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Abstract

We describe an innovative solution to the problem of
scheduling astronomy observations for the Stratospheric Ob-
servatory for Infrared Astronomy, an airborne observatory.
The problem contains complex constraints relating the feasi-
bility of an astronomical observation to the position and time
at which the observation begins, telescope elevation limits
and available fuel. Solving the problem requires making
discrete choices (e.g. selection and sequencing of observa-
tions) and continuous ones (e.g. takeoff time and setting up
observations by repositioning the aircraft). The problem also
includes optimization criteria such as maximizing observing
time while simultaneously minimizing total flight time. We
describe a method to search for good flight plans that satisfy
all constraints. This novel approach combines heuristic
search, biased stochastic sampling, continuous optimization
techniques, and well-founded approximations that eliminate
feasible solutions but greatly reduce computation time.

Introduction
The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA’s next generation airborne astronomical
observatory. The facility consists of a 747-SP modified to
accommodate a 2.5 meter telescope. SOFIA is expected to
fly an average of 140 science flights per year over it’s 20
year lifetime, and will commence operations in early 2005.
The SOFIA telescope is mounted aft of the wings on the
port side of the aircraft and is articulated through a range of
20◦ to 60◦ of elevation. The telescope has minimal lateral
flexibility; thus, the aircraft must turn constantly to main-
tain the telescope’s focus on an object during observations.
A significant problem in future SOFIA operations is that of
scheduling Facility Instrument (FI) flights in support of the
SOFIA General Investigator (GI) program. GIs are expected
to propose small numbers of observations, and many obser-
vations must be grouped together to make up single flights.
Approximately 70 GI flight per year are expected, with 5-15
observations per flight.

The scope of the flight planning problem for supporting
GI observations with the anticipated flight rate for SOFIA
makes the manual approach for flight planning daunting.
There has been considerable success in automating observa-
tion scheduling for ground-based telescopes (Bresina 1996),
space-based telescopes such as Hubble Space Telescope
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(Johnston & Miller 1994), Earth Observing Satellites (Pot-
ter & Gasch 1998) and planetary rovers (Smith 2004). How-
ever, the SOFIA flight planning problem differs from these
problems in a variety of ways. Observations are feasible
over large, continuous regions of space and time. The mo-
tion of the aircraft is governed by differential equations, and
the aircraft can be flown in any direction for any length of
time to enable an observation. The principal feasibility con-
dition for observations is a nonlinear function over the solu-
tion to the equations of motion. As a consequence of these
factors, even though SOFIA has a ”closed tour” constraint
that makes it appear similar to problems such as the Trav-
eling Salesperson Problem, there are no fixed waypoints to
define routes. Also, the SOFIA problem cannot be char-
acterized only by discrete decisions. The complexity of the
differential equations and feasibility constraints makes it dif-
ficult to find good heuristics, and the expense of solving the
differential equations impacts solver performance.

In this paper, we describe a combination of heuristic
search, biased stochastic sampling, approximations and con-
tinuous optimization methods to produce an algorithm that
efficiently finds good solutions to the SOFIA flight planning
problem. The rest of the paper is organized as follows. We
first formally describe the problem of planning GI flights,
the constraints on flight plans, and the optimization criteria
used to compare valid flight plans. We then briefly describe
the search algorithm used to construct good flight plans,
which combines heuristic search with stochastic sampling.
Initial experiments with this algorithm indicate that it spends
much of its time deciding what observation to schedule next.
We then describe a combination of well-founded approxima-
tions and continuous optimization techniques that allow us
to eliminate a large number of expensive computations while
still finding good flights. We describe experiments to vali-
date the approach. Finally, we conclude and discuss future
work.

SOFIA’s Choice

The SFPP (Single Flight Planning Problem) consists of a
number of observation requests, a flight day, and a takeoff
and landing airport. The objective is to find a flight plan
that maximizes the summed priority of the observations per-
formed while obeying the constraints governing legal flights.
The aircraft can perform two different classes of activities
during a flight. Flight-legs require tracking an object and
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are only legal if the object is within the telescope elevation
limits throughout the observation.Dead-legscan be used to
reposition the aircraft to enable flight-legs, but no observa-
tions are performed. A distinguished class of dead-legs are
used to take off and return to the landing airport.

