
Machine Learning for Adaptive Image Interpretation

Ilya Levner and Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta T6G 2E8, CANADA

{ilya|bulitko}@cs.ualberta.ca

Abstract

Automated image interpretation is an important task with nu-
merous applications. Until recently, designing such systems
required extensive subject matter and computer vision exper-
tise resulting in poor cross-domain portability and expensive
maintenance. Recently, a machine-learned system (ADORE)
was successfully applied in an aerial image interpretation do-
main. Subsequently, it was re-trained for another man-made
object recognition task. In this paper we propose and imple-
ment several extensions of ADORE addressing its primary
limitations. These extensions enable the first successful ap-
plication of this emerging AI technology to a natural image
interpretation domain. The resulting system is shown to be
robust with respect to noise in the training data, illumination,
and camera angle variations as well as competitively adaptive
with respect to novel images.

Keywords: machine learning, Markov decision models in
vision, adaptive image interpretation, remote-sensing, forest
mapping, natural resource inventory.

1 Problem formulation
Forest maps and inventories have become a critical tool
for wood resource management (planting and cutting), eco-
system management and wild-life research. Unfortunately,
forest mapping at the level of individual trees is a continu-
ous and costly undertaking. Canada alone has an estimated
344 million hectares of forests to inventory on a 10-20 year
cycle (Pollock 1994).

At these scales, ground-based surveys and inventories are
not feasible. Researchers have therefore turned to develop-
ing automated systems to produce forest maps from airborne
images and LIDAR 3D data sources. The final goal is to
measure the type (species), position, height, crown diame-
ter, wood volume and age class for every tree in the survey
area.

The task of large-scale forest mapping from aerial im-
ages presents formidable challenges, including: (i) mas-
sive amounts of high-resolution data, in order to recog-
nize and measure individual tree crowns, (ii) construction
and maintenance of (and providing access to) very large
databases; Canada alone has an estimated1011 trees, (iii)
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Figure 1:A fragment of an aerial image taken over a spruce
plot is shown on the left. The right image is the desired inter-
pretation with spruce canopies labeled in white. It is provided
as a part of the training set.

geo-referencing of airborne images for validation purposes,
(iv) orthorectification of aerial images, particularly given
that elevation maps are often unavailable at the accuracy re-
quired. Of a particular interest are the challenges created
by the image content, including variations in sun and cam-
era angle and the resulting shadow and tree crown overlap.
These challenges have been known to have an adverse effect
on special purpose algorithms for individual tree identifica-
tion (Culvenor 2002). In fact, the task is substantially chal-
lenging even to expert human interpreters resulting in up to
40% error in comparison to ground-based surveys (Gougeon
& Leckie 2003).

In this paper we focus on the tree labeling problem as
a first step towards an overall solution. Namely, we con-
sider pixel-level labeling of aerial tree images (Figure 1).
For each aerial image the task is therefore to identify all pix-
els belonging to canopies of trees of a certain kind. In the
illustrations throughout the paper, we label spruce canopies.
In each image such pixels are labeled in white while the rest
of the image is labeled in black.

The rest of the paper is organized as follows: we survey
special purpose tree canopy labeling systems and their short-
comings in section 2. Section 3 then presents a domain-
independent approach in which a control policy over the
space of vision operators is machine-learned. Our innova-
tive applications of the AI technology are presented in sec-
tion 4 with the empirical evaluation following in section 5.
A discussion of the generalizability of the system and the
current and future research directions conclude the paper.

870    IAAI EMERGING APPLICATIONS   



2 Related research: special purpose systems
A number of approaches have been proposed for creating
forest inventories from aerial images. Image-based (model-
free) approaches use simplifying assumptions about forest
images. For example, (Gougeon & Leckie 2003; Pinz 1991)
use a token-based recognition approach which assumes a
high level of contrast between the tree crown and the sur-
rounding area. They deal with canopy feature extraction al-
most exclusively in terms of finding image features which
evidence different types of tree canopies. A current example
of this approach is ITC system (Gougeon & Leckie 2003)
where tree canopies are detected and classified by a mixture
of “valley-finding” (low intensity iso-contours), peak inten-
sity detection (Wulder, Niemann, & Goodenough 2000b;
2000a) and texture, structure and contextual image features.
This falls within traditional image segmentation and region
labeling strategies where there is no explicit need to model
features in terms of known tree attributes or specific 3D ge-
ometric models. Consequently, the approach is designed to
apply where there are sufficiently spatially separated trees.
Unfortunately, the performance can degrade significantly
as such methods are applied to naturally occurring dense
forests with overlapping tree crowns.

