
The Independent LifeStyle AssistantTM (I.L.S.A.): AI Lessons Learned

Karen Zita Haigh, Liana M. Kiff,
Janet Myers, Valerie Guralnik, Christopher W. Geib, John Phelps, Tom Wagner

Honeywell Laboratories, 3660 Technology Drive, Minneapolis, MN 55418
{karen.haigh,liana.kiff}@honeywell.com

Abstract

The Independent LifeStyle AssistantTM (I.L.S.A.) is an agent-
based monitoring and support system to help elderly peo-
ple to live longer in their homes by reducing caregiver bur-
den. I.L.S.A. is a multiagent system that incorporates a uni-
fied sensing model, situation assessments, response planning,
real-time responses and machine learning. This paper de-
scribes the some of the lessons we learned during the devel-
opment and six-month field study.

1 Introduction
Historically, 43% of Americans over the age of 65 will en-
ter a nursing home for at least one year. We have been
developing an alternative: an automated monitoring and
caregiving system calledIndependent LifeStyle AssistantTM

(I.L.S.A.) [9; 10; 12]. Researchers and manufacturers are
developing a host of home automation devices that will be
available in the near future. I.L.S.A.’s concept is to integrate
these individual devices, and augment them with reasoning
capabilities to create an intelligent, coherent, useful assistant
that helps people enjoy a prolonged, independent lifestyle.

From January to July 2003, we field tested I.L.S.A. in the
homes of eleven elderly adults. The I.L.S.A. field test was
designed to complete an end-to-end proof-of-concept. It in-
cluded continuous data collection and transmission via secu-
rity sensors installed in the home, data analysis, information
synthesis, and information delivery to I.L.S.A. clients and
their caregivers. The test concentrated on monitoring two
of the most significant Activities of Daily Life: medication
and mobility. All ADL-based monitoring was performed by
family caregivers.

This paper describes the system we built, outlines the field
study, and then describes the major lessons we learned relat-
ing to AI technology:

• Agents
• Developing and making use of an ontology
• Automated Reasoning
• Integration

Haighet al [9] describe many additional lessons learned, in-
cluding client selection, system configuration, and usability.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

2 System Description
The main goal of the field test was to demonstrate the com-
plete cycle of I.L.S.A. interactions: from sensors to data
transmission to reasoning to alerts and home control.

We selected our initial feature set based on their impor-
tance ranking, the ability to exercise the full range of techni-
cal capabilities of the I.L.S.A. architecture, and the need to
learn more about a particular area. The ability to implement
and appropriately support a robust test application was the
final determining factor. The system we field tested had the
following significant features:
• Passive Monitoring: basic mobility, occupancy, medica-

tion compliance, sleeping patterns.
• Cognitive Support: reminders, date/time of day.
• Alerts and Notifications: auto contacting caregivers (by

telephone).
• Reports: summary reports of client behavior.
• Remote access to information (Internet or telephone)
• Control: modes (on/off).
Other capabilities and features were tested in the lab.

2.1 Architecture
Because clients age, and technology changes, I.L.S.A. had to
be rapidly deployable, easy to configure, and easy to update.
To meet these requirements, we decided to use an agent-
oriented approach [10]. An agent-based architecture would
provide modularity, distribution, functional decoupling, and
dynamic discovery of capability. It would also make our
ontology explicit. We selected JADE as our environment [1].

The agents in the system included device controllers,
domain agents, response planners, and system manage-
ment. One of each of the following agents were created for
each human client: Medication, Mobility, Modes (on/off),
Reminders, ResponseCoordinator, MachineLearning. The
sketch in Figure 1 shows sample capabilities.

Exactly one each of the following agents was cre-
ated on the server (one server for all the human clients):
PhoneAgent, Platform, Database. In the research system,
we explored task tracking (Section 5.1), machine learning
techniques (Section 5.3) and several more domain agents.

