
A Comparison of Techniques for Scheduling Earth Observing Satellites

Al Globus
CSC at NASA Ames

James Crawford
NASA Ames

Jason Lohn
NASA Ames

Anna Pryor
NASA Ames

Abstract

Scheduling observations by coordinated fleets of Earth
Observing Satellites (EOS) involves large search
spaces, complex constraints and poorly understood
bottlenecks; conditions where stochastic algorithms are
often effective. However, there are many such algo-
rithms and the best one to use is not obvious. Here
we compare multiple variants of the genetic algorithm,
hill climbing, simulated annealing, squeaky wheel op-
timization and iterated sampling on ten realistically-
sized model EOS scheduling problems. Schedules are
represented by a permutation (non-temperal ordering)
of the observation requests. A simple, greedy, deter-
ministic scheduler assigns times and resources to each
observation request in the order indicated by the per-
mutation, discarding those that violate the constraints
created by previously scheduled observations. Simu-
lated annealing performs best and random mutation
outperforms a more ’intelligent’ mutator. Furthermore,
the best mutator, by a small margin, was a novel
approach we call ’temperature-dependent swap’ that
makes large changes in the early stages of the search
and smaller changes towards the end.

Introduction

Approximately 60 scientific and commercial Earth Ob-
serving Satellites (EOS) circle the globe collecting im-
ages. Nearly all of these satellites are chronically over-
subscribed, i.e., there are far more observation requests
than can possibly be satisfied. Scheduling systems are
used to satisfy as many of these requests as possible, fa-
voring those with higher priority. Currently, each satel-
lite is separately scheduled with manual coordination.
As the number of satellites grows this will become in-
creasingly inefficient.

The EOS observation scheduling problem is char-
acterized by multiple complex constraints, including
power, thermal, data capacity, and the limited time
each satellite spends over each target. Some EOS satel-
lites can make hundreds of observations per day, each
request may have dozens of imaging opportunities a
week, and request backlogs often number in the thou-
sands. Thus, finding an optimal or near-optimal sched-
ule involves searching a very large space. In general, the

size and complexity of the space precludes a complete
search.

EOS scheduling is an example of an oversubscrip-
tion scheduling problem; meaning there are more re-
quests for a resource than can be satisfied, insuring
that some requests remain unfulfilled. Such problems
include scheduling planetary probes, telescopes, the
deep space network, wind tunnels and other test facili-
ties. These problems involve allocation of expensive re-
sources, often with complex constraints and prioritized
tasks. Poor schedules will result in under-utilization
of expensive facilities and thus a substantial waste of
money, often taxpayer dollars. There are a number
of scheduling algorithms that address oversubscription
problems in general or EOS scheduling in particular,
but few systematic comparisons between them.

Our study compares thirteen scheduling algorithms
including variants of stochastic hill climbing (Baluja
1995), simulated annealing (Kirkpatrick, Gelatt, &
AndVecchi 1983), the genetic algorithm (Holland 1975),
squeaky wheel optimization (Joslin & Clements 1999),
and iterated sampling (ISAMP) (Crawford & Baker
1994). HIll climbing and simulated annealing mutate
a single schedule looking for an optimum, the differ-
ence being that hill climbing is strictly greedy whereas
simulated annealing will occasionally take backwards
steps attempting to avoid local optima. We test both
steady-state and generational genetic algorithms, both
population-based techniques. Random mutation and
crossover operators are used as well as ’squeaky’ mu-
tators which try to make intelligent changes to the
schedule. One of the mutation operators, temperature-
dependent swap described below, is novel. It marginally
outperformed purely random mutation. ISAMP is ef-
fectively random search.

Stochastic algorithms, particularly the genetic algo-
rithm (GA), have been used to schedule a wide va-
riety of tasks. For example, Syswerda and Palmucci
scheduled the U.S. Navy‘s System Integration Test Sta-
tion laboratory for F-14 jet fighters using a GA with a
permutation of tasks representation and a fast greedy
scheduler to place tasks, one at a time, in the schedule
(Syswerda & Palmucci 1991). This work motivated our
research. Philip Husbands provides a good, if somewhat

836 IAAI EMERGING APPLICATIONS

dated, survey of GA for scheduling problems (Husbands
1994).