Another approach uses example-based image models.
The underlying idea is to compare pre-specified tree crown
image(s) with the image at hand. Typically such methods,
e.g., (Murgu 1996), have a collection of example tree crowns
which they match to the image. Drawbacks of such ap-
proaches include the need to collect a very large database
of templates to account for differences in tree species, size,
the slant of the terrain and illumination.

Model-based approaches take advantage of an explicit
model of tree crowns to match with images. While mini-
mizing the amount of image feature processing, elementary
image features are used to hypothesize large numbers of re-
gions for matching with 3D CAD tree models via computer
graphics methods. For example, the STCI system (Pollock
1994) uses a template matching approach, however, unlike
the example-based approaches discussed above, the crown
templates are synthesized from a tree crown model. The up-
per part of a tree crown (known as “sun crown”) is modelled
as a generalized ellipsoid of revolution and ray-tracing tech-
niques are used to generate templates (Larsen & Rudemo
1997). Model-based approaches typically rely on detecting
image features such as crown peaks and normally use pre-
generated templates to match projected models with image
data. The latter technique can require generation of many
templates for different slant angles, tree types, etc. Addi-
tionally, model-based methods use simple shadow models
and simplified 3D CAD models typically representing the
canopy envelope only and are often unable to deal with nat-
ural variations in foliage and branches and the resulting ir-
regular canopy boundaries.

3 Machine learning approach
All of the approaches reviewed in the previous section are
promising, at least in a laboratory setting, but share some
common drawbacks. First, they were carefully crafted in

a development process that required both time and exper-
tise. More importantly, this development process exploited
domain properties, such as whether the trees are separated
or have overlapping canopies, whether the ground is flat or
mountainous, or whether the forest has a homogeneous or
heterogeneous species composition. Similarly, assumptions
about the properties and position of the sensor are also inte-
grated in the system design. As a result, these systems work
within a narrow set of operating conditions, and cannot be
applied under other conditions without re-engineering.

The challenges of the tree inventory problem are not
unique in the realm of image interpretation. Thus, rather
than crafting yet another domain-specific approach we
present a general method of automated development of im-
age interpretation systems with the following objectives: (i)
rapid system development for a wide class of image interpre-
tation tasks; (ii) low demands on subject matter, computer
vision, and AI expertise on the part of the developers; (iii)
accelerated domain portability, system upgrades, and main-
tenance; (iv) adaptive image interpretation wherein the sys-
tem adjusts its operation dynamically to a given image; (v)
user-controlled trade-offs between recognition accuracy and
resources utilized (e.g., time spent).

These objectives favor the use of readily available off-
the-shelf image processing libraries (IPL). However, the do-
main independence of such libraries requires an intelligent
domain-specific policy to control the application of library
operators. Operation of such a control policy is a complex
and adaptive process. It is complex in that there is rarely a
one-step mapping from image data to object label; instead, a
series of operator applications is required to bridge the gap
between raw pixels and semantic labels. Examples of the
operators include region segmentation, texture filters, and
the construction of 3D depth maps. Image recognition is an
adaptive process in the sense that generally there is no fixed
sequence of actions that will work well for most images (Bu-
litko et al. 2003).

The success of this approach to image interpretation
therefore depends on the solution to a control problem: for a
given image, what sequence of actions will most effectively
and reliably detect the regions of interest?

