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Abstract 
We present an emerging indoor assisted navigation system 
for the visually impaired. The core of the system is a mobile 
robotic base with a sensor suite mounted on it. The sensor 
suite consists of an RFID reader and a laser range finder. 
Small passive RFID sensors are manually inserted in the 
environment. We describe how the system was deployed in 
two indoor environments and evaluated by visually 
impaired participants in a series of pilot experiments. 

Introduction   

The inability to navigate unfamiliar environments remains 
a key barrier to equal access for the 11.4 million visually 
impaired people in the United States (LapLante & Carlson 
2000). This inability denies the visually impaired adequate 
access to many buildings, impedes their use of public 
transit, and makes their integration into local communities 
difficult. Thus, there is a significant need for assisted 
navigation systems that help the visually impaired 
overcome the navigation barrier, especially in unfamiliar 
environments, where conventional aids, such as white 
canes and guide dogs, are of limited use. 
 
Over the past three decades, considerable R&D effort has 
been dedicated to navigation devices for the visually 
impaired. Benjamin, Ali, and Schepis (Benjamin, Ali, & 
Schepis 1973) built the C-5 Laser Cane. The cane uses 
optical triangulation with three laser diodes and three 
photo-diodes as receivers. Bissit and Heyes (Bissit & 
Heyes 1980) developed the Nottingham Obstacle Detector 
(NOD), a hand-held sonar device that gives the user 
auditory feedback with eight discrete levels. Shoval et al. 
developed the NavBelt, an obstacle avoidance wearable 
device equipped with ultrasonic sensors and a wearable 
computer (Shoval, Borenstein, & Koren 1994). The 
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NavBelt produces a 120-degree wide view ahead of the 
user. The view is translated into stereophonic audio 
directions. Borenstein and Ulrich (Borenstein & Ulrich 
1994) built GuideCane, a mobile obstacle avoidance 
device for the visually impaired. GuideCane consists of a 
long handle and a ring of ultrasonic sensors mounted on a 
steerable two-wheel axle.  
 
More recently, a radio frequency identification (RFID) 
navigation system for indoor environments was developed 
at the Atlanta VA Rehabilitation Research and 
Development Center (Ross 2001; Ross & Blasch 2002). In 
this system, the blind users' canes are equipped with RFID 
receivers, while RFID transmitters are placed at hallway 
intersections. As the users pass through transmitters, they 
hear over their headsets commands like “turn left,” “turn 
right,” and “go straight.” The Haptica Corporation has 
developed Guido©, a robotic walking frame for people 
with impaired vision and reduced mobility 
(www.haptica.com). Guido© uses the onboard sonars to 
scan the immediate environment for obstacles and 
communicates detected obstacles to the user via speech 
synthesis. 
 
While the existing approaches to assisted navigation have 
shown promise, they have had limited success for the 
following reasons. First, many existing systems increase 
the user's navigation-related physical load because they 
require that the user wear additional and, oftentimes 
substantial, body gear (Shoval, Borenstein, & Koren 
1994), which contributes to physical fatigue. The solutions 
that attempt to minimize body gear, e.g., the C-5 Laser 
Cane (Benjamin, Ali, & Schepis 1973) and the GuideCane 
(Borenstein & Ulrich 1994), require that the user abandon 
her conventional navigation aid, e.g., a white cane or a 
guide dog, which is not acceptable to many visually 
impaired individuals. Second, the user's navigation-related 
cognitive load remains high, because the user makes all 
final wayfinding decisions. While device-assisted 
navigation enables visually impaired individuals to avoid 
immediate obstacles and gives them simple directional 
hints, it provides little improvement in wayfinding over 
white canes and guide dogs. Limited communication 
capabilities also contribute to the high cognitive load. 
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Finally, few assisted navigation technologies are deployed 
and evaluated in their target environments over extended 
time periods. It is this lack of deployment and evaluation 
that makes it difficult for assistive technology (AT) 
practitioners to compare different solutions and choose the 
one that best fits the needs of a specific individual.   

Can Robot-Assisted Navigation Help? 

