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Abstract 

The General Motors Variation-Reduction Adviser is a 
knowledge system built on case-based reasoning principles 
that is currently in use in a dozen General Motors 
Assembly Centers. This paper reviews the overall 
characteristics of the system and then focuses on various AI 
elements critical to support its deployment to a production 
system. A key AI enabler is ontology-guided search using 
domain-specific ontologies. 

1. Introduction  

The Variation-Reduction Adviser (VRA) is a knowledge 
system for automotive assembly plants whose goal is to 
support quality improvement activities for assembly line 
processes. (Cafeo et al., 2001; Morgan et al., 2001) The 
primary use of the VRA is to improve communication in 
the plants and between plants to assist with problem-
solving necessary to keep the line producing the highest 
quality products. Our original prototype was tested by a 
“dimensional management”  team working on “variation 
reduction”  problems in a plant. Currently, other teams 
including “paint,”  “maintenance,”  and “general assembly”  
are testing it at various plant locations, so its range of 
application includes a whole cluster of related assembly-
plant domains. While its original name reflected the 
specific focus on dimensional analysis for variation 
reduction, we have kept this name and broadened its 
interpretation following the principle of kaisan, that all 
improvements in process can be viewed as “variation 
reduction.”   
 
     The VRA was originally conceived as a case-based 
reasoning (CBR) system (Leake, 1996) and retains case-
based features. Its failure as a pure CBR system for social 
reasons is one of the interesting aspects of this application. 
That this failure induced us to introduce an ontology-
guided search (OGS) functionality not originally planned 
is another interesting aspect.  In this paper, we will focus 
on the AI perspective of our business task, pointing out the 
problems being addressed, some challenges encountered 

in the field, our solution strategy, and an evaluation of the 
value added by the system.   
 

There are, of course, recognized relationships between 
various aspects of knowledge management and AI. See, 
for example, the survey (Smith and Farquhar 2000). AI 
has been used for planning in manufacturing; for example, 
DLMS (Rychtyckyj 1999) and “The Stamping Adviser”  
(Leake et al. 1999). The VRA is more closely related to 
problem-solving systems; for example, Ford’s eBPR 
(Kwiecien et al. 2001), Schlumberger’s Eureka/InTouch 
(McDermott et al. 2000), and Xerox PARC’s Eureka 
(Bobrow and Whalen 2002). All of these have common 
elements with the VRA of best practices, peer-to-peer 
sharing, and diagnosis, as well as some commonality in 
their choice of AI tools. The main differences include the 
VRA’s focus on manufacturing (including its community-
of-practice-specific diagnostic ontologies) and the fact that 
its “best practice”  functionality is peer moderated rather 
than “managed.”  We lack the space here to compare these 
various systems at length. 
 

The VRA prototype is currently in production use in 
about twelve GM Assembly Centers. The original system 
is in English, but there is a Spanish version in use in two 
Mexican plants, and a German version is being tested.   

2. Task Description 

The VRA addresses two primary issues with respect to 
plant production.  First, there are many people working on 
tasks across multiple shifts, and these people must 
communicate about their progress and problems.  The 
second is that plants need to maintain a record of updates 
to equipment and work done.  The VRA fulfills both these 
needs, which are relatively short term in nature. The 
combination of these two types of entries, when viewed 
from a longer perspective enable the VRA to also function 
as a lessons-learned system for assembly plants, providing 
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a “memory”  for solutions and a repository from which 
“best practices”  can be extracted.  

3. Application Description 

The VRA architecture includes viewing and authoring 
subsystems, with a variety of domain-friendly features, 
support functions, a database of entries, and search and 
summarization functions. Also included are database and 
ontology maintenance functions. The VRA is organized 
around “entries.”  Each entry has some attribute values 
(entered via pull-down lists) and also a block of free text. 
Graphical attachments are optional, but useful. See 
(Morgan et al. 2003) for screen shots and a fuller 
description of the user interface. The application is 
currently being converted from Microsoft Visual 
Basic/Access to a web-based version with more powerful 
database and search support. We have been assisted in this 
by members of the PARC scientific staff, who joined the 
project in 2003 to assist with in-plant social-technical 
analyses and with this web-based transition. 
 

The key AI elements are the case-based features and the 
elements of the domain-specific ontologies and ontology-
guided search. These are discussed further in the 
following two sections. 