The hardware employed in the I.L.S.A. field test consisted
of readily available Honeywell home automation and control
products. The Honeywell Home Controller served as the
backbone for communicating sensor events out of the home.

852    IAAI EMERGING APPLICATIONS   



Figure 1:The Mobility agent tracks the client’s activity.

2.2 Field Study Environments
We installed I.L.S.A. in the homes of four system engineers,
and eleven elderly clients. From July 2001 through Decem-
ber 2001 we installed four systems in engineers’ homes, and
focused on hardware configuration to determine which sen-
sors were most effective. No reasoning components or user
interfaces were included in these deployments.

Beginning January 2003, we installed I.L.S.A. into the
homes of eleven elders and collected data through July 2003.
We limited the number of sensors in the elders’ homes for
reasons of cost and concerns about privacy—for example,
it would have been difficult to find appropriate test subjects
who would accept a system with a toilet flush sensor. Each
test home had from four to seven sensors, including one
medication caddy and several motion detectors. Two instal-
lations had a contact switch and pressure mat at the exit door.

2.3 User Interface
Elderly clients were equipped with Honeywell Web PadsTM

with wireless access to the Internet over a broadband con-
nection. Through the Web interface, the elders could display
reminders, medication schedules & status, mobility sum-
mary, on/off controls and information about their caregivers.
Figure 2 shows a sample web page for the elderly client.
I.L.S.A. could also deliver reminders to the elder by phone.

Caregivers could access I.L.S.A. data about their
client/family member with their normal ISP Web connec-
tion. The caregiver Web interface allowed the caregiver to
view and acknowledge alerts, view general ADL status (in-
cluding historical trends for medication and mobility, view
and edit prescription and medication schedule, and set up

Figure 2:A sample webpage from the elder user interface.

scheduled reminders and personalized activity alerts.
Alerts and reminders could be delivered by telephone. In

addition, a dial-in telephone interface allowed caregivers to
get abbreviated status reports and record and schedule re-
minders for the elder.

3 Lessons: Agents
In addition to meeting I.L.S.A. requirements, we expected
the agent-based approach to provide the following bene-
fits [10]:

Multi-Person Development. Development of independent
agents could be assigned to independent developers.

IAAI EMERGING APPLICATIONS   853  



Scalability. We expected that The distributed architecture
would support a much more scalable system.

Robustness and Reliability.Distributed processing and
control would mean that the system would not crash with
a local single point of failure.

Testing and debugging.Independent agents could be inde-
pendently tested.

Agent-based approaches to system development are still
relatively new. Robust infrastructures for applying this tech-
nology to a real-world system are not commercially avail-
able; research prototypes are not yet fully reliable and are
mostly unsupported. There was considerable risk in basing
the I.L.S.A. field test on this cutting-edge infrastructure.

I.L.S.A. was one of the first agent-based systems seen by
“real” people outside the lab. As a result, we identified sev-
eral risks and pitfalls in developing agent-based systems that
had not been previously identified. We also describe new
ways to address and mitigate these risks.

3.1 Lesson #1: Multi-Person Development
Since each I.L.S.A. agent performs a single role, we ex-
pected to facilitate rapid deployment of the system by as-
signing development of each agent to a separate software
engineer. During the design stage we discovered that the
agents could not be developed independently of each other.
Even though each agent is responsible for a single task,
many tasks are related to those of other agents. For exam-
ple, when aMedicationdomain agent generates a reminder
to take a medication, it is processed by theResponseCoordi-
nator, which coordinates interactions over multiple domain
agents. It is then delivered to the client by thePhoneagent.
All three agents share a single goal—delivering a medica-
tion reminder to elder—and must be able communicate with
each otheras well as the expected portions of the system.

To support inter-agent communication, the development
team needed to resolve such issues as communication pro-
tocols, recovery from failures or exceptions in agent conver-
sations, and ontology development for semantic information
exchange. Each time a protocol changes in one agent, many
other agents also need to change.