Computational scheduling techniques have been ap-
plied to the EOS scheduling problem by several authors,
including:
1. Sherwood (Sherwood et al. 1998) used ASPEN

(Chien et al. 2000), a general purpose scheduling
system, to simulate automation of scheduling for
NASA’s EO-1 satellite.

2. Potter and Gasch (Potter & Gasch 1998) described
a clever algorithm for scheduling NASA’s Landsat 7
satellite featuring greedy search forward in time with
fixup to free resources for high priority observation.

3. Lamaitre’s group has examined EOS scheduling is-
sues including comparison of multiple techniques.
See, for example, (Lamaitre, Verfaillie, & Bataille
1998), (Bensana, Lemaitre, & Verfaillie 1999) and
(Lamaitre et al. 2000).

4. Wolfe and Sorensen (Wolfe & Sorensen 2000) com-
pared three algorithms on the window-constrained
packing problem, which is related to EOS scheduling.
They found that the genetic algorithm produced the
best schedules, albeit at a significant CPU cost.

5. Smith and collaborators (Smith, Engelhardt, & Mutz
2001) used ASPEN to schedule a radar satellite.

6. Our group has published earlier results in (Globus et
al. 2002) and (Globus et al. 2003).
In the next section we describe the scheduling prob-

lem and our model of it. A description of the scheduling
techniques follows. The nature and results of our com-
putational experiments are then presented along with a
discussion of results and conclusions.

EOS Scheduling Problem
We first describe the real EOS scheduling problem.
Then we describe the ten model problems used in this
experiment.

EOS scheduling attempts to take as many high-
priority observations as possible within a fixed period
of time with a fixed set of satellite-born sensors. For
example, the Landsat 7 satellite scheduler is considered
to have done a good job if 250 observations are made
each day. EOS scheduling is complicated by a number
of important constraints. Potin (Potin 1998) lists some
of these as:
1. Revisit limitations. Observation targets must be

within sight of the satellite. EOS satellites travel
in fixed orbits, usually about 800 km above the sur-
face which take 100 minutes to circle the Earth one
time. These orbits pass over any particular place
on Earth at limited, although predictable, times; so
there are only a few observation windows (and some-
times none) for a given target within a given time
period.

2. Time required to take each image. Most Earth ob-
serving satellites take a one-dimensional image and

use the spacecraft’s orbital motion to sweep out the
area to be imaged. For example, a Landsat image
requires 24 seconds of orbital motion.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability. The data in the SSR are
sent to the ground (SSR dumps) when the satellite
passes over a ground station. Ground station win-
dows are limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point
side-to-side (cross-track). These motors can wear out
so slewing should be minimized.

6. Pointing angle. The highest resolution images are
taken when the target is directly below the satellite
(nadir pointing). Other pointing angles are some-
times required for special purposes.

7. Power availability. Most satellites have very restric-
tive power budgets.

8. Thermal control. As satellites pass in and out of
the Earth’s shadow the thermal environment changes
radically. This places constraints on sensor use.

9. Coordination of multiple satellites. In particular, as-
signing image collection responsibility appropriately.

10. Cloud cover. Some sensors cannot see through
clouds.

11. Stereo pair acquisition or multiple observations of the
same target by different sensors or the same sensor
at different times.

To make confident statements about the best method
to solve a set of real-world problems it is not enough to
solve randomly generated problems. Watson and his
collaborators at Colorado State University (Watson et
al. 1999) examined the performance of a number of al-
gorithms on model job-shop problems. They found that
although sophisticated algorithms performed very well
on random problems, they did poorly if the problems
were modified to exhibit structure based on real-world
problems. Simple algorithms performed better on the
more realistic problems.

To take this effect into account, although our model
problems contain randomly generated observation tar-
gets, these are limited to land areas, the satellites are
in realistic orbits, and our model problems implement
all of Potin’s constraints except the last two.