The input to the SFPP consists of a set of observation re-
quests, each consisting of the Right Ascension (RA) and
Declination (Dec), observation duration, priority, earliest
start time and latest end time; a flight date; initial fuel load;
earliest takeoff time and latest landing times; and the des-
ignated takeoff and landing airports (which need not be the
same). The primary objective is to find a flight plan that
maximizes the summed priority of the observations of the
observations performed. A secondary criteria is to maximize
efficiency (the proportion of the flight spent performing ob-
servations). Since it is intractable to find the best possible
plan, we limit ourselves to searching forgoodplans that per-
form many observations of high priority. Solving the SFPP
requires selecting the set of observations to service, ordering
them and inserting necessary dead-legs.

Unlike traditional scheduling problems studied in the AI
and OR communities, the principle constraint links the po-
sition of the aircraft and the time an observation begins to
the telescope elevation required to see the object. There are
few absolute temporal constraints on individual observations
and also few relative temporal constraints between observa-
tions. However, there are numerous combinations of posi-
tions and times at which observations are infeasible. While
it is possible to make observations feasible by reposition-
ing the aircraft or delaying the observation, poorly chosen
orderings can lead to inefficient flights with few scheduled
observations.

Constraints on Valid Flights
In this section we elaborate on the various constraints on
valid solutions to the SFPP. The constraints linking aircraft
motion and observation feasibility are the most important
component of the problem, so we describe them in detail
here. (This description differs from that in previous work
(Frank & Kürklü 2003) in that it is simpler and more accu-
rate.) If an observation is scheduled, then it must be per-
formed for the requested duration without interruption. As
we will see, the elevation depends on the coordinates of the
object being observed, the position of the aircraft, and the
time. SOFIA can view objects between20◦ and60◦ of ele-
vation; checking this constraint requires first computing the
aircraft’s ground track throughout the course of the obser-
vation. Figure 1 shows the interaction between the object’s
position in the sky at a particular time, the aircraft’s ground
track, and the telescope elevation. The Earth is modeled as
an oblate spheroidE, whose surface is defined by the equa-
tion x2

a2 + y2

a2 + z2

c2 = 1 wherec < a.
Letp be the aircraft’s current position, andθ be the (Side-

real) time that the aircraft is atp. Let ~S be the vector from
the center ofE to p. Let ~T be the vector defining the vec-
tor to an astronomical objecto, andP as the plane tangent
to E at p. Let î, ĵ, k̂ be the unit vectors in thex, y, z di-
rections respectively. Let~N be the vector normal toP:
~N = px

a2 î + py

a2 ĵ + pz

c2 k̂ (Note that~S and ~N are generally

not parallel sinceE is a spheroid.) Let~TP be the projection
of ~T ontoP; this is theobject azimuthatp, and is given by

~TP = ~T−
~T~N

||~N||2
~N (1)

Let ~V be the desired heading of the aircraft. The obser-
vatory must track the object inducing~T, subject to the con-
straint that the angle between~V and ~TP is 270◦, because
the telescope points out the left-hand side of the aircraft. Let
R~N(270◦) be a rotation matrix that rotates a vector270◦

around~N, andv be the airspeed of the aircraft; then

V

N
H

TP

TS

E

P
p

h

Figure 1: The Cartesian formulation of the instantaneous
equations of motion of the aircraft and the elevation. We
have exaggerated the spheroidE.

~V = vR~N(270◦)
~TP

|| ~TP||
(2)

Let ~H be the elevation vector with respect toP. We also
require the angleh between~H and ~TP obey the constraint
20◦ ≤ h ≤ 60◦ throughout an observation. Most targets are
sufficiently far from Earth that we can assume~H = ~T + ~S
From vector calculus we then get the equation for the eleva-
tion h:

h = cos−1

(
~H ~TP

||~H|| || ~TP||

)
(3)

~T is a function ofo andθ; this is because the Earth rotates
on its axis. The vector~T traces a circle of radiusx2 + y2 =
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c2−d
c2 , whered = | δ

90◦ | in 24 hours (see (Meeus 1991) for an
explanation of this).

The instantaneous change inp as the aircraft trackso is
dp
dθ = ~V. Since~V is a function of~T, it is a function ofo,p
andθ. Solving for the ground track is necessary to compute
h and check the elevation constraints. It is worth noting that
this formulation also makes it easy to add the effect of winds
by adding the appropriate vectors to~V, and also correct for
aircraft pitch by rotating about~V × ~N, but we omit these
for brevity. The ground track and elevation constraints are
solved using5th-order Runge-Kutta (Ferziger 1981) with
error-adaptive step sizing.