In I.L.S.A.s tightly coupled system, the promise of inde-
pendent development did not materialize. Agents needed
to communicate with each other much more frequently than
we had anticipated, and so resolving these issues required a
great deal of coordination among team members and added
considerable overhead to development time.

3.2 Lesson #2: Scalability
The I.L.S.A. system needs to handle a large number of
clients, but current agent technology does not address scal-
ability in any meaningful way. We noted three particular
challenges for future agent system development.

First, to provide controlled access to client data, we im-
plemented a database agent that performed all data read and
write operations. While this approach insured database con-
sistency, it also meant that the database agent could become
a localized bottleneck. One approach to solving this prob-
lem is to have multiple, “specialized” databases.

Second, we had to determine how to properly scope each
agent—hoping to build lightweight agents while keeping
agent coordination and communication tractable. We there-
fore decomposed the message delivery task between the
ResponseCoordinatorand the device agents (see [15] for
more). This innovative structure allowed us to decouple pro-
tocols for delivering different types of messages from the
details of the message mediums. For example, the system
could have multiplePhoneagents and anEmail agent.

Because reminders for different items (for example, two
medications) can be issued at the same time, we designed the
delivery protocols to multiplex such reminders for delivery
as one message. We put this capability in theResponseCo-
ordinatoragent so the system could handle multiple devices,
each with its own dedicated agent. Because a reminder could
be received byResponseCoordinatorright after it dispatched
the previous reminder to thePhoneagent, multiple messages
were still delivered. To overcome this issue, we replicated
the delivery protocol in thePhoneagent, defeating the pur-
pose of decoupling protocols. Acancelmessage would not
have been an appropriate solution, because then it is possible
that no message would ever be delivered.

Finding an effective scoping and decoupling of capabili-
ties is extremely challenging, and becomes more so as the
system grows. Our hope for “straightforward” scalability
will not be possible until agent technology develops much
stronger and more scalable mechanisms for enforcing (logi-
cal) protocols.

Finally, when we chose an agent-oriented approach, we
expected to use a small set of agents for the basic func-
tionality of each installation of I.L.S.A. Each installation
could then be customized by adding specialized agents.
As client requirements or technology capabilities evolved,
agents could be replaced with different versions.

While all agent-based systems encounter complications
with new agents, they are more severe in a tightly cou-
pled agent system like I.L.S.A. We discovered that devel-
oping new agents requiredextensivere-development of the
existing system. As new agents are added, new function-
alities and interfaces need to be added to existing agents:
you cannot simply plug in a new agent. These issues are
compounded by multi-person development and also increase
testing effort.

3.3 Lesson #3: Robustness and Reliability
One benefit of the multi-agent approach is that it is dis-
tributed; however, this approach does not preclude the sys-
tem from having a single point of failure. Notably, the sys-
tem has several agents to provide services for other agents.
Some of these service agents (e.g.Database, theResponse-
Coordinator, or Platform) are more critical than others; if
one of them fails, the whole system fails. Failures of less
critical service agents (e.g.Phone, UnexpectedActivity)
severely limit functionality. If a “non-service” domain agent
(e.g. Medication, Mobility) fails, other parts of the system
still work, although this reduces the usefulness of the sys-
tem. Redundant capabilities (both software and hardware)
is one way to address this reliability problem; however, the
designer will need to carefully consider how to not generate

854    IAAI EMERGING APPLICATIONS   



redundant (read “irritating”) messages to the users.
In I.L.S.A., the promise of inherent robustness from dis-

tributed computation did not hold true. Certain capabilities
need to be centralized (e.g. communication with the elder)
and this centralization is guaranteed to make system design
difficult. An agent-based approach is unlikely to be appro-
priate when capabilities need to be centralized.