Table 1 contains the variable parameters of the model
problems. Each problem consists of one to three satel-
lites in Sun-synchronous orbit (one in which the equa-
tor is crossed at the same local time each orbit) for one
week. Multiple satellites are spaced ten minutes apart
along the same orbit. Each satellite carries one sensor
mounted on a cross-track slewable motor that can point
up to 24 degrees to either side of nadir (nadir is straight
down).

IAAI EMERGING APPLICATIONS 837

problem satellites observations weights
name number SSR slew (o/sec) number time (sec) SSR use priority wp ws wa

1 1 75 2 1934 24 1 1-6,50 1 0.01 0.02
2 3 50 2 6041 36 1,3,5 1-6,50 1 0.01 0.50
3 3 50 2 6114 24 1,3,5 1-6,50 1 0.01 0.00137
4 3 75 2 6114 24 1,3,5 1-6,50 1 0.01 0.02
5 3 50 10 6041 36 1,3,5 1-51,5 1 0.5 0.02
6 3 75 2 6114 24 1,5,8 1-16,50 1 0.10 0.20
7 3 75 2 5465 48 1,5,8 1-16,50 1 0.10 0.20
8 3 75 2 5465 48 1,3,5 1-6,50 1 0.01 0.02
9 2 75 2 3995 24 1,3 1-6,50 1 0.01 0.02
10 3 100 1 6041 36 1,10,25 1-6,50 1 0.1 0.7

Table 1: Variable parameters of the EOS scheduling problems tested. The first column is the problem name. The
next three columns relate to the satellties: the number of satellites, the size of the SSR in arbitrary units, and the
slew rate. The next four columns relate to the observations: the number of observation targets the satellites could
see, the time necessary for each observation, the SSR used by each observation and the priority of the observations.
Where there is more than one number in the SSR column the values are evenly divided among the observation
targets. The format of the priority column is lowest-highest, numberOfLevels. ’numberOfLevels’ is the number of
distinct priority levels divided evenly among the observation requests. The last three columns are the weights used
in the fitness function (see Equation 1).

Each problem is assigned 2100n observation targets
randomly generated on land, where n is the number
of satellites. This is a bit more than Landsat is ex-
pected to take. Each target is assumed to lie in the
center of a rectangle whose size depends on the observ-
ing time. Not all of these targets will be visible during
the one week period, so the effective number of targets
is less than 2100n. The longer the observation time re-
quired per target the fewer targets will be observable.
Any satellite is allowed to make any observation. Each
observation target counted in Table 1 is within view
of a satellite at least once, usually several times and
sometimes over twenty. Orbits and observation win-
dows were determined by the free version of the An-
alytical Graphics Inc.’s Satellite Tool Kit, also known
as the STK (see www.stk.com). The STK uses highly
accurate orbital determination methods.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty its SSR, which is then
available for additional observation storage. There are
approximately 75 SSR dumps per spacecraft during a
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty, or nearly empty, SSR.

We model power and thermal constraints using so-
called duty cycle constraints, the approach taken by
Landsat 7. A duty cycle constraint requires that a
sensor not be turned on for longer than a maximum
time within any interval of a certain length. Our model
problem uses the Landsat 7 duty cycles. Specifically, a
sensor may not be used for more than:

1. 34 minutes in any 100 minute period,

2. 52 minutes in any 200 minute period, or

3. 131 minutes in any 600 minute period.

The fitness (quality) of each schedule is determined
by a weighted sum (smaller values indicate better fit-
ness):

F = wp

∑
Ou

Po + wsS + waA (1)

where F is the fitness, Ou is the set of unscheduled
observation requests, Po is an observation’s priority, S
is the mean time spent slewing for all scheduled ob-
servations, A is the mean off-nadir pointing angle for
all scheduled observations, w stands for weight. The
weights actually used are in Table 1.

Using a weighted sum for the fitness function allows
placing more or less importance on the images taken,
wear and tear on the slew motor, and the resolution of
the images taken.

Scheduling Algorithms

This study compares thirteen stochastic search algo-
rithms. The search techniques were hill climbing, sim-
ulated annealing, steady state and generational genetic
algorithms, and ISAMP (essentially random search).
By using a more intelligent mutation operator, these al-
gorithms (except ISAMP) become variants of squeaky
wheel optimization (Joslin & Clements 1999). In
squeaky wheel optimization, those observations that are
not scheduled are given a high likelihood of being in-
volved in mutation.

