
Intelligent Control of Auxiliary Ship Systems

David Scheidt, Christopher McCubbin, Michael Pekala, Shon Vick and David Alger
The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road
Laurel Maryland 20723-6099

Abstract

The Open Autonomy Kernel (OAK) is an architecture for au-
tonomous distributed control. OAK addresses control as a
three-step process: diagnosis, planning and execution. OAK
is specifically designed to support “hard” control problems in
which the system is complex, sensor coverage is incomplete,
and distribution of control is desired. A unique combination
of model-based reasoning and autonomous agents are used.
Model-based reasoning is used to perform diagnosis. Obser-
vations and execution are distributed using autonomous in-
telligent agents. Planning is performed with simple script or
graph-spanning planners. A prototype OAK system designed
to control the chilled water distribution system of a Navy sur-
face ship has been developed and is described.

Introduction
Next generation ship engineering plant designs must in-
corporate a variety of increasingly sophisticated propul-
sion and auxiliary subsystems while reducing the overall
requirement for human monitoring, maintenance and con-
trol. In order to meet these objectives, new levels of subsys-
tem interoperability and autonomy must be achieved. The
Open Autonomy Kernel (OAK) addresses critical infrastruc-
ture requirements for next generation autonomous and semi-
autonomous systems, including fault detection and recovery,
and goal-directed control. OAK brings together the Arti-
ficial Intelligent (AI) technologies of agent-based systems,
and qualitative model-based reasoning to enable a new gen-
eration of integrated auxiliary subsystem autonomy.

Efforts to automate the control of engineering plants
aboard naval vessels have emphasized the infrastructure and
diagnostic aspects of plant management, i.e. monitoring
vessel subsystems via sensors and presenting sensor data
to human operators. Interpretation of and response to the
data remain largely manual tasks. This interpretation and re-
sponse function, especially in damage control scenarios, is a
significant factor in determining ship-manning levels. If the
incident assessment and response loop can be closed with
a reliable autonomous reasoning process, significant relief
in overall manning levels can be realized. Successful au-
tomation efforts to date have been based on expert diagnos-
tic knowledge in the form of coded rules or procedures that

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are interpreted by the system at runtime to detect, predict, or
diagnose fault conditions. The OAK architecture and work-
ing prototype extend this automated reasoning paradigm in
a number of important ways. First, OAK uses goal-directed
commanding at the system component level. This shifts the
control paradigm from one of sending commands to sub-
systems, to that of sending goals and resources to intelli-
gent subsystem management agents that require no direct
operator interaction. Secondly, OAK’s subsystem manage-
ment agents are loosely coupled and distributed across a net-
worked infrastructure. This results in a dynamic and adapt-
able coordination capability. Finally, OAK uses qualita-
tive model-based reasoning as an extension to current rule-
and procedure-based formalisms in the agent control loop.
Model-based reasoning is used to perform real-time detec-
tion and identification of unanticipated fault conditions.

Motivating Example
The motivating example used for the existing prototype
is the control of auxiliary systems on capital ships. The
specific target domain is the electrical, chilled water, low-
pressure air and fire main systems on US Navy Arleigh
Burke class Aegis destroyers. These systems are complex,
inter-dependent, distributed, redundant, embedded, and con-
tain numerous components that are unobservable. Currently
high level control is the primary responsibility of dozens of
sailors on each ship. Effective automation of these systems
will allow the Navy to significantly reduce its manning re-
quirements.

The auxiliary systems on the Arleigh Burke contain thou-
sands of interdependent controllable nodes. One of the aux-
iliary systems, the chilled water distribution system, consists
of a dozen complex machines, such as pumps and chiller
plants, approximately four hundred valves, and twenty-three
service loads. Behavior of components within an auxiliary
system is dependent upon the components to which they are
connected, often recursively. The auxiliary systems them-
selves are inter-dependent; for example, the chilled water
system runs on electrical power provided by the electrical
system while the electrical system is kept cool by the chilled
water system. Behavior of the auxiliary systems is also de-
pendent upon other ship systems such as the HVAC, com-
bat, and fire support systems. These dependencies combine
to generate a complex super-system; no portion of which

IAAI-02 913

From: IAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

may be controlled in isolation. The size of the auxiliary sys-
tems, combined with their interdependency, prevents the ef-
fective use of traditional control system software. The auxil-
iary systems are designed with redundant supply and distri-
bution mechanisms for critical resources. This redundancy
presents the possibility of multiple valid configurations for
a goal system-state pair, introducing control optimization in
addition to control satisfaction.