In a system where reliability is critical, it is important to
design for persistence over restarts. For example, many of
I.L.S.A.s domain agents needed a concept of recent history
to make interaction decisions. If the system failed or was
rebooted for some reason, agents had to reconstruct their
history. Different agents reasoned over different windows
of activity, hence only localized approaches to solving this
problem are appropriate.

3.4 Lesson #2: Testing and Debugging
The requirement that every system needs to be thoroughly
tested was noticeably more pronounced in the agent-based
system than it would have been in a monolithic system. The
ability to communicate “freely” with other agents meant that
every possible interaction needed to be tested and verified; in
a monolithic system, however, interactions between compo-
nents are much more controlled, and testing can be focussed
on the single point of change. With each new agent, the en-
tire system had to be thoroughly tested to check behavioral
and data coherence.

The extent to which the agents communicate and work
together resulted in significant complications for debugging.
Current agent technology does not provide adequate support
to localize bugs: an error generated by an agent does not
necessarily identify the root cause of the problem. Errors
can propagate from agent to agent through communication
channels, making it difficult to identify the agent at fault.

As a side effect of inadequate support for enforcing log-
ical protocols throughout the system, we often found that
we had to fix the same bug in multiple agents. It was also
hard, with the multi-person development team, to know who
had found time to implement the new protocol, and who had
not. Often, this led to finding the same error during mul-
tiple, independent testing sessions, and therefore multiple,
independent hunts for the same bug.

3.5 A Final Note
The agent-based approach promised a highly open and flex-
ible system. We learned that this approach still requires a
very rigorous software development process and many chal-
lenges are yet to be addressed by the agent research com-
munity. Agent based systems will need to focus much more
strongly on scalability, debugging, and reliability issues be-
fore they will emerge from the lab.

We believe that the development issues we faced will be
shared by any system in which agents work cooperatively
toward a common goal. The more centralized that capabili-
ties need to be, the more likely that an agent-based approach
is inappropriate.

4 Lessons: Ontology
The Consolidated Home Ontology in Protéǵe (CHOP)
serves two primary purposes. First, it is a common vo-

cabulary for I.L.S.A.-related concepts, and their relation-
ships. Second, in conjunction with a program code gener-
ator, CHOP produces an agent communication interface be-
tween I.L.S.A.’s agent-based system components.

CHOP is an ontology containing over 800 distinct con-
cepts. It was developed with Protéǵe [7], a popular visual
ontology construction tool. CHOP was derived from two
upper ontologies, Cyc [3] and the Suggested Upper Merged
Ontology (SUMO) [13; 14]. CHOP contains concepts in-
cluding support for agent configuration, logging monitoring
results to a long-term store, client and environment states,
and status communication.

In addition to clarifying the meaning of terms and objects
in a system, the power of a formal ontology is that it may be
used as the basis to automatically generate portions of code
that are otherwise tedious. I.L.S.A.’s inter-agent communi-
cation depended upon Java classes that were auto-generated
from the ontology. Taken to the furthest extreme, many sys-
tem artifacts can be automatically generated using a formal
ontology, including communications interfaces in multiple
implementation languages, database schema, and other for-
mal interfaces such as database access routines.

Useful lessons we derived from the creation and use of
CHOP include:
• Designing one ontology for multiple purposes may mean

trading lack of duplication for a steeper development
learning curve.

• Don’t waste ontological development effort supporting
concept taxonomy or attributes that are not dictated by
the application, even if they are relevant to the domain.

• In developing a taxonomy, be conscientious about cross-
cultural compatibility.

While the use of ontologies is not novel in software de-
sign, existing ontologies did not cover the eldercare domain.
While it is incomplete, CHOP represents a promising start-
ing point for developing a reusable ontology for knowledge-
based home assistance systems. We will be presenting
CHOP to the Center for Aging Services and Technologies
(CAST) [2] Electronic Health and Wellness Records task
group. The CAST group is working on recommendations
for the Health Level Seven (HL7) [11] medical record stan-
dard regarding long-term assisted care.

