. Currently DSD is used with great success by ap-
prox. 150 sales engineers of the company Lenze for the de-
sign layout task. The introduction of the DSD lead to a dras-
tic time reduction for drive solution development and re-
duces incorrect solutions to nearly O percent.

Task Description

The growing complexity of drive configurations in indus-
trial sales and distribution scenarios makes high demands
on sales engineers. This is caused by the highly dynamical
product evolution in combination with constant improve-
ment of the product features and the increasing complexity
of customer-stipulated solutions as well as tighter optimal-
ity criteria.

This applies especially to products which require pro-
found expert knowledge. The degree of complexity mainly
depends on the structure of the products and the closely

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

guenter@informatik.uni-hamburg.de

Lenze AG*
Hameln

University of Hamburg’,
Dept. of Computer Science and
HiTece.V.
Vogt-Koelln-Str. 30,
D-22527 Hamburg

Hans-Lenze-Strasse 1
D-31763 Hameln
arlt@lenze.de
Tel: +49 5154 82 2534
Fax: +49 5154 82 1920

connected sales scenario. In [Hollmann et.al. 2001] we
distinguish three different sales scenarios:

Click & Buy: This is the most simple scenario. Only non-
customizable, complete products are offered to the cus-
tomer from a product catalog (e.g. www.amazon.com). The
customer is able to choose a product without taking expert
configuration knowledge into account. Complexity- and
consistency problems need not be handled and the use of
Al-technologies is not necessary.

Customize & Buy: In this scenario, products can be cus-
tomized with regard to the customers desires. This scenario
is found at many car manufacturers like BMW (www.
bmw.com) or at computer vendors like Dell (www.
dell.com). The combination of valid configurations of
components is still restricted and can be represented ex-
plicitly (e.g. within the product catalog). Thus complexity
and consistency still play a minor role and can be handled
by standard information technologies.

Configure & Buy: This is the most complex scenario and
requires the use of Al-technologies. The vast amount of
possible combinations of components and the multitude of
complex domain-specific restrictions lead to a serious
complexity problem as it is infeasible to list the set of pos-
sible solutions. Thus the generation of a valid solution
requires explicit expert knowledge and therefore cannot be
done by customers on their own. Even with detailed expert
knowledge the creation of valid solutions remains a diffi-
cult task which in some cases leads to faulty configura-
tions. An example of this scenario is the Lenze-domain
handled by the DSD.

The Drive Configuration Task

The problem of designing drives (e.g. for printing- and
sorting machines, automated saw, etc.) lies in finding a
consistent combination of an engine, a gear and a drive
controller while starting from a very limited set of basic
data like motor power and torque. The configuration has to
fulfill to a high degree the imprecise requirements of the

IAAI-02 845

customer while being as cost-efficient as possible. The
selection of the required components and their parameter-
ization implies a high level of engineering knowledge and
detailed knowledge about the product catalog. The goal
was to develop a software configuration tool for the Lenze
AG (www.lenze.com) to support sales engineers in this
complex task.

e \ . :# B
-, \ \ == e
= 1 \ “"&__‘,

Figure 1: Sample applications: Installation (left) and
printing machine (right)

The complexity of this special task is captured by the
fact that there are thousands of different engines, gears,
engine controller and additional components and their
variants manufactured by Lenze (and even more off-
company products). If all the combinations of all compo-
nents were to be considered, this would lead to a solution
space of 10*! of possibly consistent products. Additionally,
the complexity is increased by the fact that central compo-
nents like engines and gears may have hundreds of pa-
rameters and restrictions constraining possible solutions.

When parameterizing and specializing components, there
is a highly complex constraint-net between the parameters
within as well as the parameters of other components.
These constraints reflect the complex physical correlations
(both mechanical and kinetic) and result in a difficult con-
sistency problem.

A special problem arises from the assistance aspect. In
order to support sales engineers intuitively, the control
mechanism of the system has to be able to represent the
sequence of specifying the values for the parameters. This
has a great impact on the quality of the configured solution.
Additionally, the values have to be specified according to
the individual requirements of each customer in order to
get high quality solutions.