Our work focuses on permutation-based (Syswerda
& Palmucci 1991) approaches to scheduling problems.
The key insight underlying such approaches is that if
we could greedily schedule EOS observation requests

838 IAAI EMERGING APPLICATIONS

in an optimal order then we would produce an opti-
mal schedule.1 Thus, a greedy scheduler allows us to
search the space of permutations rather than the space
of schedules. This change of representation has two
key advantages. First, and most important, the greedy
scheduler can take any permutation and produce a fea-
sible (though generally sub-optimal) schedule. This
means that mutation and crossover operations never
stray into infeasible space. This is in contrast to meth-
ods that search in the space of schedules. These must
work hard to maintain feasibility, or find ways to assign
infeasible schedules a fitness that guides search (i.e.,
infeasible schedules cannot all be assigned the same
fitness). Second, if there are many possible times at
which observations can be scheduled it is often the case
that the space of possible permutations is significantly
smaller than the space of possible schedules.

Thus, we represent a schedule as a permutation or
arbitrary, non-temporal ordering of the observations.
The observations are scheduled one at a time in the
order indicated by the permutation. In psuedo-code:

int[] permutation = permute(1-numObservations)
for(int i = 1; i <= numObservations; i++)

if (observation at permutation[i]
not violate current constraints)

schedule observation at permutation[i]

A simple, greedy, deterministic scheduler assigns re-
sources to observations in the order indicated by the
permutation. This produces a set of timelines with all
of the scheduled observations, the time they were taken,
and the resources (SSR, sensor, slew motor setting)
used. The greedy scheduler assigns times and resources
to observations using earliest-first scheduling heuristics
without violating constraints. If an observation cannot
be scheduled without violating the current constraints
(those created by scheduling observations from earlier
in the permutation), the observation is left unscheduled.

The first greedy scheduler we implemented employed
earliest-first heuristics starting at time = 0. For obser-
vations that could be taken at several different times
(windows), the earliest window that did not violate
current constraints was chosen. We discovered that
better schedules are generated if, for each observa-
tion, ’earliest-first’ starts at some initial time chosen
by search rather than time = 0.

The initial time, set randomly at first, is generally dif-
ferent for each observation request. The greedy sched-
uler starts at the initial time and looks forward for a
constraint-free window where the observation can be
scheduled. If none is found before the end of time,
the scheduler then goes to time = 0 and continues the
search, stopping if the initial time is reached. The time
each observation is scheduled (or, if unscheduled, what

1We should note that proving optimality for a
permutation-based method requires a detailed analysis of
the constraints and optimization criteria of the domain as
well as the details of the greedy scheduler.

time ’earliest-first’ search started) is stored and pre-
served by mutation and crossover. The extra scheduling
flexibility may explain why this approach works better
than earliest-first starting at time = 0.

Constraints are enforced by representing sensors,
slew-motors and SSRs as timelines. Scheduling an ob-
servation causes timelines to take on appropriate values
(i.e., in use for a sensor, slew motor setting, amount of
SSR memory available) at appropriate times. These
timelines are checked for constraint violations as the
greedy scheduler attempts to schedule additional ob-
servations.

The simplest technique tested was ISAMP, which is
essentially a random search. With ISAMP, 100,000
schedules are generated from random permutations
with random start times for each observation for the
greedy scheduler. The rest of the techniques start
with 1, 100, or 110 random permutations and generate
100,000 new permutations (children) from old permu-
tations (parents) with mutation and/or crossover. The
techniques tested were:

1. Hill climbing (Hc)2, which starts with a single ran-
domly generated permutation. This permutation
(the parent) is mutated to produce one new permu-
tation (a child) which, if the child represents a more
fit schedule than the parent, replaces the parent.

2. Simulated annealing (Sa), which is similar to hill
climbing except that less fit children replace the par-
ent with probability p = e

−4F
T . 4F is the fitness

and T is an artificial temperature. The temperature
starts at 100 (arbitrary units) and is multiplied by
0.92 every 1000 children (100,000 children are gener-
ated per job).