The telescope is carried aboard a Boeing 747-SP aircraft.
The fuel consumption of each engine depends on the air-
craft weight, outside air temperature, drag, initial altitude
and final altitude. The fuel consumption constraints are rep-
resented in a lookup table provided by Boeing; space pre-
cludes describing the fuel consumption constraint in more
detail. A gridded wind and temperature model is available
to correct the ground track in the face of winds and provide
data for calculating fuel consumption.

ForwardPlanner()
# F is (initially empty) current flight plan
Select takeoff time
while not done

# E is (initially empty) set of feasible observations
for each unscheduled observationo

if Feasible(o, F )
v=Evaluate(o, F )
Add (o, v) to E

endfor
if E is not empty

Use valuesv to selecte from E
ExtendF by e; emptyE

else done
return F
end

Figure 2: A sketch of the SFPP Flight Planning Algorithm.

Algorithm Description
Figure 2 describes ForwardPlanner, an algorithm for solving
the SFPP (previously described in (Frank & Kürklü 2003)).
ForwardPlanner combines progression based search, heuris-
tics and stochastic sampling, resulting in a fast, incomplete
randomized algorithm. An observationo is considered fea-
sible at timeθ and positionp if there is adead-legof du-
ration≤ D after which the observation stays within the el-
evation limits for the required duration of the observation,
and the aircraft can fly to the landing airport after the ob-
servation is finished. (D is an operational constraint, and
is not strictly speaking an algorithm parameter.) The func-
tion Feasible() performs a search for theshortest dead-leg
that satisfies these conditions. Each feasible observationo is
evaluated by constructing a short extension to the flight plan;
this is performed by Evaluate(), as shown in Figure 3. After
addingo to the flight plan, up toK additional observations
are added to the flight plan. This ”lookahead” is performed

Evaluate(o, F )
# K is the maximum extension
ExtendF by o
repeatK times

# L is the (initially empty) set of feasible observations
for each unscheduled observationq not inF

if Feasible(q)
w=value of extendingF by q
Add (q, w) to L

end for
Use valuesw to selectf from L
ExtendF by f ; emptyL

end repeat
v is value ofF
return v

Figure 3: A sketch of the Evaluation method of the Forward-
Planner Algorithm. The flight plan is extended by an obser-
vationo, the best possible flight plan possible after addingo
is approximated by adding up toK additional observations.

to estimate the best flight plan possible after adding observa-
tion o. These short extensions are evaluated to estimate the
value of the best plan conditioned on adding the observation
o. When ForwardPlanner() decides how to extend a flight
plan or Evaluate() conducts its lookahead, the candidates are
evaluated using a heuristic. This heuristic is a weighted sum
of thepriority of the observations performed so far, theeffi-
ciency(ratio of time spent observing to total flight time) of
the (incomplete) flight, the estimated time to return to the
designated landing airport, and the total time spent in turns.
(Details on the heuristics can be found in (Frank & Kürklü
2003)). The heuristic rank of each observation is treated as
the mass of a probability distribution used to select the next
observation. This technique is similar to Heuristic Biased
Stochastic Sampling (HBSS), a technique used for schedul-
ing ground based telescopes (Bresina 1996). This means
that the ”best” candidate need not be selected at any stage
of the process, but has the highest probability of being se-
lected next. This has proved to be an effective strategy when
using inexpensive but somewhat inaccurate heuristics. The
process of evaluating the feasible observations and adding
the next observation to a flight is shown in Figure 4.

The principal cost of this algorithm is in the calls to Feasi-
ble(), where many flight-legs and dead-legs are constructed
to test the conditions on object elevation. LetN be the
number of observation requests, letK be the lookahead
depth, and letM be the maximum number of observations
that can be in any flight plan. Then the algorithm makes
O(N2KM) calls to Feasible(); a proof of this appears in
(Frank & Kürklü 2003).