Because of this general set-up, it is very time-consuming
to achieve a high-quality and consistent solution in direct
cooperation with the customer.

In practice, the basically hand-made configuration of a
drive system did not ensure that the resulting solution was
complete and consistent. This resulted in a number of
problems, when an error occurred, since the faulty solution
was the foundation of the offer. The main problems can be
summarized as follows:

1. The consistency of the generated solution, composed of
a number of engines, gears, drive controllers and support
components, has to be checked by engineers at the main
manufacturing site of Lenze. This means that all solu-

846 IAAI-02

tions developed at the customer’s location are subject to
inconsistency and therefore possibly cannot be built.

2. The validation of a solution (i.e. a detailed sketch) is a
very time-consuming task. In some cases, highly quali-
fied engineers need days to perform this work.

3. New, innovative products are often not taken into con-
sideration by sales engineers, since it is almost impossi-
ble for them to keep up with all new developments.

4. This also may apply to more cost-efficient solutions by
choosing standardized components which can be a seri-
ous drawback on the profitableness and might result in
longer delivery times.

5. The sales engineers are in most cases highly qualified
specialists in a certain field, who excel in finding opti-
mal solutions for their field. There is no easy way to
make this knowledge available to other non-experts in
the specific domain.

System Goals

The goal of the project was the development of a software

tool to support knowledge-based configuration in order to

assist sales engineers in preparing an offer. The main sys-
tem goals can be described as follows:

- Domain-independent configuration engine: Although
DSD was designed to solve a specific problem, the
configuration engine itself should be domain-
independent, so that it can be used in different pro-
jects. This ensures the future availability of software
updates and support.

- Assisting the configuration task: The system is supposed
to assist the user in the configuration task without
taking over the whole work. It should propose solu-
tions for the given problem, but leave the key decision
to the sales engineers.

- Increasing the speed to place an offer: Placing an offer
for a drive solution could take anything from 3 to 30
hours. Assisted by the system, this time should be re-
duced significantly.

- Handling the amount of variants: The system should
make it possible to handle the high amount of possible
combinations. It should be possible to browse through
the space of currently valid components at any given
time.

- Ensuring the consistency of the offer/solution: As a key
requirement, the final configuration should be consis-
tent according to the physical knowledge and the
product catalog.

- Controlling the configuration process: The system
should be able to guide the user through the configu-
ration process in an intuitive way based on empirical
knowledge of other experts.

- Building and maintaining the knowledge base: As the
domain of drive systems is a rapidly changing domain,
it should be easy to build and maintain the knowledge
base.

Additionally, a number of other requirements like a mod-

ern software architecture for web-integration, consideration

of alternative solutions and building a case-base for suc-
cessful solutions have also been made.

Application Description

The software tool “Drive Solution Designer” (DSD) has
been developed by the TZI (Center for Computing Tech-
nologies) of the University of Bremen, the companies en-
coway GmbH & Co KG, and Lenze AG.

It provides extensive assistance for a sales engineer in
the Configure & Buy scenario and its usage resulted in a
considerable increase of the quality of the products as well
as in a significant reduction of the development period. It is
a software assistant used by Lenze sales engineers at the
customer’s location in order to validate technical offers for
drive systems with respect to their possible construction
with the aid of structure-based configuration (Glnter/
Cunis 1992, Gilnter 1995a.). Based on the domain-
independent configuration engine EngCon, the DSD sup-
ports ETO (Engineering to Order) configuration.

Consequently, the DSD does not only calculate physical
correlations with the help of various formulas, but it also
computes a correct solution which can be built and deliv-
ered, containing a sensible combination of the Lenze prod-
ucts.

Configuration with EngCon

The central component of the DSD is, as already men-
tioned, the domain-independent structure-based configura-
tion engine EngCon. EngCon is a standardized configura-
tion platform based on long-term Al research (Hollmann
et. al. 2000). The configuration engine allows the stepwise
assembly of a drive system by constantly controlling the
consistency of the partial solution. In contrary to the com-
mon configuration approaches which perform something
similar to breadth-first search resulting in all possible solu-
tions, structure-based configuration performs a depth-first
search, resulting in only one given solution (global consis-
tency can not be ensured for partial solutions without per-
forming a complete look-ahead search). At the first glance,
this may seem a drawback, however, this is not the case:
The complexity of the domain of offer validation for tech-
nical drives is extremely high. With constraint-based con-
figuration engines, all possible solutions would be made
available to the salesman who in turn would have to choose
one concrete product out of this large set.