4. Uses of AI Technology: CBR 

The VRA was originally conceived as a classic feature-
vector-based diagnostic case-based reasoning (CBR) 
system. It was quickly realized, however, that a strict 
feature-based CBR model would not work because of the 
complexity of the problem-solving process. This is 
described in Section 4.1. The system based on the model 
in Section 4.1 became version 0 (VRA-0) of our system, 
described below. In response to user feedback, we 
developed VRA-1, which is VRA-0 weakly linked to a 
communication log. After VRA-1 was further tested, a 
new version, VRA-2, was created. In (Morgan et al., 
2003), the evolution from VRA-0 to VRA-2 is detailed. 
Here we only sketch this evolution and note the main AI 
features. 

4.1 A Case Structure for a Complex Diagnostic 
Environment 
Consider a diagnostic environment in which, for each 
case, a small subset of a large set of symptoms can arise. 
Some of these symptoms will be the results of tests. These 
tests are not performed in any fixed order, but at the 
discretion of the technicians. No particular subset of tests 
is always performed. A case consists of symptoms, results 
of tests, results of inspections (a kind of test), results of 
actions (e.g., replace a part), resolving actions and 
ultimately the root causes.  This formulation fits our 

domain and also that of the National Semiconductor case 
structure described in (Watson, 2002, Chapter 3). 
 
     A fixed-length feature vector cannot capture a case 
because: (1) the attribute values are naturally grouped (by 
symptom, test, etc.), so that there are repetitions of values 
for the same attribute that must be properly associated 
with each other; (2) cases do not have a natural fixed 
length; (3) there is a time sequence for these groupings of 
attribute values that has physical significance and that 
changes from case to case. A case needs to be a reasonable 
summary of what happened as symptoms, tests, 
inspections, and results occurred, a comprehensible record 
that a person can read and understand. Thus, for VRA-0, 
we devised the following structure: a case is defined to be 
a sequence of observations. Observations are classified 
into a finite number of types. Each type is represented by a 
templated sentence. These sentences capture symptoms, 
results of tests, actions, resolutions and a few other types. 
A vector of attribute values represents each type of 
observation, where the values are the fillers of the slots of 
the templated sentence. Thus, a case is a sequence of 
observations of various types, and the types occur in no 
particular order, although they are taken from a finite set 
of types. This formal structure seems to be detailed enough 
to capture the important aspects of the diagnostic process, 
and it is vastly more structured than free text. Similarity 
between cases is built up from similarity between values of 
attributes and similarity between observations.  See 
(Morgan et al., 2003) for details. 

4.2 A Knowledge Structure Emphasizing 
Communication Over Problem Solving 
After using VRA-0, the users asked us to provide them 
with a log environment, in which a few categorizing 
attributes may be selected via pull-down menus, and then 
the user is free to enter content as a block of text. This log 
system began as a supplement to the CBR system (creating 
VRA-1). However, it quickly became a focal point of the 
implemented system. In fact, the log flourished while the 
CBR system languished. The users found significant 
benefit in having a distributed online mechanism for 
capturing semi-structured input of daily events.  They 
could not make much use of the CBR system for 
recovering previously solved problems, however, because 
they would not author enough cases to “boot strap”  the 
archive.   
 
     The next version of the VRA, VRA-2, thus focused on 
the communications and log aspects of the system. One 
way of describing this evolution is moving from the 
context of CBR with a focus on structural similarity to that 
of computer-supported cooperative work (CSCW) with a 
focus on communication [see (Ackerman, 2003)] and 
simple natural language input. This could be viewed as a 
movement away from structured AI as a primary solution 
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strategy.  However, VRA-2 has seen a technology pull for 
a different kind of AI, in requests for a smart search 
capability. That is, the original desire to recover solutions 
to problems, when the problems re-occur, remains.  Users 
want to be able to find previous cases similar to a current 
problem, even though they are unwilling to contribute 
more case-authoring effort than making entries in a 
written log book. Originally, the CBR structure facilitated 
the retrieval of past similar cases. VRA-2 does not have 
the symptom information captured in a structured way, but 
this CBR recall function may be “salvaged”  via OGS. Our 
solution uses ontologies (see McGuinness 2002) as a way 
of encoding context and symptoms. This is exploited when 
we process queries in a query expansion style (see 
McGuinness 1999) to yield a functionally smarter search 
capability. 
   