Improving Algorithm Performance
Stochastic sampling approaches like the one employed in
ForwardPlanner typically require many trials to find a good
solution. The faster each trial is, the faster a good solution
can be found. The predictive power of the heuristics is also
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Feasible Observations
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Figure 4: ForwardPlanner’s search. At each step, all feasible
observations are considered as the next observation in the
plan. For each feasible observation, an extension of the plan
is built using lookahead. The extensions are evaluated to
determine which observation to perform next (the numbers
inside each feasible observation.) The values are used to
construct a probability distribution used to choose the next
observation; each choice is indicated by a hexagon.

important, but not the focus of this paper. Our investigation
into the first version of ForwardPlanner algorithm revealed
that we spend a considerable amount of time deciding which
observations are feasible, and most of this feasibility testing
is performed in the lookahead phase of Evaluate() (in Figure
3). Feasibility testing is done by performing a brute force
search for a short dead-leg. In the worst case, this requires
ForwardPlanner to construct a very large number of legs; a
typical number is500, 000, evenly split between flight-legs
and dead-legs. This is true even though the dead-leg duration
is discretized and limited, as are the heading choices for the
enabling dead-leg.

In this section we describe how to change the solution
methodology to reduce the cost of checking feasibility with-
out sacrificing performance. First we describe a modifica-
tion to the ForwardPlanner thatrestrictsthe set of plans that
can be built, increasing speed with only a small impact on
the value of the flight plans found. We then show how to
replace the expensive brute force search for dead-legs by
a continuous optimization problem whose solutions are the
desired dead-legs, again increasing speed with minimal per-
formance impact.

Restricting the Set of Plans
The call to Feasible() may require a large number of expen-
sive checks to ensure that the aircraft can return to the land-
ing airport. In some cases, a short dead-leg enabling an ob-
servation makes it impossible to return home, while a longer
dead-leg both enables the observation and allows the aircraft
to return to the landing airport. However, SOFIA will nor-
mally take off and land at the same airport, so the aircraft
will trivially be in range of the landing airport for at least
half the flight.

We change the call to Feasible() as follows: first, we find
the shortest dead leg that enables the observation for the de-

sired duration. If the aircraft can return to the landing airport
after completingboththis dead-leg and the observation, then
the observation is feasible, otherwise it is not feasible. We
next postpone the check untilafter deciding to add an ob-
servation to the flight plan (after the step ExtendF by e in
Figure 2.) If the aircraft can’t return to the landing airport
after performing the chosen observation and its shortest en-
abling dead-leg, then it is discarded and another observation
is chosen to extend the flight. This will reduce the expected
number of checks significantly when most observations are
feasible. Some observations previously considered feasible
will not pass this check, and so the set of flight plans that
can be produced by the algorithm isrestricted. However,
this restriction will reduce the value of the flight plans found
only whenhigh priority observations are excluded late in the
flight. In practice we find comparable flight plans after mak-
ing this modification with a modest increase in speed. In the
interests of brevity, we do not report these results.

A Condition for the Shortest Dead-Leg

Even after reducing the number of checks to ensure that
the aircraft can land, brute force search is still required to
find the shortest dead-leg that enables an observation. How-
ever, we can take advantage of the new restricted feasibility
condition by defining a function whose zeros correspond to
the shortest dead-leg enabling the observation. This sub-
problem can be efficiently solved by using zero-finding al-
gorithms such as Newton’s Method. Because the resulting
formulation allows us to search the full continuous space of
dead-legs, we avoid discretizing the search space to enable
brute-force search, and may also findshorterdead-legs.

Using the new conditions on object feasibility, the dead-
leg construction phase of the feasibility check requires find-
ing the heading and duration of the shortest dead-leg that
enables the observation for a sufficient amount of time. A
dead-leg may be necessary for one of two reasons: an ob-
servation is not visible at the current position and time, or
an observation is not visible for long enough. We will treat
these cases separately.

Consider thefeasible regionof an observationo at timeθ.
This region is the set of positions on the Earth from which
the observation is visible, and is the annulus defined by two
circles centered at the nadir position ofo whose radii are
thecoelevationlimits of the telescope (in SOFIA’s case, the
radii of these circles are30◦ and70◦). Suppose the aircraft
positionp is outside the feasible region at timeθ. We want
the aircraft to be in the feasible region after completing the
dead-leg, either by making the object rise or set by chang-
ing position. Now, the shortest leg would put the aircraft
on theboundaryof the feasible region, as opposed to any-
where strictly inside it. This means that the object elevation
h will equal one of the two elevation limits after flying the
dead-leg. If the aircraft begins inside the inner circle of the
annulus, then we want the object to be precisely at the the
upper telescope elevation limit of60◦, while if it is outside
the outer circle, we want the object to be at the lower tele-
scope elevation limit of20◦.