Yes, it can. First, the amount of body gear carried by the 
user is significantly minimized, because most of it can be 
mounted on the robot and powered from on-board 
batteries. Thus, robotic bases offer solutions to two of the 
hardest problems in assisted navigation: hardware 
miniaturization and portable power supply. Consequently, 
the navigation-related physical load is reduced. Second, 
the delegation of such key wayfinding capabilities as 
localization and path planning to the robot reduces the 
user's cognitive load. Third, the robot can interact with 
other people in the environment, e.g., ask them to yield or 
receive instructions. Fourth, robotic guides can carry 
useful payloads, e.g., suitcases and grocery bags. Finally, 
the user can use robotic guides in conjunction with her 
conventional navigation aids, e.g., white canes and guide 
dogs. 
 
Are all environments suitable for robotic guides? No. 
There is little need for such guides in familiar 
environments where conventional navigation aids are 
adequate. However, unfamiliar indoor environments that 
are dynamic and complex, e.g., airports and conference 
centers, are a perfect niche for robotic guides. Guide dogs, 
white canes, and other navigation devices are of limited 
use in such environments, because they cannot help their 
users localize and find paths to useful destinations. 
 
The idea of robotic guides is not new. Horswill (Horswill 
1993) used the situated activity theory to build Polly, a 
mobile robot guide for the MIT AI Lab. Polly used 
lightweight vision routines that depended on textures 
specific to the lab. Thrun et al. (Thrun et al. 1999) built 
Minerva, a completely autonomous tour-guide robot that 
was deployed in the National Museum of American 
History in Washington, D.C. Burgard et al. (Burgard et al. 
1999) developed RHINO, a close sibling of Minerva's, 
which was deployed as an interactive tour guide in the 
Deutsches Museum in Bonn, Germany. Unfortunately, 
these robots do not address the needs of the visually 
impaired. The robots depend on the users' ability to 
maintain visual contact with them, which cannot be 
assumed for the visually impaired. Polly has very limited 
interaction capabilities: the only way users can interact 
with the system is by tapping their feet. To request a 
museum tour from RHINO (Burgard et al. l1999), the user 
must identify and press a button of a specific color on the 
robot's panel. The approach on which Polly is based 
requires that a robot be evolved by its designer to fit its 
environment not only in terms of software but also in 

terms of hardware. This makes it difficult to produce 
replicable solutions that work out of the box in a variety of 
environments. Autonomous solutions like RHINO and 
Minerva require substantial investments in customized 
engineering to become and remain operational. For 
example, RHINO must run 20 parallel processes on 3 on-
board PCs and 2 off-board SUN workstations connected 
via a customized Ethernet-based point-to-point socket 
communication protocol. Even with these high software 
and hardware commitments, RHINO reportedly 
experienced six collisions over a period of forty-seven 
hours, although each tour was less than ten minutes long 
(Burgard et al. 1999). 

A Robotic Guide 

We have built and deployed a prototype of a robotic guide 
for the visually impaired. Its name is RG, which stands for 
“robotic guide.”  Our basic research objective is to 
alleviate localization and navigation problems of purely 
autonomous approaches by incrementing environments 
with inexpensive and reliable sensors that can be placed in 
and out of environments without disrupting any indigenous 
activities. Effectively, the environment becomes a 
distributed tracking and guidance system (Kulyukin & 
Blair2003; Kulyukin, Gharpure, & De Graw 2004) that 
consists of stationary nodes, e.g., sensors and computers, 
and mobile nodes, e.g., robotic guides.  
 
Additional requirements are: 1) that the instrumentation be 
fast, e.g., two to three hours, and require only commercial 
off-the-shelf (COTS) hardware components; 2) that 
sensors be inexpensive, reliable, easy to maintain (no 
external power supply), and provide accurate localization; 
3) that all computation run onboard the robot; and 4) that 
human-robot interaction be both reliable and intuitive from 
the perspective of the visually impaired users. The first 
two requirements make the systems that satisfy them 
replicable, maintainable, and robust. The third requirement 
eliminates the necessity of running substantial off-board 
computation to keep the robot operational. In emergency 
situations, e.g., computer security breaches, power failures, 
and fires, off-board computers are likely to become 
dysfunctional and paralyze the robot if it depends on them. 
The fourth requirement explicitly considers the needs of 
the target population. 