By adding domain specific knowledge about the con-
figuration task as well as providing sophisticated modeling
techniques, the structure based configuration provides a
single solution. There are three types of knowledge used in
the configuration task: The product catalog, the relation-
ships between the components from that catalog and a
control structure on how to perform the configuration task.

If an offer for a drive solution is going to be configured
with the DSD, the user starts with choosing a certain type
of product. By specifying parameters and relations for this
initial concept, it is decomposed into its parts, which in

turn are decomposed again, until a solution is found. To
make sure that only a consistent solution is produced the
configuration engine EngCon applies various Al tech-
niques described in the Al technology section. All the time,
the user is guided by a configuration control, which helps
to produce high quality solutions by applying domain ex-
pert knowledge about the order of the decomposition task.

DSD

GUI < T
- — = —

EngCon Configuration Suite Sone

4} 4} 4} Solver

Constraint Control
Knowledge Knowledge

Conceptual
Knowledge

—

v
Variant K-Build
tables
v

Knowledge Base

Figure 2: Architecture of the DSD

System Architecture

The DSD has been completely implemented in Java™ 1.3
technology, using the standard API as well as Java Swing.
There are three major components in the DSD: The do-
main-independent configuration engine EngCon, the user
interface, and the knowledge bases (see figure 2).

Within the central component EngCon, taxonomical
inferences and constraint-propagation is performed in order
to ensure a consistent solution resulting from the configu-
ration process. EngCon utilizes interchangeable external
constraint solver for propagating constraints over infinite
domains and intervals. These may rank from C-libraries
(CSP) to Prolog Systems (CLP) connected to EngCon via
the Java Native Interface (JNI). Additionally to these con-
straints, EngCon uses variant tables which are stored in a
database accessed through the ODBC/JDBC interface.

The second vital part of the DSD is the knowledge base,
containing the product knowledge. The knowledge base
contains three types of knowledge: The component knowl-
edge, the constraint knowledge, and the control knowledge.
For the maintenance of the knowledgebase, a domain-
independent, Web-based service tool is available, the K-
Build.

Guiding the sales engineer through the configuration
process is the GUI, visualizing the technical details (see
figure 3). On top of it, the so called sketch is visualizing
the already chosen components, providing a rough over-
view about the configuration process as well as component
details. The sales engineer is able to enter the data required

IAAI-02 847

for building a drive solution in various sheets and graphs
on the bottom part of the GUI.

=u

T e~ Lenma
T U MR
£ 4 r = | e — |
o : a2 ! -
(=2} Eis | 2] =
—— —, e
T - } M "
mpl L
o "

Figure 3: The DSD User Interface

Additionally to these components, a set of tools for cal-
culating the correct parameters for components is available
to the user in order to facilitate the process of configura-
tion.

Uses of AI Technology

In other domains e.g. the telecommunications domain,
classical configuration systems have been successfully de-
ployed (e.g. (Focacci, et.al. 1997), (Chow and Perett,
1997), (Bach 2000)). Unfortunately, these constraint-based
configurators proved inappropriate for the task described
here. The main reasons are:

- Knowledge acquisition in constraint-based configura-
tion is difficult for non constraint experts.

- Search space size: In the DSD, search space is far too
complex to compute each and every solution from a
given number of starting parameters. Nearly every
concept has a number of real intervals whose values
will be restricted during a step-by-step configuration
process.

- Control: The succession of the configuration steps has a
deep impact on the quality of the solution. In a con-
straint system it is hardly if not almost impossible to
model the knowledge about the order of the configu-
ration. The knowledge about which order leads to a
high-quality solution is an important resource of an
experienced sales engineer. It is necessary to describe
this knowledge and make it available for other, less
experienced sales engineers.

- Assisting the configuration task: The customer neither
knows, how many components the configured solution
requires nor its exact parameter values. He only knows
what the solution is supposed to do. Consequently, a

848 IAAI-02

system assisting the salesman in the incremental proc-
ess of parameterization is needed.