If the object was fixed relative to the ground, flying di-
rectly towards or away from the object would maximize the
rate of change of the object elevation. However, the object
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(and therefore the feasible region) appears to move across
the Earth as the Earth rotates. A dead-leg that tracks the ob-
ject as it moves would not minimize the flight distance. We
use the following intuition: we search for a dead-leg that
endswith the aircraft flying either directly towards or di-
rectly away from the object to be observed. Intuitively, this
is the correct policy when the object is nearly in view, or
near the end of longer dead-legs. Observatory policy will
normally prevent dead-legs longer than a few tens of min-
utes, so this intuition will likely produce very short, if not
”locally optimal” dead-legs.

Suppose flying a dead-leg with initial headingb for dura-
tion d results in aircraft heading vector~Vd at the aircraft’s
new position. The angler between ~Vd and the object az-
imuth at the new position~TP is given by:

r = cos−1

(
~Vd

~TP

|| ~Vd|| || ~TP||

)
(4)

Thus, we have the following problem: findb, d such that
F1(b, d) = 〈f1(b, d), f2(b, d)〉 = 〈0, 0〉 wheref1(b, d) = r
i.e. the difference between the object azimuth and the final
heading of the aircraft after flying the dead-leg defined by
b, d, andf2(b, d) = e− h is the difference between the final
object elevation and the telescope elevation limite closest to
the initial object elevation.

Now consider the case where the object violates the ele-
vation limits at some point during the observation, regard-
less of whether or not it is initially visible. We see that
the flight track exits the annulus (and possible re-enters it
later on). In this case, we can set up a function very simi-
lar to that we used when the observation was initially out-
side the feasible region. We now want to findb, d such that
F2(b, d) = 〈f1(b, d), f3(b, d)〉 = 〈0, 0〉, wheref3(b, d) is
the difference between theextremeobject elevation achieved
during the flight-leg and the telescope elevation limit vio-
lated during the observation. The intuition behind this is
that the dead-leg we wish to fly should just barely nudge
the ground track of the flight-leg inside the feasible region.
f1 remains the same. Figure 5 shows a situation in which
we would zeroF2 while searching for a dead-leg. Initially,
the aircraft could not observe the object without the eleva-
tion exceeding the upper elevation limit, whose boundary is
shown. However, it is possible to fly a10 minute dead-leg to
a new position, from which the maximum elevation achieved
during the flight-leg does not exceed the elevation limits.

Unlike the previous case, where we only needed to com-
pute the heading and object elevation at the end of the dead
leg, we now must find either the minimum or maximum of
the elevation over the course of the flight-leg. We perform
binary search over the ground track to find the extreme of
the object elevation.

In both cases, we have now reduced the problem of find-
ing the shortest dead-leg to the problem of finding a zero of
a function, which can be solved efficiently using a variety of
methods as long asF satisfies some simple conditions.

10:00.00 10:10.00

10:27.00

10:35.00

10:00.00

10:10.00

10:27.00

10:35.00

Longitude

La
tit

ud
e

Figure 5: Flying a short dead-leg to enable an observation.
The feasible region boundary shown is the upper elevation
limit. In this case we would zeroF2 to search for the dead-
leg enabling this observation. The aircraft’s initial location
is shown at 10:00:00. The dead-leg lasts10 minutes, after
which the flight-leg begins. At 10:27:00 the object elevation
achieves a maximum; the figure also shows the feasible re-
gion at 10:27:00, and shows that the elevation limits are not
violated by the flight-leg. The flight leg ends at 10:35:00.

Properties of the dead-legs

The behavior of zero-finding algorithms depends on how
many zerosF has and how they are distributed. Also, the re-
sulting dead-legs may not be feasible given other constraints
on how the aircraft flies. We now analyze the zeros of the
functionsF1 andF2 and their corresponding dead-legs.

First of all, we observe that there are a countably infinite
number of zeros of bothF1 andF2. This does not pose a
serious problem; these zeros are widely separated, and some
require that the aircraft fly all the way around the world mul-
tiple times. The dead-leg duration restriction imposed by
the ForwardPlanner algorithm will eliminate long dead-legs.
However, Newton’s Method might not find the shortest dead
leg, and either incorrectly conclude that some observation is
not feasible or return a suboptimal dead-leg.