Survivability, the justification for redundancy within aux-
iliary systems, demands that auxiliary control mechanisms
avoid single points of failure. Therefore, the control mecha-
nism must be fault tolerant.

The auxiliary Arleigh Burke control systems are only
sparsely instrumented. The vast majority of system com-
ponents do not have sensors that provide direct feedback on
the behavior of the component. Comprehensive sensor cov-
erage incurs additional cost, resource utilization and intro-
duces additional points of failure. Without the availability
of complete sensor coverage system states must be inferred
from indirectly observable behavior.

Model-Based Reasoning
Model-Based Reasoning is an overloaded term. The Model-
based reasoning used in OAK refers to a “reasoning from
first principles” approach to diagnosis (Kuipers 1994).
The theoretical basis for model-based reasoning is Dis-
crete Event System theory, specifically Partially Observable
Markov Decision Processes (POMDP).

Discrete Event System theory shows that systems
may be modeled discretely using the automaton G =
(X, E, f,Γ, xo, Xm) (Cassandras & Lafortune 1999) in
which X is the discrete state space; E is the finite set of
events associated with the transitions in Γ; f is the transi-
tion function; Γ is the active event function; xo is the initial
state; and Xm is the set of marked states. Control of Γ is
provided by a control policy S that includes a set of control
actions S(s).

Automata that are memoryless (i.e. all past state infor-
mation, and how long the process has been in the current
state, is irrelevant), are considered Markov Processes. Asso-
ciation of control actions for state transitions, cost for such
transitions, and transition probabilities, allows us to derive
Markov Decision Processes (MDP). MDP are defined by the
tuple (XS , EA, fT , R) in which: XS is the finite set of states
of the system being tracked; A is the set of commands; EA

is a finite set of actions; and fT is a state transition model of
the environment which is a function mapping XS ×EA into
discrete probability distributions over XS . The actions are
non-deterministic, so we write fT (x, e) for the probability
that transition e will occur given the state x. R is the cost
of action. Our use of model-based reasoning is limited to
diagnosis; therefore we are not concerned with R.

POMDP are MDP that have been extended to include a
finite set of observations. POMDP are represented by the
tuple M = (XS , EA, O, fT , R) in which O is the observation
function that maps the finite set of observations into XS .
The probability of making an observation o from state x is
denoted as O(o, x).

The tuple M is capable of representing the behavior of
systems that are composed of independent subsystems. This
may be generated by creating a supermodel MS whose
states, events and function are the cross product of the sub-
system models; MS = M1×M2×. . .×MN . This approach
to modeling complex systems is impractical for two reasons:
first, the state space quickly becomes unwieldy; second,
the majority of complex systems of interest are composed
of dependent subsystems. Model-based Control solves this
dilemma by modeling the system as concurrent constraint
automata, separately enumerated component models that are
constrained by shared attributes (Williams & Nayak 1996).

This representation scheme is beneficial when construct-
ing large complex systems. By encapsulating component
behavior within a single logical model and by constrain-
ing components through context independent attributes the
components themselves become context independent mod-
els. This provides for model replication and reuse.

Model-based reasoning is a three-step process: (1) Prop-
agation of control action effects through a system. Prop-
agation generates a predicted state for the system, includ-
ing controlled and uncontrolled components. Observations
of system behavior are compared to the predicted state; if
observations match predictions then the system is assumed
to be behaving nominally. The existence of conflicts be-
tween observed and predicted states indicate the existence
of one of more failures within the system. (2) Identification
of candidate failure scenarios that most effectively resolve
the conflicts. The strategy used to resolving these conflicts
is Conflict-directed best first search (CBFS), loosely based
on De Kleer and Williams’ General Diagnostic Engine (de
Kleer & Williams 1987) and described in detail by Kurien
(Kurien 2001). (3) Selection of the most probable scenario
from the identified candidates. The fitness criteria used by
CBFS to select the most probable solution is a system-wide
candidate probability based upon the probabilities of indi-
vidual component states fT (Xi, Ei)∀M ; by using a gen-
eral diagnostic algorithm, implementation effort is limited
to the model upon which the algorithm operates. System
design and maintenance do not require software modifica-
tions. In addition, because of the encapsulation of the com-
ponent models, model maintenance is limited to those com-
ponents modified in the controlled system and their immedi-
ate neighbors.