For these reasons, a strict constraint-based solution did not
suffice and a different solution had to be chosen.

Structure-Based Configuration

An interesting alternative to the strict constraint approach
are the methods for heuristic, structure-based configuration
developed in the projects TEX-K and PROKON' (e.g.
Gunter1995b) (see also: Hollmann et.al. 2000). The key
requirement for the use of this approach is the component
structure of the domain. Especially in technical domains
like the Lenze-drive-system domain the component struc-
ture is commonly found.

This approach is based on three different knowledge
representations:

1. Knowledge about the objects of the domain are repre-
sented in an ontology according to their taxonomic- and
partonomic relations and the relevant attributes.

2. Dependencies between objects and their relations and
attributes are represented with constraints by a meta-
constraint modeling language.

3. Knowledge about the control process i.e. order of con-
figuration steps, calculation methods and the priority
among them as well as the use of conflict resolution
methods is declaratively described by strategies.

The configuration process is started by the user (sales
engineer) choosing a task object (e.g. a printing machine)
from a list of predefined objects. Based on this task-object
EngCon generates a first simple partial solution by instan-
tiating the concept. Afterwards the control component
calculates all configuration steps that have to be performed
in order to determine terminal values for all relations and
attributes and adds them to a configuration agenda. Three
kinds of configuration steps are supported: a decomposi-
tion-, a specialization- and parameterization step. A de-
composition configuration step restricts the values of has-
part relations, which may result in the instantiation of new
objects. Given a has-part relation, has-part: engine [0 2],
which the user or the system is able to restrict to [/] then
a new instance of the concept engine is created and ap-
pended to the current partial solution. Similar to the de-
composition step the specialization step restricts the values
of the ISA- relation and the parameterization step restricts
the attribute values. New or restricted values may result in
new configuration agenda entries.

A key feature of the structure-based approach is that not
only the value of already instantiated constraints are re-
stricted incrementally but also new constraints may be
added to the already given constraint net. Therefore the
control component checks after each configuration step if
new constraints have to be added, due to new components
(after decomposition), or new or more restricted attributes

!'These projects have been supported by the German Ministry for Educa-
tion and Science.

(after specialization or parameterization). In this approach,
constraint propagation is not handled as a calculation func-
tion but rather as a consistency-ensuring process which is
invoked automatically after each of the current partial
solutions.

A final solution is reached once all attributes and rela-
tions have been restricted to terminal values.

The central components, ontology, configuration control,
and constraint module will be described in more detail in
the following sections.

The Ontology Component

For the modeling of the conceptual knowledge (i.e. the
product catalog), the proprietary knowledge representation
language EngConKR has been developed. Instead of using
already existing languages (e.g. OIL and Ontolingua for
details see: Fensel, Horrocks, Harmele and Decker, 2000,
Farquhar, Fikes and Rice 1996), a separate approach has
been chosen for two reasons: First, while the functional
requirements for EngCon could be described in a clear
way, the requirements for the expressional power of the
representation language were elusive without having mod-
eled part of the application domain (i.e. EngConKR has
been extended with discontinuous intervals, like [[0.0
20.15], [30.42 78.85]]). Secondly, even though existing
ontology-languages like Oil support e.g. real numbers,
given reasoners like FACT are not capable to perform the
adequate inferences.

The domain knowledge is modeled by ISA-
specialization- and has-parts relations. The specialization
relation has a stringent semantics, i.e. attributes from supe-
rior concepts are inherited and maybe restricted by more
special attributes. Multiple inheritance is not allowed. In
addition to the standard attribute types like sets, intervals
and atomic values discontinuous intervals are allowed also.

Taxonomic inferences: The fundamental assumption for
the inference mechanism of EngCon is the (strong) closed
world assumption (CWA). A situation, where there is no
way to specialize an instance of a partial solution to a leaf
concept, will be interpreted as a conflicted solution. Even
though this assumption is insufficient for many domains, it
is well fitted for technical domains. Products in EngCon
are modeled as a leaf concept. If an instance may not be
specialized to a leaf concept, there is no product for the
current task. Thus it seems plausible to presume CWA for
this domain.