3. A steady-state tournament selection genetic algo-
rithm (Gs), in which parents are chosen from a popu-
lation of 100 schedules. Parents are chosen by a tour-
nament where the most fit of two randomly selected
schedules becomes the parent. Children replace one
member of the population, chosen by randomly se-
lecting two schedules and replacing the least fit.

4. A generational elitist genetic algorithm (Gg), which
is identical to Gs except that for each generation the
10 most fit schedules are copied into a second popula-
tion. Then another 100 schedules are generated from
the old population and placed in the new population
choosing parents with the same tournament selection
method. Once the new population is complete, the
old is discarded and the process repeated.

Each search technique (except ISAMP) was tested
with three mutation operators:

1. Random swap (Sr)3. Two permutation locations
are chosen at random and the observation requests
2These abbreviations are used in the figures.
3Abbreviations are concatenated to indicate the com-

plete technique. For example, HcSr indicates hill climbing
using random swap mutation.

IAAI EMERGING APPLICATIONS 839

Figure 1: Relative fitness of all techniques on all problems normalized by ISAMP fitness. The vertical axis is the
mean fitness divided by the equivalent ISAMP fitness for the same problem. The mean is taken from the most fit
schedules for each of 32 jobs for each technique. Lower values indicate better fitness. The horizontal axis is the
technique. Color/shade indicates the problem. Sa = simulated annealing, Hc = hill climbing, Gs = steady state
genetic algorithm, Gg = generational genetic algorithm, Td = temperature-dependent swap, Sr = random swap, Ss
= squeaky shift. For example, on problem 9 simulated annealing with temperature-dependent swap (SaTd) had a
mean best fitness 55% of ISAMP on the same problem, whereas in problem 4 the fitness was 71% of ISAMP.

swapped, with 1-15 swaps (chosen at random) per
mutation. Earlier experiments (Globus et al. 2003)
determined that allowing more than one swap im-
proved scheduling.

2. Temperature-dependent swap (Td). Here the num-
ber of swaps (1-15) is still chosen at random but
with a bias. Early in the search a larger number of
swaps tends to be used, and later in the search fewer
swaps are performed. This is analogous to the ’tem-
perature’ dependent behavior of simulated annealing.
The choice of the number of swaps is determined by
a weighted roulette wheel where the weights vary lin-
early as search proceeds. Weights start at n and end
at 16 − n where n is the number of swaps. In the
beginning of search, temperature-dependent swap al-
lows large jumps to find a deep local well. Near the
end of search the schedule is close to the minima and
the smaller mutations are more likely to move down-
hill. This technique is novel.

3. Squeaky shift (Ss). This implements squeaky wheel
optimization. The mutator shifts 1-15 (randomly
chosen) ’deserving’ observations earlier in the per-
mutation. Early in the permutation an observation is
more likely to be scheduled since fewer other observa-
tions will have been scheduled to create constraints.
Each observation to shift forward is chosen by a tour-
nament of size 50, 100, 200, or 300 (chosen at ran-
dom each time). The observation is always chosen
from the last half of the permutation. The position-
to-shift-in-front-of is chosen by a tournament of the
same size (each time) and is guaranteed to be at a
location at least half-way towards the front of the
permutation (starting at the ’deserving’ observation).
Of the observations randomly selected to participate

in the tournament, the most deserving to move ear-
lier in the permutation is determined by the following
characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of tournament looks for
the opposite characteristics. The details of this tech-
nique are novel.

We tested a number of other mutation operators in
preliminary experiments (Globus et al. 2003). The ones
examined in this experiment performed the best.