Autonomous Agents
Within the context of OAK, an agent is a software process
that can reason about and act upon its environment. Four
sets of characteristics that may be used to describe agents
and agent systems are: Intrinsic Agent Characteristics; Ex-
trinsic Agent Characteristics; System Characteristics; and
Agent and Environment-Agent characteristics. OAK agents
are intrinsically permanent, stationary, exhibit both reactive
and deliberative behavior, and are declaratively constructed.
Agents are reactive in their ability to reconfigure the sys-
tems within their control in the context of an existing plan.
Agents are deliberative in their ability to create a plan in re-
sponse to observed states and defined goals. OAK agent’s
extrinsic characteristics include proximity to the controlled

914 IAAI-02

system, social independence, and both awareness of and co-
operativeness with goals and states of other agents. Systems
of OAK agents consist of nearly homogeneous agents, and
are independently executed yet contain unique models of the
system for which the agent is responsible. OAK agents are
environmentally aware and behavior of the environment is
predictable through each agent’s model.

Application Description
OAK is a distributed, multiagent system. The system can
have varying topology based on the application. OAK has
two major use-cases that almost fully describe the opera-
tion of the system: OAK’s reaction to user-input goals; and
OAK’s reaction to system state change. The primary intelli-
gent components that enable OAK to accomplish these use-
cases are the model-based reasoning engine and the planner.
In the sections that follow, the OAK application is described
in detail.

The Multiagent System
To perform the diagnostic phase of the control cycle, OAK
agents continually update their states using the model-based
reasoning engine, and pass these state updates to other
agents that are interested so that these agents may update
their states. In response to these states, or to the system’s en-
vironment, an external actor or an OAK agent will provide
goals to the OAK system, which are distributed for further
processing. A hierarchical agent topology was used for test-
ing. However, the OAK architecture does not preclude other
topologies.

Agent Communication Framework and Language
Each agent has an associated Agent Communication Broker
(ACB), which is responsible for handling all of the agent’s
communication with the Agent Communication Framework
(ACF). The ACB maintains a queue of messages coming
into the agent. Additionally, each agent that has direct
communication with hardware has a control mediator (CM)
to handle the hardware level goals that are generated by
these agents for the hardware associated with it, and to
receive updates about this hardware. These messages are
not handled by the ACF.

The ACF of OAK is built using the Control of Agent
Based Systems (CoABS) Grid, a “flexible information in-
frastructure” built by Global InfoTek, Incorporated. CoABS
allows OAK to have a dynamic, heterogeneous agent mem-
bership, facilitates agent replication to remove single points
of failure, and supplies utilities for ACF visualization.

The Agent Communication Language (ACL) of OAK
provides several message templates, including messages for
queries, state updates, subscription requests, goals, excep-
tions, and agent coordination. The ACF allows any agent
to communicate directly with any other agent. Thus, com-
munication between agents is not restricted to any particular
logical framework.

User-determined Goals One of the major use-cases of
OAK is to react to goals entered by an external actor. These
are system-level goals which have the potential of transition-

ing the entire multiagent system from one state to another.
Goals that are entered from an external actor, such as a

human operator, through this interface are sent directly to the
root level agent using a goal message. This agent develops a
plan with goals that apply to the domains of its child agents.
Goals have a priority associated with them, which is used
for goal preemption.

After the root node develops a plan and directs a goal
to one of its child agents, the goal is received by the child
agent’s ACB, sorted into its queue, and eventually accepted
by the agent for processing. This agent develops a plan to
implement the goal. Since this agent is a root of its own tree,
the goals developed by the planner are passed to its child
agents. This propagation continues until leaf agents receive
goals for their specific domains.