Based on the CWA, EngCon has two fundamental tax-
onomical inference modules: a dynamic and a static one.
Optimally, the static inference module may be applied
prior to the configuration in order to propagate terminal
values from the leaf concepts alongside to the specializa-
tion hierarchy. With the help of this mechanism, a wide
range of conflicts resulting from improper input may pos-
sibly be prevented.

The dynamic taxonomic inference module supports
primarily four types of inferences:

1. automatic specialization to n-th level

2. automatic specialization to a leaf concept
3. automatic specialization along the has-part relation
4. automatic pre-decomposition

The first inference is equal to the common classification
inference of description logic (DL). If the value of an at-
tribute of an instance allows for a classification to a more
special concept, an automatic specialization is triggered.
The automatic specialization to a leaf concept is implicitly
performed by the first inference. It takes a conflict avoid-
ance role by ensuring that a specialization to a leaf concept
is possible, if the static taxonomic inference module is not
used. The fourth inference, the automatic decomposition, is
better regarded as a heuristic rule instead of as a logic in-
ference. It is only applicable in a true top-down configura-
tion. If it is specified in a has-part relation of an instance of
the concept engine that the engine has at least one cooler
(thatisi.e. [I inf]), as a result of this inference an instance
of a cooler will be automatically added to the solution.

The Control Component

For the simulation of an expert’s procedure, EngCon em-
ploys an agenda-based control guided by declarative con-
trol knowledge (Gunter A, 1992). For this purpose, a
knowledge engineer defines strategies on how the configu-
ration process of an application is divided into phases, and
additionally defines the order of the tasks and their calcu-
lation method. By this, it is possible to model different
kinds of procedures for different groups of users.
Schematically, the control flow is as follows:

1. Definition of the task
2. Creation of an initial partial solution
3. Determining the current strategy

4. Creation of an agenda: The configuration focus defined
in the strategy determines which entries are going to be
included into the current agenda. These entries specify
which attribute of which component
of the current solution will be modified next. Here,
strategy-specific agenda selection criteria define the or-
der of the entries in the agenda. The agenda contains all
tasks to be processed in a strategy and may be accessed
at any time by the user.

5. Selection of agenda entry: The next step is choosing the
entry with the highest priority.

6. Selection of calculation method: With the help of the
order of the calculation methods defined in the strategy,
the method to be employed will be chosen. Valid cal-
culation methods are: Defaults, dynamic defaults, cal-
culation function, user input. If the highest priority cal-
culation method may not be applied, i.e. a default is not
applicable the next calculation method with a lower pri-
ority is used. If there is no automatic method left to ap-
ply, the user will be asked for input. The interfaces
within the EngCon configuration engine are open for the

IAAI-02 849

integration of new calculation methods, i.e. simulation
without much effort.

7. Execution of calculation method: The result of the modi-
fication method is acquired.

8. Calculation of consequences: The current partial solu-
tion is retrofitted with the results of the calculation
method and the consequences are calculated: (a) Taxo-
nomic inferences, (b) Constraints: resulting from i.e.
new components perhaps new constraints have to be
added to the constraint net.

9. Updating the agenda: First, redundant entries resulting
from constraints or taxonomic inferences are removed
from the agenda and it is checked whether new entries
have to be added to the agenda. Finally, it is evaluated
whether a change of strategy has to be performed, and
the configuration cycle starts again with 5.

The Constraint Component

Constraints are used for the description of the complex
dependencies between the parameters of the objects of the
ontology/the product catalog. Three different concepts
have been realized:

1. Complex functional and predicate constraints are used to
represent equations and functions. They are propagated
in an interchangeable external constraint solver'.

2. Extensional constraints (tuple of values) explicitly list
the set of possible variants and are managed within an
external database.

3. Additionally, Java-Constraints provide the flexibility for
the user to integrate functions and calculations into the
configuration, which are impossible to realize with
functional or extensional constraints (i.e. summing up
attribute values of several concepts).

The constraints are represented in a declarative manner
in a meta modeling language and may be modified and
extended without having to recompile parts of the whole
system?.