Also, not all zeros correspond to valid dead-legs. For ex-
ample, a dead leg whose duration is negative is impossible
for the aircraft to fly. Also, short dead-legs may violate the
minimum turn duration of the aircraft. A standard rate turn
for a 747 is 180 degrees in 2 minutes. If the heading change
and duration of the dead-leg violate this constraint, then the
minimum dead-leg is impossible to achieve, but a longer
dead leg might enable the leg. Under these circumstances,
Newton’s Method would incorrectly report that an observa-
tion is infeasible. Despite these potential drawbacks, this
approach imposes no limitations on the heading or durations
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of the dead-legs, so it might find dead-legs that could not be
found by discretizing dead-leg durations and headings.

Finding dead-legs By Zeroing
In this section we will describe how to find dead-legs by
zeroingF1 andF2.

Newton’s Method and Cramer’s Rule
Newton’s Method is our choice for finding the zeros ofF1

andF2. It is simple to implement and very fast (Gill, Mur-
ray, & Wright 1981). Newton’s Method requires an initial
guess for the zero; let this be denotedb0, d0 with future it-
erates denotedbi, di . For functionsF of 2 inputs and 2
outputs, the method proceeds as follows:

1. ComputeF (bi, di) = 〈f1(bi, di), f2(bi, di)〉 ≡ 〈f1, f2〉
2. Compute the Jacobian (matrix of partial derivatives):

J =
(

∂f1
∂b (bi, di) ∂f1

∂d (bi, di)
∂f2
∂b (bi, di) ∂f2

∂d (bi, di)

)
≡
(

p q
r s

)
3. Compute the determinant ofJ : |J | = ps − qr. If this is

smaller than error tolerancet then set|J | = t (preserving
the sign of|J |).

4. Compute the Cramer’s Rule update:db = f2q−f1s
|J| and

dd = f1p−f2r
|J|

5. Setbi+1 = bi + db anddi+1 = di + dd

6. If 〈bi+1, di+1〉 ≈ 〈0, 0〉 or step limit reached, then halt,
otherwise go to step 1.

Directly calculating the derivatives of the functionsF1

andF2 is difficult because of the gridded wind model that
influences the ground track, which in turn influences the ele-
vation (remember, the elevation is a function of time and po-
sition). Consequently, we use finite differencing to compute
all of our derivatives numerically (Gill, Murray, & Wright
1981). ZeroingF1 only requires constructing the dead-leg
preceding an observation, because evaluatingF1 only re-
quires the heading and the object elevation at the end of the
dead-leg. ZeroingF2 requires constructing both the dead-
leg and the flight-leg, because evaluatingF2 requires the ex-
treme elevation of the object during the flight-leg. Of the
available schemes, we chose forward differencing over cen-
tered differencing because of the smaller number of function
evaluations required. Forward differencing requires eval-
uating F a total of 3 times to compute the partial deriva-
tives. Thus, zeroingF1 requires3 dead-leg constructions
per step, and zeroingF2 requires3 dead-leg constructions
and3 flight-leg constructions per step.

The Initial Guess
Algorithms like Newton’s Method are highly sensitive to the
closeness of the initial guess to the actual zero of the func-
tion. Newton’s Method hasquadratic convergencenear a
zero, which (roughly) means that the number of correct dig-
its in the guesses doubles at each step. The brute-force dead-
leg search does a blind search over possible headings and
durations, so the number of correct digits in each guess im-
proves by only a constant factor (at best) each step. Thus,

using this methodology to find dead-legs should be an obvi-
ous performance win. However, we must make good initial
guesses to benefit from rapid convergence.