Scope limitations 
Several important issues are currently beyond the project's 
scope. First, we do not address the issue of navigating 
large open spaces, e.g., large foyers in hotels. While a few 
recent references in the literature suggest that ultrasonic 
sensors could be used to address this issue (Addlesee et al. 
2001), the proposed solutions are sketchy and are 
evaluated in carefully controlled, small lab environments. 
Thus, we assume that all environments in which RG 
operates have walls, hallways, aisles, T- and X-
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intersections, and solid and static objects, e.g., vending 
machines, that the onboard sensors can detect. Second, 
robotic guides prototyped by RG are not meant for 
individual ownership. Rather, we expect institutions, e.g., 
airports and large chain stores, to purchase such guides and 
operate them on the premises in the future. Third, the 
wayfinding technology proposed in this project could 
potentially assist sighted people with cognitive and mobile 
disabilities in navigating unfamiliar environments. While 
we intend to pursue these possibilities in the future, the 
target population for this project is visually impaired 
individuals (no more than light perception), at least 16 
years of age, ambulatory, with no serious speech 
impediments, hearing problems, or cognitive disabilities. 
Finally, robotic guides prototyped by RG are not meant for 
outdoor navigation. 

Hardware and software 
RG is built on top of the Pioneer 2DX robot platform 
(www.activmedia.com). The platform has three wheels, 16 
ultrasonic sonars, 8 in front and 8 in the back, and is 
equipped with three rechargeable Power Sonic PS-1270 
onboard batteries that can operate for up to five hours at a 
time.  
 
What turns the platform into a robotic guide is a 
Wayfinding Toolkit (WT) mounted on top of the platform 
and powered from the on-board batteries. The WT 
currently resides in a PCV pipe structure attached to the 
top of the platform. The WT includes a laptop connected to 
the platform's microcontroller. The communication 
between the laptop and the microcontroller is done through 
a usb to serial cable.  
 
The laptop interfaces to a radio-frequency identification 
(RFID) reader through another usb to serial cable. The TI 
Series 2000 RFID reader is connected to a square 200mm 
by 200mm RFID RI-ANT-GO2E antenna that detects 
RFID sensors (tags) placed in the environment. We 
currently use TI RFID Slim Disk tags. These tags can be 
attached to any objects in the environment or worn on 
clothing. They do not require any external power source or 
direct line of sight to be detected by the RFID reader. They 
are activated by the spherical electromagnetic field 
generated by the RFID antenna with a radius of 
approximately 1.5 meters. Each tag is programmatically 
assigned a unique ID. Finally, the laptop is connected to a 
LMS 200 laser range finder from the SICK corporation 
(www.sick.com) mounted on the front of the robot. A dog 
leash is attached to the battery bay handle on the back of 
the platform. The upper end of the leash is hung on a PCV 
pole next to the RFID antenna's pole. Visually impaired 
individuals follow RG by holding onto that leash. 
Eventually, when we find a satisfactory solution to the 
hardware miniaturization problem, we may be able to 
mount the WT directly on the guide dog and take 
advantage of a natural vision system.  

As a software system, RG is based on Kupiers' Spatial 
Semantic Hierarchy (SSH) (Kupiers 2000). The SSH is a 
framework for representing spatial knowledge. It divides 
spatial knowledge of autonomous agents, e.g., people and 
robots, into four levels: the control level, causal level, 
topological level, and metric level. The control level 
consists of low level mobility laws, e.g., trajectory 
following and aligning with a surface. The causal level 
represents the world in terms of views and actions. A view 
is a collection of data items that an agent gathers from its 
sensors.  Actions move agents from views to views. For 
example, a robot can go from one end of a hallway (start 
view) to the other end of the hallway (end view). The 
topological level represents the world's connectivity, i.e., 
how different locations are connected. The metric level 
adds distances between locations.  
 
The control level is implemented with the following low-
level routines all of which run on the laptop: follow-wall, 
turn-left, turn-right, avoid-obstacles, go-thru-doorway, 
pass-doorway, and make-u-turn. In selecting the routines, 
we tried to find a minimal action set that can be used in 
many standard indoor environments. These routines are 
written in the behavior programming language of the 
ActivMedia Robotics Interface for Applications (ARIA) 
system from ActivMedia Robotics, Inc. These behaviors 
draw on well understood indoor navigation techniques of 
the potential fields approach (Murphy 2000). Thus, in RG, 
sensor readings are converted into attractive and repulsive 
vectors that are summed to decide where the robot should 
go next. 
 
RFID-based localization allows the robot to overcome the 
problem of local minima that many potential fields 
approaches experience in the absence of reliable 
localization, because the robot can generate a necessary 
direction vector on the basis of its current location. The 
laptop also runs two other software components: 1) a 
speech recognition and synthesis engine that enables RG to 
receive and synthesize speech and 2) a path planner. The 
advantages and disadvantages of speech-based interaction 
are discussed in the next section.   
 