In the case of the genetic algorithms, half of all chil-
dren are created by mutation and the other half by
crossover. Crossover combines two parents to create
a child. The crossover operator is called position-based
crossover (Syswerda & Palmucci 1991). Roughly half of
the permutation positions are chosen at random (50%
probability per position). The observations in these po-
sitions are copied from the father to the same permuta-
tion location in the child. The remaining observations
fill in the child‘s other permutation positions in the or-
der they appear in the mother. For example:

mother: 5 4 3 2 1
father: 1 2 3 4 5
choose: x x x
child: 1 3 2 4 5

We also tested heuristic-biased stochastic sampling
(HBSS) (Bresina 1996) with contention heuristics
(Frank et al. 2001), an algorithm proposed for the EOS
observation scheduling problem. This technique is not
permutation based. HBSS uses dynamic heuristics to

840 IAAI EMERGING APPLICATIONS

Figure 2: Fitness distribution comparison for all tech-
niques on problem 4. Results on the other nine prob-
lems are similar. The vertical axis is fitness (lower
values are better), the horizontal axis technique. The
boxes indicate the second and third quartiles. The line
inside the box is the median and the whiskers are the
extent of the data. Outliers are represented by small
circles.

repeatedly choose the next observation request to place
in the timelines and which observation window to use.
The contention data from which the heuristics are cal-
culated must be updated as observations are scheduled,
an expensive process. HBSS was hundreds of times
slower than the permutation-based techniques, required
far more memory, and produced very poor schedules.

Experiment
To find the best algorithm for the model problems
we compared a total of thirteen techniques. These
were ISAMP and every combination of the four search
techniques crossed with the three mutation operators.
Thirty-two jobs with identical parameters (except the
random number seed) were run for each algorithm.
Each job generated approximately 100,000 schedules
(the GA jobs generated slightly more). Most jobs ran
in 2-3 hours on a modern Linux Pentium processor with
plenty of memory (no swapping or paging to disk). We
did not notice major differences in the CPU time re-
quired for the various techniques.

In any study of this kind it is always possible that
the results would have been different if one algorithm
or another had used a different set of parameters (popu-
lation size, temperature schedule, hill-climbing restarts,
etc.). The number of potential combinations is literally
astronomical and one must, in the interest of finishing
within the lifetime of the universe, choose some set to
test. For the same reason, the reader’s favorite tech-
nique may have been left out.

We spent considerable time in preliminary experi-
ments searching for good GA parameters and some time

Figure 3: Search history on problem 1. Results on the
other nine problems are similar. The vertical axis is
the median fitness of the most fit individuals in each of
32 jobs for each technique. The horizontal axis is the
number of schedules generated (children). The lines
are the techniques. ISAMP, SaTd, and SaSr are la-
beled. Note that the best techniques (simulated an-
nealing with variations of random swap) do poorly after
only 20,000-50,000 children, but are by far the best by
100,000 children.

looking for the best restart schedule for hill climbing.
However, the simulated annealing cooling schedule used
for this paper was the first we tried. The population size
was chosen after many jobs with random population
sizes were examined. The best results appeared around
population = 100. Several restart regimes where exam-
ined for hill climbing but the differences were generally
not statistically significant. The simulated annealing
cooling schedule was set such that considerably less fit
schedules could win near the beginning of search but by
the end of search simulated annealing became almost
pure hill climbing. From the beginning simulated an-
nealing out-performed all other techniques so we never
felt a need to improve the cooling schedule; this could
only increase simulated annealing’s lead. We also ran
preliminary experiments to choose the number of mu-
tation swaps and other parameters common to several
techniques. Most of the differences observed in the re-
sults were statistically significant by both t-test and
ks-test, with confidence levels usually far above 99%.
The raw data are available on request.

Results and Discussion
Figure 1 compares the algorithm’s fitness performance
for all problems, normalized by ISAMP’s performance
so all results are in the range 0-1. The rising slope of
the bars within each problem indicates that simulated
annealing was best, followed closely by hill climbing.
The genetic algorithms performed quite a bit worse on
all problems. The differences are not academic. The

IAAI EMERGING APPLICATIONS 841

best techniques schedule hundreds more observations
than the worst on most of the model problems.

Figure 2 compares fitness for all jobs and all tech-
niques on problem 4. Results for the other nine prob-
lems are similar. Note that the range of fitness val-
ues within jobs running the same technique is very
small. Thus, almost all of the differences are statis-
tically significant by the t-test and ks-test. In most
cases, the probability that the distributions are differ-
ent is >> 99%.