Guessing the initial heading requires determining how an
object’s elevation is changing, and choosing the flight direc-
tion to make the elevation change correctly. Guessing the
initial dead-leg duration requires estimating the change in
elevation that the dead-leg must achieve, and then estimat-
ing the rate of change of the elevation during the dead-leg.
Suppose that either the object is below the lower elevation
limit and rising or above the elevation limits and setting. In
this case we zeroF1. If the target is initially too high we
want it to set faster. In this case we want to fly away from
it, i.e. we guessb0 = Af − 180◦. Similarly, if the object is
initially too low, we want it to rise faster, so we want to fly
towards it, i.e. we guessb0 = Af . Now suppose the object
is moving out of the feasible region. In these cases we zero
F2. If the object initially is rising, either it will rise con-
tinuously or eventually set. We want to make it rise slower
initially, set faster later, or both. In any case, we want to
fly away from the object, so we guessb0 = Af − 180◦. If
the object is initially setting, either it continually sets or sets
then rises; we either want it to set slower, rise faster, or both.
In any case, we want to fly towards the object, so we guess
b0 = Af . Only at high latitudes is it possible for an ob-
ject to move into and then out of the feasible region; under
these circumstances, we zeroF2. We might also find after
successfully zeroingF1 that we must zeroF2.

Guessing the duration is somewhat more complex. Cal-
culating the maximum required change in elevation∆h at
the current position and time is simple once we have calcu-
lated the test-leg. However, we have to account for the rate
of change of the elevation both as a function of time, and
the change in position as the aircraft flies. Definere as the
equatorial radius of the Earth,φp as the latitude component
of the aircraft’s locationp, andv as the aircraft’s estimated
ground-speed. We compute the instantaneous vectors of the
aircraft’s ground speed and Earth’s rotation, then use the law
of cosines to determine the aggregate effect on the object el-
evation, resulting in the following guess:vrot = 2.0πre

24.0φp
and

d0 = ∆hre√
v2+v2

rot+2.0v sin(b0)
.

Matters of Convergence

Newton’s Method depends on the function being zeroed to
obey some properties to guarantee convergence. Our func-
tions do not obey these properties all of the time, and so
Newton’s Method occasionally fails to converge.

Newton’s Method is ”non-local”, in the sense that it can
generate any point in<2 during any step. Thus, ifF is not
defined on every element of<2, Newton’s Method may fail
to converge to a solution even if one exists.F1 andF2 are not
well defined for sufficiently short or long dead-leg durations.
The problem with long durations is due to the built-in nature
of the fuel model. Essentially, if a Newton step requires the
aircraft to fly long enough that it would run out of fuel, we
can’t evaluate the ground track of the flight-leg. The prob-
lem with short durations has been explained above. Thus,
convergence of Newton’s method may be interrupted if any
intermediate step violates one of these conditions. This is
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a problem because it is conceivable that the zero found by
Newton’s method can correspond to a legitimate support-
ing dead-leg even if an iteration of Newton’s method cor-
responds to an impossible dead-leg. If the function or the
derivatives can’t be evaluated during Newton’s Method, our
only option is to truncate the feasibility check and report that
the observation is not feasible. Additionally, we could find
Newton’s Method failing to converge after a large number of
steps; we thus use a cutoff value to terminate search. In prac-
tice, we found few instances when Newton’s Method could
not establish the feasibility of an observation and using the
brute-force approach could do so.

Empirical Results

In this section we describe experiments designed to test the
value of using Newton’s Method to speed up the feasibility
check for ForwardPlanner.

Sample Problems

We used 24 of the problem instances described in (Frank
& K ürklü 2003) to determine the utility of our new tech-
niques. We restricted our attention to the ”Single Day” in-
stances; these contain between6 and11 observations. The
priorities of all observations are identical, and all observa-
tions can be scheduled on a designated flight day. Thus, the
principal goal is to find an efficient flight with all of the ob-
servations scheduled. The amount of lookahead influences
the number of leg-construction steps required to compute the
heuristics; for these experiments we set the lookahead depth
to 4. The maximum dead-leg duration was set to 4 hours.
For the brute-force search, we used a dead-leg duration in-
crement of 1 minute and a heading increment of7.5◦. For
Newton’s Method we used a step cutoff of 150 and error
tolerancet = 10−6. The step parameters used in forward
differencing were:s1 = 0.01◦ ands2 = 60 seconds. Exper-
iments were run on a Sun Workstation with dual 600 MHz
CPUs and 2048 Mb memory. The aircraft takeoff weight
was fixed at210, 000 pounds of fuel for all flights; this typ-
ically gives about 10 hour flights. The altitude was fixed at
35, 000 feet. We ran ForwardPlanner 20 times with each of
the two feasibility methods. We compare the CPU times and
the best flight efficiency results for the cases in which both
approaches found a plan with all observations scheduled.