The Path Planner realizes the causal and topological levels 
of the SSH. The Planner's knowledge base represents an 
aerial view of the environment in which RG operates. 
Currently, the knowledge base consists of tag connectivity 
graphs, tag to destination mappings, and low-level action 
scripts associated with specific tags.  
 
Specifically, the environment is represented as a graph 
where nodes represent the RFID tags and the edges 
represent the actions required to travel from one tag to 
another. Views consist of sonar and laser range finder 
readings and the IDs of the RFID tags currently detectable. 
Thus, detecting a tag can trigger a specific behavior, e.g., 
move through a doorway and align with a right wall. The 
Planner uses the standard breadth first search algorithm to 
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find a path from one location to the other. A path plan is a 
sequence of tag numbers and action sequences at each tag.  

Human-Robot Interaction 

Humans can interact with RG through speech, wearable 
keyboard, and GUIs. Speech-based and keyboard-based 
interactions are intended for visually impaired individuals. 
GUIs are intended for system administrators. Speech is 
received by RG through a wireless microphone placed on 
the user's clothing. Speech is recognized and synthesized 
with Microsoft Speech API (SAPI) 5.1, which is freely 
available from www.microsoft.com/speech. SAPI includes 
the Microsoft English SR Engine Version 5, a state-of-the-
art Hidden Markov Model speech recognition engine. The 
engine includes 60,000 English words, which we found 
adequate for our purposes. SAPI couples the Hidden 
Markov Model speech recognition with a system for 
constraining speech inputs with context-free command and 
control grammars. The grammars constrain speech 
recognition sufficiently to eliminate user training and 
provide speaker-independent speech recognition. 
Grammars are defined with XML Data Type Definitions 
(DTDs). 
 
RG interacts with its users and people in the environment 
through speech and audio icons. An audio icon is a non-
verbal sound that can be readily associated with a specific 
object, e.g., the sound of water bubbles associated with a 
water cooler. For example, when RG is passing a water 
cooler, it can either say “water cooler” or play an audio file 
with sounds of water bubbles. We added audio icons to the 
system because, as recent research findings indicate (Tran, 
Letowski, & Abouchacra 2000), speech perception can be 
slow and prone to block ambient sounds from the 
environment. On the other hand, associating objects and 
events with non-speech audio messages requires training 
or the presence of a universally accepted mapping between 
events and objects and sounds. Since no such mapping is 
currently available, our assumption is that the user can 
quickly create such a mapping.  

Pilot Experiments 

We deployed our system for a total of approximately fifty 
hours in two indoor environments: the Assistive 
Technology Laboratory (ATL) of the Utah State 
University (USU) Center for Persons with Disabilities and 
the USU Computer Science Department. The ATL 
occupies part of a floor in a building on the USU North 
Campus. The floor has an area of approximately 14,000 
square feet. The floor contains 6 laboratories, two 
bathrooms, two staircases, and an elevator. The CS 
Department occupies an entire floor in a multi-floor 
building. The floor's area is 21,600 square feet. The floor 
contains 23 offices, 7 laboratories, a conference room, a 

student lounge, a tutor room, two elevators, several 
bathrooms, and two staircases.  
 
Forty RFID tags were deployed at the ATL and one 
hundred tags were deployed at the CS Department. Once 
the destinations were known, it took one person 20 
minutes to deploy the tags and about 10 minutes to remove 
them at the ATL. The same measurements at the CS 
Department were 30 and 20 minutes, respectively. The 
tags were attached to objects with regular scotch tape. The 
creation of the knowledge base took one hour at the ATL 
and about 2 hours at the CS Department. In both 
environments, one administrator first walked around the 
area with a laptop and recorded tag-destination 
associations. Then the administrator associates specific 
robotic actions with tags. RG was first deployed and tested 
by the project's team at the ATL, the smaller of the two 
environments, and then deployed at the CS Department for 
the pilot experiments with visually impaired participants. 
 