Once goals are received at the leaf level, a similar pro-
cess occurs, in that a plan is developed and goals are passed
out of the agent. The only difference is that the goals are
now passed to the agent’s CM, which translates the goal into
commands that a hardware driver can understand. Since the
CM is the only component that has direct interaction with
the hardware drivers, it is the only component that has to be
updated when hardware itself is changed or when hardware
drivers are updated.

Successful goal implementation implies a state change, so
an agent does not have to set up callbacks with the hardware
to confirm that a command was successful. Leaf agents are
already required to monitor the hardware they control for
changes in order to accomplish the second major use-case
of OAK. Therefore, the leaf agents wait for reactions from
hardware monitors to indicate that the command has been
successful. The agent is then free to pass out goals that were
order dependent on the goal just implemented. Since state
changes are propagated up the hierarchy, agents at higher
levels are also informed that their goals were implemented
and they can then pass out goals that had to be put in a wait
state. To an implementer of OAK, this means that the in-
coming goal use case and the state change use case, which
comprise the two major functions of OAK, are decoupled.

Reacting to State Changes To appropriately handle
changes in the state of the system, OAK uses a model-based
reasoning engine (MBRE)(Kurien & Nayak 2000). In this
section, we follow the sequence of events that are implied
by a state change in OAK.

State change events are transmitted through the use of
a fact message. This message contains a representation of
the knowledge contained in an agent. When states change,
all subscribed agents are informed, and propagation of state
changes begins. Note that since many agents may subscribe
to an event, state changes may be propagating in several sub-
trees at any given time.

One of OAK’s strengths is an agent’s ability to determine
the state of its model, compare that state to a knowledge
base, and reactively plan. Thus, an agent can autonomously
control its domain until an agent that is higher in the hier-
archy (or in the case of the root agent, the external actor’s
agent) preempts its control. The component of OAK that
controls reactive planning is called the reactive manager.

IAAI-02 915

There are two types of information in the reactive manager:
persistent goals and emergency conditions.

Persistent goals are simply goals that are desired true for
the duration of the agent.

We define an emergency condition as a state that cannot
be reversed and requires OAK to act immediately to protect
the resident system. When OAK detects an emergency, it
will preempt the external actor’s goal and go to a predeter-
mined goal that will minimize damage to the system being
modeled. From this point on, goals from the user are im-
plemented as completely as possible based on the damage to
the system.

Planning
OAK agents must be able to plan in order to achieve speci-
fied goals. The plan format is an ordered sequence of frag-
ments. Each fragment consists of one or more subgoals. The
idea is that, within a fragment, each subgoal may be accom-
plished in parallel, while subgoals in a prior fragment must
be completed before the current fragment may be attempted.
OAK executes a plan once it has been developed by trans-
mitting each subgoal at the appropriate time to the appropri-
ate agent or piece of hardware and waiting until those sub-
goals are accomplished or fail.

Different planners may be appropriate for different agents
depending on the domain being planned. Therefore, the
planner is instantiated at run-time differently for each agent
from a group of developed planners. So far, two plan-
ners have been developed. The deployed planners are the
Scripted Planner and the highly specialized Graph-Based
Planner.

The scripted planner is extremely simple but useful for
simple agents, such as leaf agents. The scripted planner
matches on the incoming goal and a propositional logic
expression about the current world-state, producing a pre-
defined response. Different propositional expressions, and
therefore plans, may be associated with each incoming goal.
Also, since the scripts are checked in a specific predefined
order, a simple priority of plans can be imposed.

The graph-based planner was written specifically for the
test domain described below. Planning consisted of deter-
mining how to move flow from a source to several sinks
through a dynamic pipe network, with many operational
constraints. The problem representation was a digraph, with
weights on each edge according to the constraints. The plan-
ner operated by performing Prim’s Minimum Spanning Tree
(Prim 1957) algorithm on the graph to determine how to get
flow to as many of the desired sinks as possible. The planner
determined the actions that each agent would need to take
and would generate a plan based on the actions determined.