The core of the VRA-2 observation is a free-text block, 
in which any number of sentences might be written. 
Attached to this free text are classifying attributes, whose 
values are chosen by the user from pull-down menus. 
Here, some structure is restored, but users cannot enter 
symptom descriptions from the pull down menus.  This 
kind of interface was the one required to maintain a 
satisfied user base. Although we would have liked an 
interface that allowed users to input more structure, that 
kind of interface was not operational in our plant settings.  
Thus, much of the content in our database is available 
only as unstructured text. In particular, the symptoms of 
the problem are described only in the text. Thus, the 
clarity of knowledge capture and the structured similarity 
search of VRA-0 are lost in VRA-2.  
 

The socio-technical interplay here is interesting. 
Although there were some technical challenges, the core 
reasons for evolving from VRA-0 to VRA-2 were social: 
the users did not think they had the time to author cases, 
and it was not feasible to create a dedicated group of case 
authors. More details concerning the system evolution and 
the social and technological issues influencing the 
evolution are in (Morgan et al, 2003).  The users, 
however, were enthusiastic about using the VRA as a 
communication tool, as it was recognized that this 
immediately helped daily work. Since the elements of 
cases were being captured in partially structured log 
entries, we decided that this database of log entries might 
still function as a lessons-learned archive (the original 
purpose of the CBR system), if a sufficiently “smart”  
search engine could be devised. The next section describes 
the VRA needs for ontology-guided search and our 
solution path. 

5 Uses of AI Technology: Ontology-Guided 
Search  

The VRA achieved striking early acceptance while 
functioning essentially only as a communication tool.  Its 
primary everyday impact was to facilitate communication 
across shifts of staff, and it had the added value of being 
available from multiple workstations, thereby replacing 
the single written logbook.  While it has had significant 
impact providing improved communication, it is also a 
problem-solving tool. Previous entries in the database that 
have relevance to new issues can be found.  It can also be 
searched to provide automatic report generation about 
problems and work items over particular time periods, by 
plant, by zone, and by worker or work area. 
 

The current VRA allows several versions of simple 
string-based search. However, the user community 
specifically requested the ability to locate references to 
concepts and log entries that are “related”  to their search 
terms, either for search queries that fail to retrieve any 
exact string matches or for queries that do return results 
but have additional closely related concepts that may also 
be relevant for the user.  For these reasons, we have 
constructed an OGS engine to infer structure and inter-
relationships on the free text without requiring the user to 
take on the additional burden of more complicated data 
entry. While an alternative might be to capture user 
entries in a controlled, semi-structured language, based on 
previous GM work on controlled languages (Godden, 
1998), we believe that this would place too great a burden 
on users even if the VRA had a built-in controlled 
language checker. Another alternative would be to depend 
upon markup information generated either by automatic 
tools or humans and then search on the meta information. 
However, GM deployments have found that users are 
unwilling to do manual markup.  Additionally, automatic 
markup tools might provide some assistance both in 
generating background ontologies and in providing 
automatic markup.  While Clear Forest and other similar 
tools have useful entity identification and extraction 
capabilities, they are primarily used for text analysis and 
mining, and do not contribute substantially to our initial 
work in ontology creation and use.  We are, however, 
actively evaluating such tools for follow-on research 
regarding the identification of causes and corrections of 
plant issues described in VRA user logs. 
 

Prior work using data that was contracted to be marked 
up using controlled vocabularies (using either manual or 
automatic techniques) was found to be inconsistent and 
inadequate for dependable searches (McGuinness 2000).  
Thus, while our work will use meta tagging information if 
available, it does not count on this meta information. An 
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anonymous reviewer adds “Schlumberger worked on 
automatic meta-data collection in 2001-02 and eventually 
concluded that the available systems did not eliminate the 
need for a manually generated taxonomy.”   
 

Our approach uses ontologies we built from the starting 
points available from within the company and driven by 
the needs of our application.  We did not take an approach 
that utilizes automatically generated taxonomies.  As has 
been pointed out in other literature (e.g., Delphi, 2002), 
automatically generated taxonomies can require large data 
sets for training as well as having control and accuracy 
issues and, while they may have benefits of scaling and 
certain kinds of efficiency, the tradeoffs were not seen to 
be of benefit to our effort. 
 

The supporting domain ontologies facilitate intelligent 
search of unstructured text. Seven interrelated ontologies 
comprising approximately 200 concepts have already been 
seeded for the first OGS prototype, including:  

• Process elements – tooling, robots, operators, 
transfer mechanisms, welding, anything used to 
make a vehicle that is not a part of the vehicle. 

• Process issues – e.g. robot failures. 
• Parts, subassemblies, and part features - Parts are 

individually inventoried items that make up the 
vehicle, e.g., the left front door handle.  
Subassemblies are specific to the manufacturing 
process.  Part features include commonly 
referred to items such as the door ring that are 
abstractions of various parts and subassemblies.  