Future Work

Although we applied a wide range of Al-techniques, some
extensions seem to be reasonable. The practical use of the
system by the sales engineers showed, that once the user
runs into a conflict, an detailed explanation of the under-
lying reasons is required. There are two possible sources
for conflicts: taxonomic inferences and the constraint satis-
faction. While taxonomic conflicts may be handled with a
kind of dependency network, constraint conflicts are much
more tricky because of the dependency between several
constraints in the net. How complex constraint conflicts
can be presented to the user, however, remains an open
question. A more abstract question is how explanations can
be generated (not only in the case of conflicts) which sup-

' The currently used constraint solver is subject to privacy.
% This requirement led to the disqualification of i.e. the ILOG-solver.

850 IAAI-02

port users with the appropriate background knowledge in
order to understand the underlying reasoning processes.
Plan recognition methods are in investigation in order to
provide the configuration engine with useful information
about the intention and the background knowledge of the
user to guide the explanation generation (see (Carberry
2001) for an overview).

Although user specific defaults may be defined, it seems
to be reasonable that a user model should be learned auto-
matically. Also, even though it is already possible to re-use
a partial solution for various applications (variants), it is
not possible to reconfigure complete solutions in the sense
of CBR.

Application Use and Payoff

The DSD was introduced in May 2001, when it was
shipped to the sales engineers of the Lenze AG. Since then,
it has been used by about 150 sales engineers, who have
been trained to use the system for technical offer prepara-
tion.

Using structure-based configuration for this construction
and validation process has led to a number of benefits,
which result in a high competitive advantage.

Time Reduction for Offer Placement

The time for placing an offer has drastically been reduced.
Before the introduction of the DSD, the sales engineers had
to get to the customer, take down the requirements for the
solution and make a first sketch of the drive. This process
took anything from 3 hours to 30 hours working time with
an average of 4 hours.

With the help of the DSD, the time it takes for a sales
engineer to come to a consistent, high quality solution has
been significantly reduced by a factor of 5-10. Now, in
easy cases, a consistent solution without the need of asking
other experts can be found in approx. 15 minutes if a lot of
standard components and values (defaults) can be used.
The more complex tasks now take up to 150 minutes, if a
lot of things need to be adapted. In average, 30 minutes are
now required.

Reduction of Errors

Prior to the introduction of the DSD, too many of the vali-
dated offers had to be revised in the course of the actual
preparation. These errors caused high costs to both Lenze
and their clients, since the sales engineer had to check back
with the customers again and the delivery of the drive was
delayed.

By configuring the solution with the DSD, these errors
were reduced to almost 0% of the offered drive systems
since the knowledge of various domain experts now assist
the sales engineers in executing the offer.

Increase of Quality and Use of new Components

Due to the fact that configuring a drive solution with the
DSD uses the experience of many domain experts, the
overall quality of the solution was significantly improved

by providing less expensive solutions which have a better
performance. Even though the domain of drive systems is a
very complex one, with thousands of different components,
some of these are still standardized. Also, newly developed
components were rarely included into a solution, since the
sales engineers could not always keep up with the new
product inventions.

With the introduction of the DSD, the configuration
engine now proposes these standardized components, if
they are fitting into a solution and thus improving its qual-
ity and delivery time. In the same instance, the DSD takes
care, that the additional components combined with the
standard one are fitting to it as well as newly developed
components are taken into consideration for the solution.

Reduction of Costs

Prior to the introduction of the DSD, many components
chosen were individual solutions. This led to higher pro-
duction and maintenance costs for the individual solutions.

With the help of the DSD, more standard components
are considered for drive solutions. This helps reducing the
production costs — a standard component is easier to pro-
duce in less time — as well as reducing the maintenance
costs by allowing the usage of standard spare parts. Thus, a
considerable competitive advantage is gained, since lower
costs result in more satisfied customers.

Application Development and Deployment

The development of the EngCon configuration engine was
initiated in 1998. Starting with experiences from the al-
ready mentioned research projects (TEX-K, PROKON), a
project team was initially formed by Lenze and the TZI of
the University of Bremen. At the TZI of the University of
Bremen, the development staff consisted of a project man-
ager, two research staff, a software engineer and several
students.