Figure 6 shows the average time to construct a single
flight plan, contrasting the brute force and Newton’s method
driven feasibility checks. The speedups realized when us-
ing Newton’s Method to check feasibility are dramatic for
all but a small number of very short (4 observations) flight
plans. In only 4 instances was either version of Forward-
Planner unable to schedule all observations to establish fea-
sibility. Figure 7 shows the maximum efficiency of the 20
flight plans constructed for the cases where both versions of
ForwardPlanner were able to schedule all observations. We
see that the efficiencies are quite comparable; thus, eliminat-
ing solutions has not resulted in worse flight plans.

CPU Speedup

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Problem

A
v
e
ra

g
e
 C

P
U

 T
im

e

Brute Newton

Figure 6: Performance improvements.
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Figure 7: Efficiency of the best flights.

To see how the reduction in the number of legs cor-
responded to computational improvements, we analyzed a
small number of flights from each of the takeoff airports.
We compared the number of flight-legs and dead-legs con-
structed using the brute-force dead-leg search approach and
Newton’s Method for establishing feasibility over20 runs.
The results are shown in Figure 8. We see that the number of
leg construction steps is dramatically reduced, leading con-
sistently to increased speed. The speedup factor is typically
smaller than the reduction in the number of legs constructed
due to differences in the time required to construct flight-
legs versus dead-legs, and added overhead resulting from the
rest of Newton’s Method such as the search for the minimum
or maximum elevation required when zeroingF2.
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Problem Flight-legs (B) (N) Dead-legs (B) (N) CPU Speedup
1 366,416 3,824.5 365,108 5,221.55 68x
2 326,840 5,854.4 324,890 5,577.75 40x
3 326,396 5,078.35 323,615 4,337.6 31x
5 66,391.1 2972.45 64,877.1 1737.6 13x
6 222,304 4,242.5 223,116 6,158.9 29x

Figure 8: Comparison of Newton’s Method and Brute Force
method of establishing observation feasibility on a small set
of sample problems.

Figure 9: The SOFIA Flight Management System GUI.

SOFIA Flight Management
The SOFIA Flight Management System shown in Figure 9
is a software tool suite designed to facilitate the planning
of flights. ForwardPlanner is fully integrated with all other
software tools used to manage the flight plannning process
for SOFIA. Users can construct inputs for SFPPs by assem-
bling lists of observation requests and selecting flight days.
Flight plans produced by ForwardPlanner can be displayed
and superimposed on a variety of different maps, including
Special Use Airspace (SUA) boundaries. The graphical dis-
play includes pop-ups with information about the observa-
tion and the aircraft performance during the indicated leg.
The user can also display lists of scheduled and rejected ob-
servations in summary tables. Finally, users can simulate
flight plans in a number of ways to test their robustness to
uncertain conditions.

Conclusions and Future Work
We have described an application of AI techniques to the
problem of scheduling astronomy observations on an air-
borne telescope. The resulting problem has complex inter-
acting constraints, discrete and continuous decisions, as well
as competing optimization criteria. We reduced the num-
ber of expensive observation feasibility checks by a novel
combination of well-founded approximations and continu-
ous optimization. Despite the fact that these assumptions
eliminate some feasible flight plans, the new algorithms dra-
matically increase the speed of the algorithm at little cost in
terms of the value of the flight plans produced. The resulting

increase in speed improved the overall performance of the
original heuristic-driven stochastic sampling approach. This
approach can be employed for other planning and schedul-
ing problems with mixtures of discrete and continuous vari-
ables. By analyzing the nature of the continuous decisions,
it may be possible to reduce the set of options for these de-
cisions to the solutions of an optimization problem that can
be solved efficiently.

There are additional constraints that must be accounted
for by ForwardPlanner prior to deployment. First, the air-
craft must not cross any Special Use Airspace (SUA) zones.
While these zones are relatively sparse, they may generally
force longer dead-legs in flight plans. More importantly, the
observation requests will have constraints on line-of-sight
water vapor that must also be satisfied. The existing weather
predictions will include estimated water vapor, which fur-
ther constrains the aircraft’s trajectory, and will also gener-
ally lead to longer dead-legs. Handling these constraints will
impose further requirements on the feasibility check, poten-
tially requiring new approaches to ensure that good flight
plans can be produced quickly.
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