Simulated annealing performance benefits from a
proof of optimality, at least for an infinitely slow cooling
schedule. Hill climbing is vulnerable to local minima,
but performs nearly as well as simulated annealing, sug-
gesting that there are local optima but their depth is
not greatly different. Both hill climbing and simulated
annealing outperform both variants of the genetic al-
gorithm. This does not appear to be caused by poor
choice of GA parameters. Rather, the EOS scheduling
problem appears to favor exploitation over exploration.

The tight distribution of fitness values around the
median (see Figure 2) also suggests that all jobs found
the same minimum or that, if the fitness landscape is
multi-modal as the Sa vs Hc results suggest, most min-
ima must be about the same. Since both hill climbing
and simulated annealing spend all of their time on a sin-
gle individual and the GA must spread its search over
a population, GA does less exploitation and loses. It is
possible that a smaller population and/or larger tour-
nament size could reduce this effect. The population
size was, however, selected on the basis of preliminary
experiments.

Examining Figures 1 and 2 carefully, we see that
temperature-dependent swap (Td) performs better
than random swap (Sr) for simulated annealing and
hill climbing and worse for the steady state and genera-
tional GAs, although not by much. In units of ISAMP
mean fitnes, the differences were 0.01 for simulated an-
nealing, 0.0067 for hill climbing, 0.01 for steady state
GA, and 0.027 for generational GA averaged over all
problems. Thus, temperature-dependent swap is a bad
idea for GA but of some value for the better techniques.
These differences were usually, but not always, statisti-
cally significant.

The squeaky shift mutator performs worse than the
other mutation operators, particularly for the genetic
algorithms. Relative to temperature-dependent swap
(in units of ISAMP mean fitness) Ss is 0.024 worse for
simulated annealing, 0.015 for hill climbing, 0.05 for
steady state GA and 0.024 for generational GA. This
suggests that squeaky shift is smart in the wrong way.

In preliminary experiments we also tried having the
squeaky operator swap, rather than shift, observations.
The shift operator performed the better. However, nei-
ther squeaky operator matches random swap. If ran-
dom outperforms intelligent, then clearly intelligence is
being poorly applied. We do not understand the dy-
namics of permutation-space scheduling in any funda-
mental way, and do not know if the dynamics are similar

for different problems. Until a better understanding is
reached, the random swap operators – with an optional
decrease in the number of swaps as search proceeds –
appear best.

Figure 3 shows the fitness for all techniques as a func-
tion of the number of children generated for problem
1. Note the rapid improvement for all techniques in
the beginning, with ISAMP quickly leveling out. Most
techniques then show an elbow shape, rapid improve-
ment followed by a transition to very slow improvement.
However, the best two techniques, simulated anneal-
ing with random swap or temperature-dependent swap,
have a different shape. They actually perform worse
than everything but ISAMP between 20,000 and 50,000
children. Thus, if we had run our experiment for 50,000
children we would have quite different results. All tech-
niques have small slopes at 100,000 children so we do
not expect the results to change with longer runs. The
curves for most other problems had a similar shape, al-
though the best simulated annealing techniques were
rarely worse than all others (except ISAMP) in the
20,000-50,000 children range.

Conclusions

We compared thirteen different permutation-space
search techniques on ten realistically-sized EOS
scheduling problems. Simulated annealing outper-
formed hill climbing which, in turn, substantially out-
performed the genetic algorithm. Simple random swap
mutation outperformed the more ’intelligent’ squeaky
mutation. Reducing the number of random swaps as
the search proceeds further improved performance for
simulated annealing and hill climbing, but only slightly.
Strategies that explore widely at first then narrow the
search and focus on exploitation later in evolution,
such as simulated annealing and temperature depen-
dent swap, appear best suited for this problem. Other
algorithm either get stuck at worse local minima or
spend insufficient resources in exploitation.

Future EOS scheduling applications, at least those
choosing a permutation representation, should strongly
consider simulated annealing with either random swap
or temperature-dependent swap mutation. These are
simple to implement, fast, and appear to be superior
for EOS observation scheduling.

An important follow-up to our work would be an
equally thorough study of non-permutation methods;
those that search in the space of all possible sched-
ules. We conjecture that the simplicity of local search
in permutation-space (particularly the fact that we
do not need to search in infeasible space) will lead
permutation-based methods to dominate. However,
this conjecture can only be evaluated by a head-to-
head comparison of the best permutation-based and
schedule-based search algorithms.