Recently, a system called ADaptive Object REcogni-
tion (ADORE) became the first system to learn a complex
domain-specific control policy for roof recognition in aerial
photographs (Draper, Bins, & Baek 2000). As with many vi-
sion systems, it identified objects (in this case buildings) in
a multi-step process. Raw images were the initial input data,
while image regions containing identified buildings consti-
tuted the final output data; in between the data could be
represented as intensity images, probability images, edges,
lines, or curves. ADORE modelled image interpretation as a
Markov decision process, where the intermediate represen-
tations were continuous state spaces, and the vision proce-
dures were actions. The goal was to learn a dynamic con-
trol policy that selects the next action (i.e., image processing
operator) at each step so as to maximize the quality of the
final image interpretation. To demonstrate its general ap-
plicability, ADORE was subsequently ported to another do-
main (recognizing objects in office scenes) in another labo-
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Figure 2: A fragment of the state-action graph used in our
experiments. States are labeled with their vision data types
and have forest samples shown next to them. Common vi-
sion operators are shown as the arcs.

ratory (Draper, Ahlrichs, & Paulus 2001).

4 Innovative applications of AI technology
One of the contributions of this paper is to apply this emerg-
ing technology to the forest mapping domain, using it for
the first time to recognize natural (as opposed to man-made)
objects (i.e., tree canopies). More significantly, we propose
and empirically evaluate solutions to ADORE’s three pri-
mary limitations. First, ADORE learned recognition strate-
gies from training samples – but only after a human ex-
pert had selected the features that describe each intermedi-
ate level of representation. This process is effort-consuming
and requires computer vision and domain expertise. Second,
using the history-free Markov decision process model for
selecting computer vision operators proved to be deficient
in both applications of ADORE. Third, ADORE processed
each image as a whole, which reduces interpretation quality
while dealing with highly non-uniform images.

As in the case of ADORE, we begin with the Markov de-
cision process (MDP) as the basic mathematical model by
casting the IPL operators as the MDP actions and the results
of their applications as the MDP states. Figure 2 presents
a fragment of the state-action graph. The system operates
in two modes as follows. During theoff-line training stage,
available subject matter expertise is encoded as a collection
of training images with the corresponding desired interpre-
tation (the so called ground truth). Figure 1 demonstrates an
example of such (input image, ground truth label) pair for
the forest mapping domain. Then off-policy reinforcement
learning with deep backups and no bootstrapping is used to
acquire a value function (Sutton & Barto 2000). At first, all
feasible length-limited sequences of IPL operators are ap-
plied to each training image. The resulting interpretations
are evaluated against the domain expert provided ground

Application of
all limited 

operator
sequences

Possible Labels

Initial
Image

Reward

calculation

Desired
Label

User-provided Training DatumUser-provided Training Datum

(state,action,Q)(state,action,Q)

Figure 3: Off-line training stage: all limited-length operator
sequences are applied to each training image. The resulting
image interpretations are evaluated against the desired label.
Action-state rewards are then computed.

truth as shown in Figure 3. We use a pixel-level similarity
scoring metric defined as the ratio of the number of pixels
labeled as the target class (e.g., spruce) by both the system
and the expert to the total number of pixels labeled as the tar-
get class by either one of them. According to such a metric,
an interpretation identical to the user-supplied label scores 1
while a totally disjoint interpretation will get a score of 0.

The interpretation scores are then “backed up” along the
IPL operator sequences using dynamic programming. As a
result, the value functionQ : S × A → R is computed for
the expanded statesS′ ⊂ S and applied actionsA′ ⊂ A.
The value ofQ(s, a) corresponds to the best interpretation
score the system can expect by applying operatora in state
s and acting optimally thereafter. In reinforcement learn-
ing terms, we are representing the task as a finite horizon
non-discounted problem wherein all intermediate rewards
are zero except these collected by outputting an image in-
terpretation. The latter is a positive reward proportional to
the quality of the interpretation. The termQ comes from
Watkins’ Q-learning (Watkins 1989).

The collected training set of Q-values{[s, a,Q(s, a)]}
samples a tiny fraction of theS × A space. Correspond-
ingly, we use function approximation methods to extrapo-
late the value function onto the entire space. Featuresf are
extracted off the raw (large) statesS to make the approxima-
tion feasible. In this paper we use Artificial Neural Networks
as the Q-function approximator.