Researchers interested in obtaining a copy of the ontology
can send email to the authors of this paper.

5 Lessons: Automated Reasoning
At the outset of the program, a major focus was on us-
ing high-level reasoning to provide an intelligent monitoring
system. We intended to build three main components: situa-
tion assessment and task tracking, response generation, and
machine learning. Experiments in the engineers’ homes val-
idated our hypothesis that this domain is very complex and
lends itself very well to advanced reasoning techniques.

5.1 Lesson #1: Situation Assessment and Task
Tracking

A significant risk for a monitoring system like I.L.S.A. is ac-
curate recognition of activity. Sensors are noisy, inaccurate,

IAAI EMERGING APPLICATIONS   855  



and low quality. It is a significant challenge to assess the
situation and recognize what activities are occurring.

Our task tracking system was based on the Probabilistic
Hostile Agent Task Tracker (PHATT) [5]. At the beginning
of the program, we recognized that PHATT had a number
of capabilities not available in other task tracking systems,
making it uniquely suited to this domain. Continuing our re-
search on I.L.S.A., we reached the following list of require-
ments for task tracking systems in this kind of domain:

Abandoning Plans: All people abandon plans at one time
or another: they forget what they are doing, get distracted,
or decide explicitly to abandon a goal.

Unobservable actions:Not all elders are willing to have
their actions observed by an assistant system and may try
to hide their actions. This unobservable action stream is a
significant challenge.

Failed Actions: People will often try to achieve a goal but
fail. This information is extremely useful in this domain.

Partially Ordered Plans: People frequently work on mul-
tiple goals at the same time. The task tracker must be able
to recognize interleaved plans.

Actions used for multiple effects: Often one action can
achieve multiple effects; the task tracker must be able to
handle this kind ofoverloadedaction.

World state: Different factors in the environment can sig-
nificantly affect the likelihood of the elder adopting dif-
ferent goals.

Multiple hypotheses: One set of actions might be con-
tributing to more than one plan. The task tracker needs
to provide a ranked list of different possibilities.

In the lab, using data from the four richly-sensored engineer
homes, we demonstrated the importance of each of these re-
quirements. Geib [4] describes these requirements in more
detail. Geib and Goldman [6] describe the specific exten-
sions made under I.L.S.A. funding to PHATT to incorporate
reasoning about abandoned goals.

The PHATT-based intent recognition component was re-
moved from the I.L.S.A. field study because, in an effort to
reduce the deployment cost for the elders in the field study,
I.L.S.A. focused on a reduced set of low-cost sensors. To
fully realize the potential of the task tracking system, more
extensive and higher level sensor information is required.

5.2 Lesson #2: Response Generation
Response generation deals with 1) decidinghow to respond
to a given situation that exists with the elderly, and 2)coor-
dinatingall responses that may occur at any given moment.

Domain agents decide how to respond to a situation in a
context-freemanner. That is, they generate appropriate re-
sponses only within the context of their expertise; they do
not take into account responses that other domain agents
may be generating. Responses fall into four categories: re-
minders, notifications, alerts, and alarms. Each response
category is defined by specific protocols and priorities that
I.L.S.A. must follow.

Excessive and inaccurate alerts are a significant risk for
this kind of monitoring system. In our field study excessive
no-motion alerts were a major cause of client and caregiver

dissatisfaction. In a few cases early in our test, they created a
small amount of panic when an elder forgot to “turn I.L.S.A.
off” when leaving the apartment. A secondary and very real
risk is that the bad alerts will cause real alarms to be ignored
(“never cry wolf”).

The context-free messages must be prioritized, timely,
and coordinated. Messages cannot be lost in a flood, and
elders (and their caregivers) must not be overwhelmed. We
chose to coordinate responses centrally rather than giving
domain agents distributed access to devices. The centralized
approach allows us to ensure that submission of important
messages iscontext-aware:
• All responses from all domain agents must be presented

on one set of devices, to one set of recipients. If we al-
lowed domain agents to access devices directly, the recip-
ients could be overwhelmed. Imagine receiving a dozen
phone calls for different reminders at 9:00am; we wanted
to merge these reminders into a single call.