• Single part issues – relate to only one vehicle 
component, e.g. a ding in a fender 

• Multiple part issues – relate to two or more parts, 
especially misalignments, unsatisfactory gaps, 
malformations of joints between parts. 

• Data analysis – results of analysis of 
measurement data generated by optical and 
mechanical gages.   

• Plant locations – zones and stations organized 
topologically or functionally 

 
These initial ontologies include common terms and 

morphological variants used in the plants.  The ontologies 
contain information found in log entries, synonyms and 
common misspellings, as well as a canonical form of each 
concept. For each ontology, we capture subclass 
relationships between concepts (e.g. ‘Hood’  is a subclass 
of ‘Panel’ ) as well as “part-of”  relationships (e.g. 
‘Tailgate’  is part-of a truck ‘Box’ ).  Additionally we 
capture various semantic properties of the concepts such 
as front vs. rear position as well as indications of the 
source of the concept, person who entered the concept into 
the ontology, etc.   
 

The initial ontology built for enhanced retrieval focuses 
on subclass, synonym, and containment relationships 
along with meta information for ontology evolution.  We 
have done some additional design work on using more 
sophisticated ontologies with expanded property 
information including more value restrictions, cardinality, 
enumerated filler sets, etc. At present, the ontologies are 
being maintained in the Protégé-2000 environment and 
deployed into the VRA in RDF format.  We may convert 
to OWL in the future if user feedback indicates the need 
for greater expressive power. 
 

The initial search algorithm for the VRA uses both the 
subclass and part-of relations, but this could expand in 
future versions as usage analysis is performed.  Synonyms 
in the target text are normalized to a canonical form 
during the search before comparison is made with the 
ontology.  After exploiting this simple similarity-based 
retrieval for terms from background ontologies, we will 
evaluate how well the retrieval is doing, and we do not 
anticipate the need for any full or partial parsing of the 
natural language text.  We expect results similar to those 
found in PChip (McGuinness, 1999) and FindUR 
(McGuinness, 2000).  In those applications, we found 
improved recall with little degradation of precision.  Thus, 
without OGS, simple textual searches typically missed 
relevant information because the documents (in this case, 
the log entries) were short and contained few words to 
search on.  When ontology-enhanced search was used, 
queries were expanded to include more words to search for 
and thus, relevant documents could be found.  Since the 
documents being searched were in a limited domain, there 
were few problems with multiple senses of words 
introducing problems that hurt precision. In our database, 
case entries are similar – the textual fields do not contain 
long descriptions and the content is limited to plant 
assembly information.  In the full range of FindUR 
deployments, query expansion was done along a range of 
complexity.  The simplest deployments used subclass 
relationships only and more sophisticated search 
interfaces leveraged domain and range information, value 
restrictions, cardinality, disjoint class information, 
enumerated sets, roles and subrole hierarchies.  When 
interface requirements were such that they demanded 
more expressive and precise query manipulation, the 
additional ontological information was leveraged 
effectively.   When however interfaces were required that 
simply used straight text input, the simpler ontologies 
were used as background information.  We are exploring a 
similar deployment strategy here. 
 
 Evaluation criteria for search include: 

• Impact on precision and recall using individual 
ontologies. 

• Review of structure modification requests.  (For 
example, it is not clear in advance how important 
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term relationships will be, compared to raw 
occurrences of terms.) 

• Review of user interface concerns regarding user-
suggested updates, as cited below. 

• Review of requests to evaluate if patterns emerge, 
conflicts arise, ontologies become stable, etc. 

6 Application Use and Payoff 

The VRA has been deployed in one plant for about four 
years and in nine plants for over one year, with new 
installations in an additional two plants. In each plant 
where it is deployed, the VRA is used daily. For example, 
at the GM truck plant in Silao, Mexico, the Dimensional-
Engineering Team begins their daily morning meeting 
with a review of the previous day’s entries. About 10 
entries are created per day per shift in the plants where it 
is installed.  
 
 A formal business case was created to quantify the 
benefits and payoff of the VRA, and we will sketch the 
elements of this business case here. The business case 
presents evidence that the VRA is a mechanism for cost 
avoidance, a more systemic concept than cost savings. 
Scenarios are constructed about “events”  that generate 
cost. Formulas estimate how using the VRA reduces these 
costs. The frequency of the events over a time period (like 
a year) is estimated. The result is a dollars/year estimate of 
cost avoidance generated by using the VRA. 
 