Implementation
OAK has been implemented on the Chilled Water Reduced
Scale Advanced Demonstrator (RSAD) at the Naval Surface
Warfare Center (NSWC) Philadelphia. The RSAD, seen in
Figure 1, is a reduced scale model of the Arleigh Burke
Chilled Water system. The RSAD is a physical implementa-
tion of two Arleigh Burke chilled water zones using reduced

Figure 1: Reduced Scale Advanced Demonstrator (RSAD)

scale equipment. The RSAD contains four pumps, two
chiller plants, two expansion tanks and approximately one
hundred controllable valves. In-line tanks containing con-
trollable heaters simulate equipment that is directly cooled
by the chilled water system. The units of equipment cooled
by the chilled water system are known as loads. The RSAD
includes sixteen simulated loads.

The RSAD control prototype uses twenty OAK agents to
control the RSAD’s pumps, plants and valves. Each agent
contains its own diagnostic engine, planning engine(s), ex-
ecution managers, and the ability to receive and propagate
goals and facts. The agents are organized hierarchically with
agents controlling individual hardware components, small
aggregations of components, system level abstractions, and
the ship.

The L2 inference engine was used within the OAK agents
as the diagnostic engine. L2 is NASA AMES Research
Center’s second generation model-based reasoning engine.
L2, and its predecessor Livingstone, are based on Williams’
model-based reasoning approach.(Williams & Nayak 1996)
Livingstone was demonstrated as a diagnostic tool for fault
analysis of satellites in a 1998 experiment on NASA’s Deep
Space One(Muscettola et al. 1998). Models processed by
L2 are written in the Java-Based Model Programming Lan-
guage (JMPL). L2 provides multiple candidate identification
and resolution strategies. The strategy used for the RSAD
prototype is CBFS(Kurien 2001). The L2 CBFS implemen-
tation uses constraint satisfaction to identify candidate sys-
tem states. The candidate states are then maintained as hy-
pothetical belief states over time. Each successive observa-
tion is used to update the stored belief states and to gener-
ate new hypothetical belief states. L2 provides a likelihood
rank associated with each belief state. OAK reconfigures the
RSAD based upon the current most likely belief state while
maintaining other trajectories. The reasoning system is non-
monotonic, as active belief states will be abandoned if future
observations provide support to other previously less likely
possible belief states.

Each OAK agent contains a JMPL model of the real-world
system or subsystem for which it is responsible. The model
includes POMDP representations of components within the
agent’s system or subsystem.

916 IAAI-02

The ship agent’s planner accepts high-level goals from
the ship’s Command Center. The ship agent also accepts
inferred facts from the intermediate agents that express the
believed state of the ship systems. The ship agent planner
generates goals for the intermediate agents.

The Chilled Water agent is the only intermediate level
agent currently implemented in the RSAD prototype. The
model used for diagnosis in the chilled water agent consists
of twenty-one components. Each component represents a
small cluster of machinery within the RSAD. The Chilled
Water Agent directly controls eleven of these components.

Beneath the Chilled water agent in the hierarchy are eigh-
teen low-level agents. These agents manage the two cooling
units with their supporting valves and regional valve-pipe
aggregate components within the chilled water system.

Results
Three test sets were performed for the RSAD implemen-
tation of OAK. The first round of testing was performed
for and by the development team. The second round of
testing was performed with control systems engineers from
the Naval Surface Warfare Center Carderock Division Ad-
vanced Auxiliary Controls and Automation Group (NSWC-
CD Code 825) who are familiar with the Arleigh Burke aux-
iliary systems. The third round of testing was performed for
representatives of the ship construction industry. All three
sets of testing followed the same format. All tests were per-
formed with the RSAD hardware. Four types of test sce-
narios were performed during each test set. The first three
scenarios were designed to provide basic coverage of the pri-
mary OAK capabilities. The final portion of testing was ad
hoc, and provided the testers an opportunity to game the sys-
tem. During the second and third test sets, hardware faults
were instigated by either physically disconnecting a compo-
nent from its power supply or by physically disconnecting a
component from the control network.