Our pilot experiments involved five visually impaired 
participants, one participant at a time, over a period of two 
months. The five participants were selected from the target 
population: three participants were completely blind and 
two participants could perceive only light. The participants 
had no speech impediments, hearing problems, or 
cognitive disabilities. Two participants were dog users; the 
other three used white canes. The participants were asked 
to use RG to navigate to three distinct locations (an office, 
a lounge, and a bathroom) at the USU Computer Science 
Department. All participants were new to the environment 
and had to navigate approximately 40 meters to get to all 
destinations. In communication and audio perception 
experiments, we tested the participants' ability to 
communicate with RG through speech and the participants' 
audio perception preferences, i.e., whether they preferred 
to be notified of events and objects in the environment 
through speech or audio icons. The exit interviews showed 
that the participants really liked the system and thought it 
was a very useful navigation aid in unfamiliar 
environments. They especially liked the idea that they did 
not have to give up their white canes and guide dogs to use 
RG. 

Navigation 
All five participants reached the assigned destinations. 
However, they expressed concerns about RG's slow speed 
and movement jerkiness. RG's speed was 0.5 m/s, which is 
below normal walking speeds of 1.2-1.5 m/s. Since at the 
time of the pilot study, the laser range finder had not yet 
been integrated into the WT, RG's navigation was based on 
sonar sensors, which are sometimes unreliable due to 
specular reflection and cross talk. In addition, since the 
effective range of the sonars is 2.5 meters, we had to adjust 
the speed of the robot so that it could stop in time to avoid 
bumping into people in hallways. The jerky movements 
occurred when the sonars either underestimated or 
overestimated the distances to the closest objects. For 
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example, once when the robot followed a right wall and 
two of its right sonars told it that the wall was 50 
centimeters (cm) further than it actually was, the robot 
turned right to better align itself with the wall, which 
caused jerkiness.  
 
Another structural improvement suggested by the visually 
impaired participants in our pilot study was to replace the 
dog leash with a more static plastic pole similar to a white 
cane. This suggestion was made by the white cane users. It 
is interesting that the two dog users liked the dog leash, but 
said they would not mind a more static holder.  

Speech-based communication 
Our first human-robot communication experiment tested 
the feasibility of using speech as a means of input for 
humans to communicate with the robot. Each participant 
was asked to speak approximately sixty phrases while 
wearing a headset that consisted of a microphone and one 
headphone. The phrase list was a list of standard phrases 
that a person may say to a robotic guide in an unfamiliar 
environment, e.g., "go to the bathroom," "where am I?" 
etc. Each phrase was encoded as a context-free command 
and control grammar rule in SAPI's XML-based grammar 
formalism. Each participant was positioned in front of a 
computer running SAPI. The test program was written to 
use SAPI's text-to-speech engine to read the phrases to the 
participant one by one, wait for the participant to repeat a 
phrase, and record a recognition result (speech recognized 
vs. speech not recognized) in a database. This experiment 
was repeated in two environments: noise-free and noisy. 
The noise-free environment did not have any ambient 
sounds other than the usual sounds of a typical office. To 
simulate a noisy environment, a long audio file of a busy 
bus station was played on another computer in the office. 
All five participants were native English speakers and did 
not train SAPI's speech recognition engine on sample texts.  
 
We found that the average percentage of phrases 
recognized by the system in the noise-free environment 
was 38%, while the average percentage of recognized 
phrases in the noisy environment was 40.2%. While the 
level of ambient noise in the environment did not seem to 
affect the system's speech recognition, in both 
environments fewer than 50% of phrases were correctly 
recognized. Even worse, on average, 20% of spoken 
phrases were incorrectly recognized by the system. For 
example, when one participant made two throat clearing 
sounds, the system recognized the sound sequence as the 
phrase "men's room."  
 
The statistics were far better for the participants 
understanding phrases spoken by the computer. The 
average percentage of speech understood in the noise-free 
environment was 83.3%, while the average percentage of 
phrases understood in the noisy environment was 93.5%. 
Clearly, in the second trial (the noisy environment), the 
participants were more used to SAPI's speech synthesis 

patterns. These results suggest that speech appears to be a 
better output medium than input.  
 
Another problem with speech recognition occurs when the 
person guided by RG stops and engages in conversation 
with someone. Since speech recognition runs continuously, 
some phrases said by the person are erroneously 
recognized as route directives, which causes RG to start 
moving. For example, once RG erroneously recognized a 
directive and started pulling its user away from his 
interlocutor until the user's stop command pacified it. In 
another situation, RG managed to run a few meters away 
from its user, because the user hung the leash on the PCV 
pole when he stopped to talk to a friend of his in a hallway. 
Thus, after saying “Stop,” the user had to grope his way 
along a wall to RG, standing a few meters away. 
 