For the VRA we had three scenarios:  
1. "Wasted Time in Connecting" In this scenario, we 

envision an exchange between two team members in 
which there is wasted time, say, via "telephone tag" or 
by losing notes that have to be recovered or by 
forgetting to respond to a request or other such "slips" 
that can occur when everybody is busy and doing a 
number of things at the same time. 

 
2. "Continuous-Improvement Problem Solving" 

Typically, this includes two types of activities: (1) 
reducing process variation and (2) resolving small 
issues not likely to require rework (adjustments to a 
vehicle before it can be released from the factory).  

 
3. "Crisis Problem Solving" The events for this scenario 

are "breakdowns" that cause definite warranty or 
rework until they are solved. These problems 
generally get a lot of attention when they occur. 
Solving these, definitely and directly, improves the 
productivity of the plant and the overall quality of the 
vehicle output.  Additionally, since warranty claims 
quantitatively decrease customer loyalty, fixing this 
problem also addresses customer loyalty. 

 

The first two scenarios have to do with moving the 
work process to a less wasteful state. The third scenario 
has to do with returning the current state of the work 
process to its normal operating conditions.  
 

In the first two scenarios, jobs are done quicker and less 
time is wasted. This time savings is converted to a dollar 
figure by multiplying by a wages/hour estimate. Here we 
could have left the savings in hours  rather than 
converting to dollars. In a company where contracts fix 
most wage costs, it may not be realistic to convert time 
savings to dollars, as if wages could be “saved.”  However, 
this device of converting time to money might be accepted 
as a metaphor for the value of saved time, without 
interpreting it literally. 
 

In the third scenario, the value of avoiding rework, 
warranty costs, and lost sales are converted to dollars via 
economic models. Additionally, lowered warranty usage 
translates to higher customer satisfaction and a higher 
percentage of return customers.  Establishing a rigid 
analytical justification for the assumptions in such models 
and for values of their parameters is difficult, and we 
made do with “best guess”  estimates in combination with 
some quantitative market research numbers which were 
available. Even with the variability of the evaluation 
parameters, using conservative scenarios showed 
considerable cost avoidance. 

7 Application Development and Deployment 

The development process began at the GM Research and 
Development Center. It was noticed that complex 
dimensional-management problems were being solved 
daily in the assembly plants without any systematic record 
being kept of this problem-solving activity. This suggested 
a CBR system, and a first prototype was constructed at the 
R&D Center. Its evolution under user feedback is 
described in Section 4. Four researchers working 
approximately 20 hours/week each, with the cooperation 
of 2 or 3 plant engineers over a year yielded essentially the 
“final”  prototype, using Microsoft Visual Basic and 
Access. Since then, there have been many evolutionary 
changes and a process to convert the code to a web-based 
system. 
 
 Currently, a software supplier is working with us on a 
“production hardened”  version of the web-based code. The 
cost of basic development was the salaries of the involved 
parties. As the project matured, suppliers have been 
involved with completing and hardening the code, which 
has involved further cost. Most of the difficulties 
encountered in this project have to do with the human-
computer interface and in fitting the system into the plant 
workflow and sharing patterns. Here is a list of some of 
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the practical lessons learned from our experience 
designing, developing, and deploying the VRA. 
• The interface for input and retrieval in our plant 

settings needed to appear simple and natural.  Thus, a 
natural language input and output format was 
required. 

• While structured case information may be seen to 
have future value from retrieval and reporting 
perspectives, this was not viewed to have enough 
benefit to offset the perceived burden of authoring 
case information in a structured format.   

• The exact form of the user interfaces and their 
supporting structures cannot be worked out "in 
advance." Rather, the user community must be given 
the opportunity to try out prototypes and have them 
modified based on experience. This is consistent with 
the grassroots development process noted in (Morgan, 
2002). 

• Improved communication is received with more 
immediate enthusiasm than providing a problem-
solving tool, whose usefulness takes time to establish. 

 
While we hoped the incentive of being able to re-use the 

solutions to previously solved problems would be enough 
to motivate the users to author structured cases, we found 
this was not so. They would use the system only via 
natural language input.  Thus, our only options were to 
have authors or editors separate from the users (impossible 
in our setting) or to provide a mechanism that provides 
some access to the structure and content implicit in the 
free text fields. We believe that our ontology-based 
approach to smart search is an appropriate reaction to the 
environment we find in our plants and offers a place for 
AI technology to provide value and impact in industrially-
deployed plant communication and retrieval systems.  