During the on-line interpretation stage, the system re-
ceives a novel image and proceeds to interpret it as shown
in Figure 4. Namely, the value function learned off-line now
guides the control policy to apply vision operators from the
IPL library. Several control policies are possible ranging
from greedy policies that select the next actiona so as to
maximizeQ(s, a) in each states to static policies that al-
ways apply the same sequence of vision operators regardless
of the input image (Levneret al. 2003b).

The “least-committment” control policy we use addresses
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Figure 4: On-line operation: the control policy uses an ap-
proximate value function to select the best sequence of op-
erators from an IPL library. As the result, an image interpre-
tation label is produced.

the first two shortcomings of ADORE. First, it applies all
limited feasible sequences of operators to the input im-
age s0. Once the set of possible image interpretations
{s1, . . . , sN} is computed, the policy uses the label of each
interpretationsi to extract features from the original input
images0. The resulting composite feature vectorsfsi

(s0)
are used with the machine-learned value function to se-
lect the most promising interpretationsi∗ as follows: i∗ =
arg maxi Q(fsi

(s0), submit). In other words, the policy se-
lects the interpretationsi∗ that is expected to bring the high-
est reward when submitted (i.e., output as the system’s inter-
pretation of the input image).

This technique eliminates ADORE’s need to design high-
quality features for every processing level as they are now
required for the initial color image and the final binary in-
terpretation only. Additionally, extracting features from the
initial image provides a context for the features extracted off
a candidate interpretation thereby addressing ADORE’s loss
of performance due to history-free Markov features.

Finally, before interpreting a novel image, we partition it
into regular rectangular tiles. Each tile is processed indepen-
dently by the control policy. The resulting interpretations
(one per tile) are then assembled into a single interpretation
of the original image. This technique greatly increases flex-
ibility of the system by allowing it to use different operators
on different parts of a non-uniform image thereby address-
ing the third primary drawback of ADORE.

5 Empirical evaluation
In the following sections we evaluate the approach with
respect to several key attributes of a successful image in-
terpretation system: overfitting-free training on real-world
data, robustness to noise in the training data, and robustness
to variance in illumination conditions, camera angles, and
inter-image differences.

In the tests we use the least-commitment policy with an
Artificial Neural Network as the function approximator over
192 color histogram based features. Cross-validation error
was monitored during the training process to guard against
overfitting. The operator library contained approximately
100 common vision operators similar to the ones found in

Intel OpenCV library. The parameters of each operator were
tabulated in regular intervals so that invoking such an oper-
ator actually applied all parameterized instantiations of it.

Longer operator sequences have been shown to increase
the interpretation quality at the cost of an exponential in-
crease in the running time (Bulitkoet al. 2003). In the ex-
periments presented in this paper we capped the system at
the shortest non-trivial sequence length (four).

5.1 Performance on spruce canopy images
In order to demonstrate the adaptive nature of the learned
policy we compared its performance to the static operator
sequence with the best mean performance on the training
data (henceforth called ‘best static policy’). Thirty four
256x256 pixel aerial images were acquired with an RGB
camera over spruce plots. A fragment of a typical image
is shown in Figure 1. We employed the standard leave-
one-out cross-validation technique by training on a subset
of 33 images and testing on the left-out image. This process
was repeated

(
34
33

)
times for all combinations of the train-

ing images. The mean pixel-level similarity score of the
machine-learned policy was0.54 with the standard devia-
tion of 0.14 while the best static policy scored0.46 ± 0.13.
Figure 5 demonstrates on-line performance of the machine-
learned and best static policies relative to the perfect control
policy (i.e., the policy gaining the highest possible score on
each image). On most of the 34 cross-validation images, the
machine-learned policy produced a nearly optimal sequence
achieving93.6 ± 15.5% of the perfect policy’s score. Sub-
stantial variation in the interpretation difficulty among the
images left the best static policy at81.6± 19.7%.
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Figure 5: On-line interpretation: machine-learned policy
adapts to different images frequently selecting the perfect op-
erator sequence.