The first test scenario was used to demonstrate OAK’s
ability to reconfigure the RSAD based on high level oper-
ator goals. During this test scenario the RSAD was given
consecutive commands from a Command and Control simu-
lator to move from one “ship state” to another. The four ship
states each have a unique combination of desired states and
fitness criteria.

The second test scenario consisted of inducing a series of
sequential component failures that initially force OAK to re-
configure the system in order to satisfy the high-level goals
and eventually degrade the RSAD so that the RSAD’s stated
goals are no longer achievable. The second scenario was
also specifically designed to test the non-monotonic capabil-
ity of the reasoning engine. An improbable component fail-
ure that was observationally indistinguishable from a prob-
able failure was generated resulting in a misdiagnosis. Sub-
sequent failures generated observations that re-enforced the
correct belief state and caused a change of hypothesis within
the inference engine.

The third scenario consisted of inducing simultaneous
failures to multiple components within the RSAD.

Throughout the testing OAK consistently demonstrated
the ability to plan, execute, and propagate facts and goals

between agents. During the first test set, the test team found
in OAK the propensity to select a legitimate yet unlikely
candidate from a set of possible candidate diagnosis. This
problem was addressed by modifying the agent topology for
the RSAD implementation. After modifications were made,
all three test sets were successfully completed. In total, four-
teen separate multi-stage tests were conducted. During these
fourteen tests, OAK performed thirty-four diagnose-plan-
execute cycles. OAK was able to identify the most proba-
ble failure scenario when insufficient observables presented
multiple indistinguishable situations: also, OAK demon-
strated the ability to retroactively update its belief state when
evidence was provided to support what had been a less prob-
able candidate solution.

In some cases, equivalent “best fit” reconfigurations were
available. In these cases the observing mechanical engi-
neers noted that OAK’s reconfiguration was occasionally
“unusual” or “not what I would have selected”. However,
upon inspection, the selected reconfiguration was always
consistent with the reconfiguration goals and fitness criteria,
and considered reasonable by the observing engineers.

In addition to planned testing, twice during the third test
set the RSAD experienced unexpected hardware failures.
One failure consisted of a chiller plant unexpectedly failing
to the OFF state. Another failure consisted of a valve un-
expectedly failing to STUCK SHUT. During both of these
unexpected failures, OAK correctly diagnosed the failures
and successfully reconfigured the RSAD.

OAK’s planning and execution capabilities succeeded in
performing a successful reconfiguration of the RSAD in all
test cases. In all cases where a complete solution was avail-
able, a solution was found. In cases where multiple solu-
tions were available, OAK was able to determine and select
the solution deemed optimal in accordance with the fitness
criteria expressed in the script-planner rule base. When no
complete solution was available, the “best fit” partial solu-
tion was identified and executed.

Difficulties Distributing Diagnosis in Strongly
Coupled Systems
Each OAK agent maintains the ability to obtain observations
and perform diagnostics on components that the agent con-
trols. Individual agents use observations to infer component
states within the agent’s sphere of influence. Information on
component states are propagated throughout the agent com-
munity by disseminating facts that represent the belief state
of the agent-modeled subsystem. The model and diagnostic
engines within individual agents are independent and, by de-
sign, capable of performing diagnosis in isolation from other
agents. When an observation is made that conflicts with the
model’s current belief state (indicating a fault within the sys-
tem), the reasoning engine attempts to resolve the conflict
internally. When the observation and faulty component(s)
are both contained within the same agent/model, OAK was
found to correctly diagnose component failures. However,
when a conflicting observation is observed by one agent and
the failed component is within the sphere of influence of
another agent, and a candidate failure within the observing
agent’s model exists, the observing agent will attempt to re-

IAAI-02 917

solve the conflict prior to disseminating observations. Since
a candidate solution does exist, the observing agent will re-
solve that its internal solution is correct and disseminate the
belief that its internal component is faulty. This can result
in OAK selecting a less likely candidate state for the system
over a more likely candidate.