8 Maintenance 

Once an application is dependent upon a background set 
of knowledge, it becomes important to have an evolution 
environment for obtaining, checking, and maintaining the 
knowledge.  For example, a new interface to support OGS 
will allow a user to make a suggestion to add a term to a 
particular ontology. We are currently investigating the 
requirements for such an interface.  The suggestion log 
would then be submitted to an internal ontology owner for 
approval and incorporation into the next version.     
 

Both academic and industrial work has been done on 
ontology evolution environments that this project can 
draw on.  In a paper entitled “ Industrial Strength 
Ontology Management”  (Das et al., 2001), a list of 
ontology management requirements is provided that we 
endorse and include in our evolution plan: 

• Scalability, Availability, Reliability and 
Performance  

• Ease of Use by domain literate people 
• Extensible and Flexible Knowledge 

Representation 
• Distributed Multi-User Collaboration 
• Security Management 
• Difference and Merging 
• XML Interfaces   
• Internationalization, including support for 

multiple languages 
• Versioning  

 
    Over time, as analysis is done on the size, usage, and 
updating requirements of the ontologies, we will create an 
ontology evolution environment that addresses the 
concerns listed above that are most important to the GM 
deployments. We anticipate ease of use, availability, and 
multi-user collaboration to be the most important initial 
concerns. However, difference/merging, versioning, 
extensibility, and internationalization will become more 
important as the VRA has a longer life and is deployed in 
more varied locations.  As already noted, the VRA 
application is available in English, Spanish and German. 
Maintaining versions in different languages obviously has 
ontology implications. 
.  
 

The VRA will continue in the near term to be guided by 
the research group, but our plan is for the plant data 
managers (one per plant) to handle the day-to-day 
management of each plant system, while a few selected 
managers will control the ontology maintenance process. 
Each GM vehicle model is manufactured for a period of 
years, so the knowledge refresh process can have an 
evolutionary flavor. The “model changeover”  process will 
use the VRA as a diagnostic aid, and this will prime the 
knowledge base as new vehicles are produced. 

9 Summary and Discussion 

Working closely with the GM Assembly Centers, we have 
deployed an AI-based knowledge system, the Variation-
Reduction Adviser, which has accomplished measurable 
benefits for the GM vehicle-assembly process. As a result, 
the system is being deployed to all assembly centers, and it 
is in daily use in all the centers in which it is currently 
deployed. 
 

The system underwent a considerable degree of 
restructuring based on user feedback. This feedback 
focused on the perceived burden of authoring structured 
cases. An ontology-guided search mechanism has been 
designed to allow free-text case authoring, while 
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maintaining the use of the case base as a solved-problems 
archive.  
 

The success of the system is due to its ability to address 
everyday needs for communication in ways superior to 
previous processes.  This capability is our explanation for 
the significant user pull for the VRA and is the main 
reason we believe for its success.   
 

The “knowledge management”  nature of the VRA is 
more in the class of “ light weight”  and “grassroots”  
diagnostic systems, such as Xerox PARC’s Eureka, rather 
than more “managed”  systems (as noted in Section 1). 
Commercially available technology for automatically 
capturing meta-data (e.g., Clear Forest, Stratify, or 
Interwoven’s Meta-Tagger) typically have their greatest 
success under conditions different from this application, 
although they were considered. Protégé was our choice for 
an ontology management tool, preferable to taxonomy-
focused systems (Wordmap, Inxight), since we have more 
than simple taxonomies to manage. (Note our use of “part-
of”  as well as “ isa”  relations.) 
 

Corporate policy does not allow us to specify the 
ontology, the details of its implementation, the algorithm 
for OGS, or other material judged to offer GM a 
competitive advantage. However, the essential features are 
outlined, especially in Section 5, so that the essence of our 
approach is clearly revealed. 
 
 AI was critical to the success of this deployed 
application. Both the CBR inspiration and the 
functionality of OGS were essential to frame and drive the 
system toward its eventual user acceptance and its 
suitability to its dual functions in communication and 
problem-solving. It is now being considered as a model at 
GM for shops where problem-solving teams must 
collaborate, share, and remember, both within and across 
communities of practice. 
 
 Our practical lessons learned from this application were 
listed in Section 7, but the fundamental lesson – 
applicable to any business process – is the “grassroots 
development process.”  The users must be listened to 
aggressively, and the system changed to fit their work 
practices. Knowledge as “communication”  is received, 
understood, and managed much more intuitively than 
knowledge as “gems.”  Best practices are valuable, but 
connecting with peers is essential. 
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