The TZI was responsible for the development of the
domain independent configuration engine EngCon as well
as providing support for the knowledge engineering proc-
ess. The project team at Lenze was responsible both for the
development of the knowledge base and the DSD applica-
tion. This team consisted of a project manager, a software
engineer and two domain experts.

Having a modern and web-enabled application in mind,
JAVA was chosen as the implementation language. During
the first 18 month the core functionality of the configura-
tion engine was designed and implemented at the TZI.
With a delay of three months, In parallel, the team of do-
main experts at Lenze defined the expressional require-
ments and developed a prototypical knowledge base for the
application DSD. In course of this, the knowledge repre-
sentation had to be adapted several times.

At the beginning the EngCon configuration engine was
designed with the unified modeling language (UML) using
the Rational Rose. Since several problems arose with the
round-trip engineering using Rational Rose to update and
develop the software model, the usage of the tool for this

purpose was given up. Instead it was only used for the
review processes. In order to implement the UML-model a
beta version of the Java development environment Visual J
was chosen. But due to several update delays and compati-
bility problems, a change to the Inprise JBuilder was made.

A first milestone was reached in 1999 - a first imple-
mentation of the EngCon engine and a prototypical version
of the application DSD. As a result of market surveys, the
stakeholders decided to set up a separate company to con-
tinue the development of the configuration engine EngCon
towards a product. As a result encoway GmbH & Co KG
was founded early in 2000 as a spin-off of the TZI of the
Bremen University. After two years, encoway now has a
staff of 30.

Since then, the development and implementation tasks
for the software (EngCon, DSD) where shifted from the
TZI to encoway to ensure product quality (maintenance,
services, documentation) for the systems. During this pe-
riod the project team at the TZI enhanced the underlying
methodologies e.g. for conflict handling and explanation
generation and prepared them for an integration into Eng-
Con.

After three months of field tests and several adjustments,
the DSD was finally shipped in May, 2001. Since then, it
has been in use by about 150 sales engineers for the techni-
cal offer preparation.

The overall investments for the project EngCon and the
application DSD are summed up to approx. 30 man years.

Maintenance

The domain of technical drive systems is changing very
rapidly. New developments in engineering result in spe-
cialized or completely new components, which either add
to the already existing ones or completely replace them. In
order to make sure, that these new drives, gearings and
other related components are made available to the cus-
tomers, the knowledge base has to be adapted to these
changes. Therefore, maintenance of the knowledgebase is a
key requirement for the success of the application.

The KBuild software tool for the configuration engine
EngCon, which domain-independently allows to maintain-
ing the knowledgebase has been developed for this pur-
pose. KBuild is not only a tool for maintaining the knowl-
edgebase, but is used as well for the initial knowledge
acquisition and building of the knowledgebase itself.

In KBuild, validation of the newly inserted concepts is
performed with the help of the same taxonomical infer-
ences used within the EngCon configuration engine as
described in chapter ‘Uses of AI Technology’. Constraint
knowledge is modeled with the same tool. With the help of
the KBuild knowledge acquisition tool, the maintenance of
the knowledge base can be performed by any domain
expert.

Conclusion

As has been shown, for more simple scenarios standard
methods from computer science sufficed to fulfill the task

IAAI-02 851

of customizing products. The configuration of drive sys-
tems, however, is a highly complex engineering task which
requires profound knowledge about the whole range of
products as well as an in-depth understanding of underly-
ing physical dependencies. Therefore, the problem domain
of drive construction required sophisticated Al-methods in
order to become feasible. The Drive Solution Designer
(DSD) which has been introduced in this paper, uses a
structure-based configuration engine, EngCon to provide
extensive assistance to sales engineers of the Lenze com-
pany for their daily work.

With the help of the DSD, their actual working time for
an offer could be drastically reduced from an average of 4
hours to an average of 30 minutes.. This went along with a
significant reduction of faulty offers, since the consistency
of an offered solution is now ensured. By maintaining the
knowledge base to keep up with the latest developments in
the drive engineering domain, these innovations are now
easier brought to the attention of the sales engineer who in
employs them to turn build drive solutions. Regarding the
benefits the DSD had for the daily work of a sales engineer
as well as the fulfillment of the other requirements for the
development of the software, it has to be considered as a
very successful application.