As was argued elsewhere (Kulyukin 2004), it is unlikely 
that these problems can be solved on the software level 
until there is a substantial improvement in the state-of-the-
art speech recognition. Of course, one could add yes-no 
route change confirmation interactions. However, since 
unintended speech recognition is frequent, such 
interactions could become annoying to the user. Therefore, 
we decided to seek a wearable hardware solution. 
Specifically, we are exploring human-robot interaction 
through a wearable keyboard. Many wearable keyboards 
now fit in the palm of one's hand or can be worn as badges. 
We are currently experimenting with a small Belkin© 
keypad that directly interfaces to the WT laptop. When a 
guided person stops to talk to someone, one button push 
disables the speech recognition process for the duration of 
the conversation. Similarly, when the guided person clears 
her throat and RG misinterprets it as a command, one 
button push can tell RG to ignore the command and stay 
on the route. Potentially, the wearable keyboard may 
replace speech recognition altogether. The obvious 
advantage is that keyboard-based interaction eliminates the 
input ambiguity problems of speech recognition. One 
potential disadvantage is the learning curve required of a 
human participant to master the necessary key 
combinations. Another potential disadvantage is 
restrictions on the quality and quantity of interactions due 
to the small number of keys. Additional experiments with 
human participants are needed to determine the validity of 
these speculations.  

Audio perception 
We conducted audio perception experiments with all five 
participants to test whether they preferred speech to audio 
icons, e.g., a sound of water bubbles, to signify different 
objects and events in the environment and how well 
participants remembered their audio icon selections. The 
participants used the tool to associate events and objects, 
e.g., water cooler to the right, approaching left turn, etc., 
with three audio messages: one speech message and two 
audio icons. There were seven different objects, e.g., 
elevator, vending machine, bathroom, office, water cooler, 
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left turn, and right turn. This small number was chosen to 
eliminate steep learning curves. 
 
Each object was associated with two different events: at 
and approaching. For example, one can be at the elevator 
or approaching the elevator. The audio icons available for 
each event were played to each participant at selection 
time. The following statistics were gathered: 1) percentage 
of accurately recognized icons; 2) percentage of 
objects/events associated with speech; 3) percentage of 
objects/events associated with audio icons; 4) percentage 
of objects/events associated with both.  The averages for 
these experiments were: 1) accurately recognized icons 
(93.3%); 2) objects/events associated with speech (55.8%); 
3) objects/events associated with icons (32.6%); 4) 
objects/events associated with both (11.4%). The analysis 
of the audio perception experiments showed that two 
participants were choosing audio preferences essentially at 
random, while the other three tended to follow a pattern: 
they chose speech messages for at events and audio icons 
for approaching events or vice versa. The experiments also 
showed that the participants tended to go either with 
speech or with audio icons, but rarely with both. The 
experiments did not give a clear answer as to whether 
visually impaired individuals prefer to be notified of 
objects/events via speech or audio icons. Further work is 
needed on a larger sample to answer this question on a 
statistically significant level.  

Conclusion 

We presented an assisted navigation system for the 
visually impaired. The system consists of a mobile robotic 
guide and small RFID sensors embedded in the 
environment. The system allows visually impaired 
individuals to navigate in unfamiliar indoor environments 
and interact with the robotic guide via speech, sound, and 
wearable keyboard. 
 
The main question addressed by our research is the 
feasibility of robot-assisted navigation in indoor 
environments instrumented with inexpensive passive 
sensors. So, is indoor robot-assisted navigation feasible? 
While our experiments show that the technology has 
promise, the answer to this question cannot be given either 
negatively or affirmatively at this point. The benefits of 
autonomous systems, such as RG, increase with longer 
deployments. Only through longer deployments can one 
answer how easy it is to maintain the system over extended 
time periods and whether the target environment accepts 
the technology sociologically. Our deployments have not 
been sufficiently long to answer either question.  
 
A major barrier to long-term deployment is the 
unwillingness of real target environments, e.g., airports, to 
agree to the exploratory long-term deployments (two to 
three months) of assistive technologies. Only after this 
barrier is overcome, both sociologically and 

technologically, will we be able to render a definite verdict 
on the feasibility of indoor robot-assisted navigation.  
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