It is worth noting that the pixel-based similarity metric
we use is a very strict measure penalizing every single pixel
mislabeled. At the same time, missing individual pixels is
not critical in the overall forest mapping framework since
the desired tree parameters, such as crown diameter, posi-
tion, and species, can be recovered even from an imperfect
but proportional label. Since the tree parameter estimation
module is not yet operational, we presented the interpreta-
tions our system produced to silviculture specialists and so-
licited their feedback. The current level of performance was
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deemed promising for tree parameter extraction. An inter-
esting case is shown in Figure 6 wherein the system was
able to label spruce canopies “drowned” in the surrounding
vegetation better than a human interpreter.

Figure 6: Shown on the left is the original image with three
small spruce canopies “drowned” in surrounding young as-
pen. The human interpreter labeled only one of them (lower
left corner of the image). The system was able to label two
canopies (right image).

5.2 Robustness to noise in training data
The tedious and time-consuming nature of manual im-
age labeling inevitably leads to interpretation errors. One
study (Gougeon & Leckie 2003) found the tree count error
to be between 10-40% relative to ground surveys. Therefore,
it is important to establish the extent to which our learning
model is robust with respect to noise in manually labeled
training data. Pending an extensive study involving a panel
of human forest interpreters and ground-based surveys, we
present the robustness results with simulated training data
labeling errors. Namely, we used the same 34-image spruce
canopy set but this time perturbed the corresponding train-
ing labels. The two common types of human interpretation
errors are labeling several neighboring tree canopies as one
and missing a tree canopy completely. We simulated these
errors via eroding and dilating the training labels by approx-
imately 30%. Eroding an interpretation significantly distorts
the desired canopy labels often reducing a single canopy la-
bel to a collection of disjoint pixels. On the other hand, dila-
tion enlarges the labels sometimes merging two neighboring
canopy labels into one as illustrated in Figure 7.

Figure 7: Noise in the training data: the true label (left), a
dilated label joining neighboring canopies together (middle),
an eroded label missing full canopies (right).

Training on the dilated and eroded labels reduced the per-
formance of the machine-learned control policy to85.6 ±
24.2% of the perfect policy (corresponding to the pixel-level
similarity score of0.49 ± 0.17). The static policy scored

82.3 ± 19.4% of the perfect policy (0.47 ± 0.13 in the ab-
solute terms). As we used the same leave-one-out cross-
validation technique, the results suggest certain robustness
to training data noise.

5.3 Robustness to changes in illumination
Large-scale forest mapping is a continuous undertaking re-
sulting in the images acquired at different times of day and
different seasons. The consequent changes in illumination
can lead to significant performance degradation in systems
fine-tuned for a specific set of images (Culvenor 2002). Ad-
ditionally, low sun angles can result in canopies “missing”
in shadows cast by taller trees. Pending a large scale experi-
ment with multiple aerial acquisitions of the same forest plot
at different times of day and different seasons, we conducted
a smaller scale study using synthetic data. Namely, a scene
with two types of trees (six trees of each type) was computer
ray-traced at every hour between 7 o’clock in the morning
and 5 o’clock in the evening (the most likely data acquisi-
tion times for real forests). As the sun traversed the sky,
the rendered shadows and undergrowth illumination varied
significantly (Figure 8).

Figure 8:Effects of the sun position: 7am (left), noon (mid-
dle), 5pm (right).

We then administered the leave-one-out cross-validation
procedure by training the system on 10 out of 11 images and
testing it on the remaining image. The process was repeated
11 times for all sets of training images. The results in Fig-
ure 9 indicate that the machine-learned policy is robust to
image variations resulting from different sun positions. On
the other hand, the best fixed operator sequence achieved the
optimal interpretation only on the 9am image. Cumulatively,
the machine-learned policy scored94± 9.5% of the perfect
policy while the best static policy was at63.8± 21.6%.

5.4 Robustness to camera angle variations
Another difficulty with remote sensing vision systems lies
with the fact that the sensor (camera) can be at different
angles when the images are acquired. This can happen
due to aircraft maneuvers, turbulence, and other reasons.
In forest mapping nadir angles are generally preferred as
low-angle images can be plagued with overlapping canopies
(Figure 10).