The major component of the DSD, the structure based
configuration engine EngCon, has been developed as a
domain independent tool. This allows its wide-spread use
by exchanging the knowledge bases and the GUIs with
domain specific ones while keeping the configuration en-
gine unchanged. Currently, there are applications in techni-
cal domains (industrial robots, pumps and sensors) as well
as service domains (financial planning and insurances)
under development. For these applications, prototypes have
already build .

Acknowledgements

The authors would like to thank the Lenze AG who sup-
ported the development of the DSD. In special, we would
like to express our appreciation for the patience and work
of Olaf Gotz and Torsten Hesse, the domain experts and
knowledge engineering team.

Finally, we would like to thank Sven Peter for the hours
of work he put into the implementation of the DSD.

References

Arlt,; Gunter; Hollmann,; Hotz,; Wagner. 1999. Engi-
neering&Configuration - A Knowledge-based Software
Tool for Complex Configuration Tasks. Workshop on Con-
figuration at AAAI-99, http://wwwold.ifi.uni-klu.ac.at/
~alf/aaai99/

Artale; Franconi,; Guarino; Pazzi. 1996. Part-Whole
Relations in Object-Centered Systems. An Overview. In
Data and Knowledge Engineering, North Holland, Elsevier
20:337-384.

Bach. 2000. IPAS: An Integrated Application Toolsuite
for the Configuration of Diesel Engines. ECAIT'00 Work-

852 IAAI-02

shop Configuration, http://www.cs.hut.fi/~pdmg/
ECAI2000WS/Proceedings.pdf

Carberry. 2001. Techniques for Plan Recognition. User
Modeling and User-Adapted Interaction, Volume 11,
Number 1-2, pp. 31-48, 2001.

Chow; Perett. 1997. Airport Counter Allocation using
Constraint Logic Programming, in: Proc. Of Practical Ap-
plication of Constraint Technology (PACT98), London,
UK

Cunis; Gunter; Strecker. 1991. The PLAKON Book - An
Expert System for Planning and Configuration Tasks in
Technical Domains. Springer.

Cunis; Gunter; Syska; Peters; Bode. 1999. PLAKON -
An Approach to Domain-independent Construction, 866-
874. Tennesse USA: ACM-Press.

Farquhar; Fikes; Rice. 1996. The Ontolingua Server: A
Tool for Collaborative Ontology Construction. Technical
Report, Stanford KSL 96-26

Fensel; Horrocks; Harmelen von; Decker. 2000. OIL in a
Nutshell. In: Knowledge Aquisation, Modelling and Man-
agement, 1-16, citeseer.nj.nec.com/fensel00oil.html

Focacci; Lamma; Mello; Milano. 1997. Constraint Logic
Programming for the Crew Rostering Problem, in Proc. Of
Practical Application of Constraint Technology (PACT97),
London, UK

Gunter. 1995b. KONWERK - a modular configuration
tool, 1-18. Richter (ed.). Kaiserslautern: INFIX Press.

Gunter, A.; Cunis, R. 1992. Flexible Control in Expert
Systems for Construction Tasks. International Journal
Applied Intelligence, Kluwer Academic Press 2.

Gunter. 1992. Flexible Control in Expert Systems for
Planning and Configuration in Technical Domains, PhD-
Thesis. In: PHD-Thesis in Artificial Intelligence, Volume
3, INFIX press

Hollmann; Wagner; Gunter. 2000. EngCon - A Flexible
Domain-Independent Configuration Engine. Workshop
Configuration at ECAI-2000, http://www.cs.hut.fi/~pdmg/
ECAI2000WS/Proceedings.pdf

Hollmann; Gunter; Ranze; Wagner. 2001. Knowledge-
based Configuration - About Complex Highly-Variant
Products in Internet-based Scenarios. KI 01/01 (German Al
Journal), Arendtap.

McGuiness; Wright. 1998. Conceptual Modelling for
Configuration: A Description Logic-based Approach.
AIEDAM 12(4): 333-344.