• I.L.S.A. must recognize message priorities. Allowing do-
main agents to have distributed access to devices could
cause important messages to be lost or delivered too late.
For example, if the elder were to fall, the emergency call
to a caregiver might be delayed behind a reminder to eat
lunch.

For more detailed discussion refer to Wagneret al. [15].

5.3 Lesson #3: Machine Learning
Success in this domain requires that I.L.S.A. capture com-
plex interactions among devices, the environment, and hu-
mans, and be particularly responsive to constant changes.
Currently these systems are very inflexible, and their ini-
tial configuration is labor intensive. To adapt to changes in
the client or in the environment (inevitable in this domain),
we must reprogram the system. Reprogramming adds to
the cost of the system and presents an inconvenience to the
client.

We explored three machine learning techniques to assess
their impact on I.L.S.A.’s actual operating environment:

Patterned behaviour profiles [8]: build models of which
sensor firings correspond to which activities, in what or-
der, and at what time.

Unexpected Activity : raise alerts if activity occurs when
it is probabilistically unlikely.

Schedules: learn schedule information for regular activi-
ties in the clients home (e.g. medication, wake/sleep, oc-
cupancy)

Results of our analysis showed that Machine Learning is
a useful enhancement to even the simplest system. At a min-
imum, machine learning techniques can learn schedules and
provide long-term activity trends. Given a rich sensor suite,
machine learning techniques can learn complex models of
the environment, the elder, other people, and even the ef-
fectiveness of its own devices. These models can then be
used by the system to improve its assessments and respon-
siveness. Machine learning techniques allow a system:
1. to tune itself to the operating environment, greatly reduc-

ing the amount of tuning and knowledge acquisition re-
quired at setup.

856    IAAI EMERGING APPLICATIONS   



2. to respond to changes in the users and the domain, directly
reducing maintenance costs.

3. to capture the user’s preferences, enhancing usability.

Two main barriers remain: evaluation and automatic in-
corporation of learned models into the system.

It was not possible to gather ground-truth information for
I.L.S.A. because users were not willing to either note every
activity or be constantly videotaped. Our evaluations were
based on “eyeballing” results for plausibility and then ob-
serving whether changed system behavior was more or less
acceptable to the elders and their caregivers. While short-
term ground truth can be gathered, researchers will need to
develop good techniques for long-term evaluation.

Currently, the elder-care industry will not accept a sys-
tem that does not have a human-in-the-loop; many other in-
dustries have regulations that explicitly prohibit automatic
modifications. Our approach of presenting the results to a
human before incorporating them into the system was well-
accepted but is unlikely to scale to a larger community of
users in its current form.

6 Conclusion
I.L.S.A., in its form as an agent-based system, has been
retired. Using an agent-based system, contrary to our ex-
pectations,significantly added to the development effort.
I.L.S.A. had many capabilities that needed to be centralized,
and therefore it is clear to us that pursuing a simpler route
would have saved us time, money, and frustration—a single-
threaded, component-oriented architecture may have been a
better approach.

If we continue research on the Independent LifeStyle As-
sistant, we will create a new software platform using the
knowledge we gained during this program. The largest tech-
nical barriers we perceive are:

• further development, testing and verification of intelligent
automation within this domain;

• development of a more effective medication management
system, including 360-degree pharmaceutical services;

• development of effective and comfortable methods of
communication between the system and the elderly
clients.