In this experiment we measured the robustness of
machine-learned and best static control policies to increas-
ingly off-nadir camera angles. The synthetic scene from the
sun angle experiments was re-used but rather than varying
the sun position we changed the camera angle from nadir
to significantly slanted in five steps. Figure 11 suggests that
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Figure 9: Performance of machine-learned and best static
policies on images acquired at different times of day.

Figure 10:Effects of off-nadir camera angles.

the machine-learned policy demonstrates some robustness to
varying camera angles. It scored93.5±14.5% of the perfect
policy whereas the best static policy achieved79.1±44.1%.
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Figure 11: Machine-learned and best static policies on im-
ages acquired at increasingly off-nadir camera angles.

5.5 Adaptivity to novel images
Natural forests are inherently diverse in terms of tree
species, canopy sizes, and foliage conditions. Consequently,
even images of a simple composition stand taken within a
hundred feet of each other can be vastly dissimilar as shown
in Figure 12. Therefore, the ability to adapt to a novel image
radically different from the training data is a crucial factor
in the success of a forest mapping system.

In order to evaluate the robustness of the presented ap-
proach we compared it with a state-of-the-art system based
on a trainable hierarchical hidden Markov tree (HHMT)
model (Cheng, Caelli, & Ochoa 2002). We first gauged its
performance on forest images with moderate variance such
as parts of a single image. The HHMT-based system demon-
strated an impressive mean pixel-level similarity score of
0.71 (compared to our system’s score of0.58).

Figure 12: Two diverse images acquired in a close spatial
proximity.

We then selected two substantially diverse and images
(parts of which are shown in Figure 12). One of the images
(shown left in the figure) was considerably more difficult
due to the dense deciduous vegetation enveloping the spruce
trees. In each of the two trials both systems were trained on
one of the two images and tested on the other. The HHMT-
based system had the mean pixel-level similarity score of
0.1. At the same time our approach scored0.25. This ini-
tial experiment suggests a certain degree of adaptivity of the
MDP-based approach and warrants further studies.

6 Discussion and future work
Conventional ways of developing image interpretation sys-
tems usually require a significant subject matter and com-
puter vision expertise from the developers. The resulting
systems are expensive to upgrade, maintain, and port to
other domains.

In this paper we present an emerging AI technology with
the aim of automating development of image interpretation
systems. Our extensions of the state-of-the-art MDP-based
machine-learned system ADORE address its three primary
drawbacks. First, by partitioning input images our system
can interpret uniform regions of a non-uniform image inde-
pendently. Second, as high-quality interpretations are tightly
coupled with the input image thereby violating the history-
free Markov assumption, our control policy extracts features
off the initial image as well as the candidate interpretation.
Finally, our least-commitment policy does not rely on high-
quality features for all processing levels thereby increasing
the interpretation quality as well as portability of the system.

Cumulatively, the three extensions enabled the first ap-
plication of an MDP-based vision system to interpretation
of natural (as opposed to man-made) objects. The prelim-
inary experiments presented in this paper suggest that the
approach is robust with respect to noise in the training data,
variable illumination and camera angles as well as high vari-
ation between training and testing images.

The initial success encourages further automation of the
system. In particular, we are presently investigating auto-
mated methods of feature selection (Levneret al. 2003a).
When successful, they will eliminate computationally ex-
pensive application of all operator sequences as some se-
quences will be discarded dynamically. We have also had
initial success with automated techniques for operator pa-
rameter tuning and selection (Bulitko, Lee, & Levner 2003).
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This is expected to result in significant computational sav-
ings as only a fraction of the operator set will have to be
executed on- and off-line. Ensemble learning and boosting
methods have recently seen success in classification and re-
gression. We are presently developing extensions of such
methods to control policies (Liet al. 2003). Finally, a more
adaptive image splitting and interpretation merging proce-
dure is under development and is expected to replace the
current regular tiling scheme.

On the application side, the system is presently consid-
ered for deployment at an Alberta government natural re-
sources office within the next several months. It will be eval-
uated with respect to identification of forest fire burn bound-
aries and validation of commercial thinning practices. Being
domain-independent, our approach is already being tested
for brain tumor detection in magnetic resonance imaging
(MRI) scans in cooperation with the Alberta Cross Cancer
Institute.
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