842 IAAI EMERGING APPLICATIONS

Acknowledgements

This work was funded by NASA’s Computing, Infor-
mation, & Communications Technology Program, Ad-
vanced Information Systems Technology Program (con-
tract AIST-0042), and by the Intelligent Systems Pro-
gram. Thanks to Greg Hornby and Bonnie Klein for
reviewing this paper and to Jennifer Dungan, Jeremy
Frank, Robert Morris and David Smith for many helpful
discussions. Finally, thanks to the developers of the ex-
cellent Colt open source libraries for high performance
scientific and technical computing in Java.

References

Baluja, S. 1995. An empirical comparison of seven it-
erative and evolutionary function optimization heuris-
tics. Technical Report CMU-CS-95-193, Carnegie Mel-
lon University.
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999.
Earth observation satellite management. Constraints
4(3):293–399.
Bresina, J. 1996. Heuristic-biased stochastic sampling.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.;
Engelhardt, B.; Mutz, D.; Estlin, T.; Smith, B.;
Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D.
2000. Aspen - automating space mission operations us-
ing automated planning and scheduling. In SpaceOps
2000, Toulouse, France, June 2000.
Crawford, J. M., and Baker, A. B. 1994. Experimental
results on the application of satisfiability algorithms
to scheduling problems. In Proceedings of the Twelfth
National Conference on Artificial Intelligence.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001.
Planning and scheduling for fleets of earth observing
satellites. In Proceedings of the 6th International Sym-
posium on Artificial Intelligence, Robotics, Automa-
tion and Space 2001.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R.
2002. Scheduling earth observing fleets using evo-
lutionary algorithms: Problem description and ap-
proach. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A.
2003. Scheduling earth observing satellites with evo-
lutionary algorithms. In Conference on Space Mission
Challenges for Information Technology (SMC-IT).
Holland, J. H. 1975. Adaptation in Natural and Ar-
tificial Systems. Oakland,CA: University of Michigan
Press.
Husbands, P. 1994. Genetic algorithms for scheduling.
AISR Quarterly (89).
Joslin, D. E., and Clements, D. P. 1999. Squeaky
wheel optimization. Journal of Artificial Intelligence
Research 10:353–373.

Kirkpatrick, S.; Gelatt, C. D.; and AndVecchi, M.
1983. Optimization by simulated annealing. Science
220(4598):671–680.
Lamaitre, M.; Verfaillie, G.; Frank, J.; Lachiver, J.;
and Bataille, N. 2000. How to manage the new gen-
eration of agile earth observation satellites. In Pro-
ceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space.
Lamaitre, M.; Verfaillie, G.; and Bataille, N. 1998.
Sharing the use of a satellite: an overview of methods.
In SpaceOps 1998.
Potin, P. 1998. End-to-end planning approach for
earth observation mission exploitation. In SpaceOps
1998.
Potter, W., and Gasch, J. 1998. A photo album of
earth: Scheduling landsat 7 mission daily activities.
In SpaceOps 1998.
Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.;
Chien, S.; and Fukunaga, A. 1998. Using aspen to
automate eo-1 activity planning. In Proceedings of the
1998 IEEE Aerospace Conference.
Smith, B.; Engelhardt, B.; and Mutz, D. 2001. Re-
ducing costs of the modified antarctic mapping mission
through automated planning. In Fourth International
Symposium on Reducing the Cost of Spacecraft Ground
Systems and Operations, 2001.
Syswerda, G., and Palmucci, J. 1991. The applica-
tion of genetic algorithms to resource scheduling. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, 502–508.
Watson, J.-P.; Barbulescu, L.; Howe, A. E.; and Whit-
ley, D. 1999. Algorithm performance and problem
structure for flow-shop scheduling. In AAAI/IAAI,
688–695.
Wolfe, W. J., and Sorensen, S. E. 2000. Three schedul-
ing algorithms applied to the earth observing systems
domain. Management Science 46(1):148–168.

IAAI EMERGING APPLICATIONS 843