The potential to select unlikely candidate failure states
was mitigated by removing the diagnostic portion of the
control loop from those agents that did not have access to
observables either directly or through subordinate agents.
Diagnostic responsibility for components that did not have
access to observables was the undertaken by the lowest par-
ent agent in the hierarchy that did have access to the nec-
essary observations. In the RSAD implementation, this in-
volved moving the diagnostic responsibility for the chiller
plant agents into the Chilled Water agent. All agents re-
tained the ability to make observations, plans and execute
commands. Thus modified, OAK was able to successful
complete all three sets of tests.

Future Work
While the principle of OAK has been demonstrated in a real
world setting, additional non-AI related steps are necessary
for OAK’s acceptance into ship construction. A partial list
of future non-AI activities include the creation of a mature
set of modeling tools, development tools, and testing upon
actual ships.

Future AI related activities involve the extension of the
modeling capability (and corresponding model-based rea-
soning) to include more diverse and sophisticated represen-
tations. The most straightforward modeling extension in-
volves the detailed modeling of the other auxiliary ship sys-
tems; namely the electrical and low pressure air distribution
systems. Slightly more sophisticated is the ability to incor-
porate a model of the control system itself into the ship sys-
tems model. By modeling the control network and the com-
puting infrastructure, the control system becomes capable of
reasoning with an inability to command otherwise functional
components. Particularly interesting is the possibility that
operating agents could jointly control a system through ob-
serving each other’s behavior should their communications
become severed.

In addition to extending the modeling capabilities later-
ally, more comprehensive control may be found by extend-
ing the modeling vertically as well. In the RSAD imple-
mentation, the ship model above the chilled water system
was limited to a simple finite-state model of the basic ship
operating modes. Complex models of ship operating prac-
tices and policies have been developed. Extending OAK’s
modeling capability upward to incorporate both fluid control
and operational models within a common reasoning system
would further improve OAK’s effectiveness. OAK may be
improved by extending modeling downward as well. JMPL
lacks the sophistication to represent detailed fluid systems
normally modeled by ordinary differential equations. Hy-
brid modeling involving discrete and continuous models is a
large vibrant community.

Finally, distributed non-monotonic reasoning should be
investigated. Recall that while facts and goals are shared

between agents, reasoning is performed in isolation. The in-
ability to send out tentative facts limits diagnosis to encapsu-
lated systems that have co-located components and observ-
ables.

Conclusions
OAK has successfully demonstrated the ability to au-
tonomously control complex, sparsely observable systems
with social distributed agents that use model-based rea-
soning for system diagnosis. Specifically OAK has been
demonstrated on a reduced scale version of a US Navy de-
stroyer’s chilled water distribution system. The design of
OAK is not ship system specific, and OAK has the potential
to improve the autonomous control of real-world systems
that exhibit similar traits. Systems OAK should be effective
in controlling include electrical utilities, water utilities and
communications systems.

Acknowledgments
We conducted this work as part of the Office of Naval
Research “Machinery Systems and Automation to Reduce
Manning” program under contract N00014-00-C-0050. The
RSAD and low-level control software was developed and
provided by the Naval Surface Warfare Center Carderock
Division Advanced Auxiliary Controls and Automation
Group. Don Dalessandro, Brian Callahan, Richard Avila
and William Basil provided substantial insight into the Ar-
leigh Burke auxiliary control system design and Naval doc-
trine. John Bracy contributed to the editing of this paper.

References
Cassandras, C., and Lafortune, S. 1999. Introduction to
Discrete Event Systems. Kluwer Academic Publishers.
de Kleer, J., and Williams, B. 1987. Diagnosing multiple
faults. Artificial Intelligence 32:97–130.
Kuipers, B. 1994. Qualitative Reasoning. The MIT Press,
Cambridge MA.
Kurien, J., and Nayak, P. 2000. Back to the future for
consistency-based trajectory tracking. In Proceedings of
AAAI-2000.
Kurien, J. 2001. Model-Based Monitoring, Diagnosis and
Control. Ph.D. Dissertation, Brown University Dept. of
Computer Science.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before. Artificial Intelligence 103:5–47.
Prim, R. 1957. Shortest connection networks and some
generalizations. Bell System Technical Journal 36:1389–
1401.
Williams, B., and Nayak, P. 1996. A model-based ap-
proach to reactive self-configuring systems. In Proceedings
of AAAI-1996.

918 IAAI-02