We view the I.L.S.A. program as a success because of the
following significant achievements:
• We successfully prototyped a passive monitoring system

for elders in their own homes.
• We have a much better understanding of what constitutes

an acceptablemonitoring system for elders and, in par-
ticular, disproved some of the assumptions made about
“technophobic” elders [9]. Through our Knowledge Ac-
quisition effort, we learned what factors affect elders’ in-
dependence and identified technology opportunities. We
improved the understanding of factors that impede the de-
livery and acceptance of assistive technologies, and also
improved our ability to overcome these factors.

• We validated the importance of artificial intelligence tech-
nologies to support a broad customer base in widely var-
ied and unstructured environments. Notably, we have val-
idated the importance of machine learning as a technique

to mitigate expensive installations and ongoing adaptation
(Section 5.3).

Acknowledgments
The authors would like to thank the contributions of the

entire Honeywell I.L.S.A. team, as well as Dr. Kathleen
Krichbaum, United Health Care, Presbyterian Homes and
Services, and LifeLine Systems, Inc. We also acknowledge
the support of the Advanced Technology Program at the Na-
tional Institute of Science and Technology, U.S. Department
of Commerce under agreement #70NANBOH3020.

References
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE:

A FIPA-compliant agent framework. InProceedings
of The Practical Applications of Intelligent Agents and
MultiAgent Technology (PAAM), pages 97–108, 1999.
http://sharon.cselt.it/projects/jade/.

[2] Center for Aging Services Technologies. Available from:
www.agingtech.org, 2003 [cited 3-Sept-2003].

[3] Cyc. Available from: www.cyc.com/, 2003 [cited 3-Sept-
2003].

[4] C. W. Geib. Problems with intent recognition for elder care.
In Proceedings of the AAAI-02 Workshop “Automation as
Caregiver”, pages 13–17, 2002.

[5] C. W. Geib and R. P. Goldman. Probabilistic plan recogni-
tion for hostile agents. InProceedings of the FLAIRS 2001
Conference, 2001.

[6] C. W. Geib and R. P. Goldman. Recognizing plan/goal aban-
donment. InProceedings of IJCAI 2003, 2003.

[7] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,
M. Crubézy, H. Eriksson, N. F. Noy, and S. W. Tu. The evo-
lution of Prot́eǵe: An environment for knowledge-based sys-
tems development. Technical Report SMI-2002-0943, Stan-
ford University.

[8] V. Guralnik and K. Z. Haigh. Learning models of human
behaviour with sequential patterns. InProceedings of the
AAAI-02 workshop “Automation as Caregiver”, pages 24–
30, 2002.

[9] K. Z. Haigh, L. M. Kiff, J. Myers, V. Guralnik, K. Krich-
baum, J. Phelps, T. Plocher, and D. Toms. The Independent
LifeStyle AssistantTM (I.L.S.A.): Lessons learned. Technical
Report ACS-P03-023, Honeywell Laboratories, 3660 Tech-
nology Drive, Minneapolis, MN 55418, December 2003.

[10] K. Z. Haigh, J. Phelps, and C. W. Geib. An open agent archi-
tecture for assisting elder independence. InThe First Inter-
national Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 578–586, 2002.

[11] Health Level 7. Available from: www.hl7.org/, 2003 [cited
3-Sept-2003].

[12] The Independent LifeStyle AssistantTM . Available from:
www.htc.honeywell.com/projects/ ilsa, 2003.

[13] I. Niles and A. Pease. Origins of the IEEE Standard Upper
Ontology. InWorking Notes of the IJCAI-2001 Workshop on
the IEEE Standard Upper Ontology, August 2001.

[14] Suggested Upper Merged Ontology. Available from: ontol-
ogy.teknowledge.com/, 2003 [cited 3-Sept-2003].

[15] T. A. Wagner, V. Guralnik, and J. Phelps. Achieving global
coherence in multi-agent cargiver systems: Centralized ver-
sus distributed response coordination in I.L.S.A. InPro-
ceedings of the AAAI-02 Workshop on “Automation as Care-
giver” , pages 100–105, 2002.

IAAI EMERGING APPLICATIONS   857  


