
Personalisation of Telecommunications Services as Combinatorial Optimisation

David Lesaint
BT, UK

david.lesaint@bt.com

Deepak Mehta
4C, UCC, Ireland

d.mehta@4c.ucc.ie

Barry O’Sullivan
4C, UCC, Ireland

b.osullivan@4c.ucc.ie

Luis Quesada
4C, UCC, Ireland

l.quesada@4c.ucc.ie

Nic Wilson
4C, UCC, Ireland

n.wilson@4c.ucc.ie

Abstract
Modern feature-rich telecommunications services offer sig-
nificant opportunities to human users. To make these services
more usable, facilitating personalisation is very important.
Such personalisation enhances the users’ experience consid-
erably. The Session Initiation Protocol and Distributed Fea-
ture Composition architecture allow users to select and com-
pose telecommunications network applications or features.
In this paper we view feature composition as a configura-
tion problem. We model feature composition using a variety
of combinatorial optimisation paradigms. In particular, we
present and evaluate an approach to finding optimal reconfig-
urations of network features when a user’s preferences violate
the technical constraints defined by a set of DFC rules.

Introduction
Information and communication services, from newsfeeds
to internet telephony, are playing an increasing, and po-
tentially disruptive, role in our lives. As a result, service
providers seek personalisation solutions to allow customers
control and enhance the way digital services are delivered;
for example, call control has received much attention in
Plain-Old Telephony Service and Intelligent Network envi-
ronments. An outcome of that work is the emergence of
features as fundamental primitives for personalisation (In-
ternational Telecommunication Union 1993; 1997).

A feature is an increment of functionality that modifies the
basic service behaviour, e.g., call-divert-on-busy, multime-
dia ring-back tone, interactive voice response, find-me, etc.
Features are optional and must be activated to fulfill their
role. Once activated, they execute automatically (e.g., call-
logging) or interactively (e.g., call-transfer). Service person-
alisation refers to the problem of selecting which features
should be active and when. In this context, a challenge is to
provide effective tool support to service subscribers.

Any personalisation capability is intrisincally dependent
on the way features are realised in the underlying service
application architecture (Lesaint & Papamargaritis 2008).
Modern architectures, notably those based on the Session
Initiation Protocol (Rosenberg et al. 2002), are user-centric
and delegate control over the selection and composition of
applications. Still, the management of interactions between

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applications remains incomplete or restrictive. Distributed
Feature Composition (Jackson & Zave 1998) provides a
comprehensive methodology underpinned by a formal archi-
tecture model to address this issue.

Service personalisation in DFC is essentially a feature-
based subscription configuration problem. We propose a
combinatorial optimisation approach to the problem and ex-
plore how user preferences can be handled consistently with
feature interaction resolution constraints. We introduce,
and compare experimentally, constraint programming (CP),
boolean satisfiability (SAT) and integer linear programming
(ILP) techniques to compute optimal relaxations in the case
of conflicting requirements. The results suggest the superi-
ority of the CP approach.

Personalisation and Feature Interaction
Because features are meant to be intelligible and easy to op-
erate, they are generally fine-grained and address specific
concerns such as privacy, mobility, logging, etc. Conse-
quently, providers organise their feature catalogues to en-
sure minimum redundancy and maximum combinability be-
tween features. Supporting feature composition is a source
of interactions though. Informally, a feature interaction is
“some way in which a feature modifies or influences the be-
haviour of another feature in generating the system’s overall
behaviour” (Bond et al. 2004).

Interactions are caused by resource contention (e.g., fea-
tures sharing an audio channel), signal overloading (i.e.,
common signals being used for different purposes), the dif-
ferent ways features handle the same condition (e.g., call-
divert and call-waiting on “busy”), etc. For instance, a do-
not-disturb feature subscribed by a callee will block incom-
ing calls and may cancel the effect of other features, e.g., a
welcome announcement. Users may consider such interac-
tions desirable or undesirable depending on the scenario.

Different solutions exist to detect, analyse and resolve
interactions at design-time, subscription-time and/or run-
time (Calder et al. 2003). Whatever the approach, these
solutions tend to be architecture-specific since the very ex-
istence and form of interactions depend on the way features
are modularised and composed at runtime. From a person-
alisation perspective, common concerns and requirements
must be addressed irrespectively of architectures, notably:

Proceedings of the Twentieth Innovative Applications of Artificial Intelligence Conference (2008)

1693

• Roles. Features are designed to act on behalf of
callers (e.g., originating-call-screening), callees (e.g,
terminating-call-screening) or both (e.g., call-waiting).
Users must then personalise their service consistently
with this role classification.

• Multiple feature selection. Since features address separate
concerns, users must have the flexibility to select multiple
features, e.g., “screen incoming calls and welcome callers
with a video clip”.

• Feature parameterisation. Some features need run-time
access to user-specific operational data, e.g., a call-divert
feature assumes a redirection address.

• Feature sequencing. Users may wish to specify a chrono-
logical ordering on the processing of features, e.g.,
“screen calls before diverting them”.

• Contextualisation. Different situations demand different
service behaviours. Rather than having to continuously
re-configure their service, users should have the flexibility
to stipulate conditions on the activation of features. Con-
ditions may refer to intrinsic or extrinsic session charac-
teristics, e.g., “mute calls when I attend a seminar”.

• Preferences. Allowing users to compose features or ex-
press activation conditions can be a source of inconsis-
tency if features conflict and/or contexts overlap, e.g.,
“call-divert at lunch time” and “voice-mail on Fridays”.
If so, user preferences may be used to resolve inconsis-
tencies.

• Priorities. Different individuals or entities may wish to
control the way a service is configured, e.g., the end-user,
his line manager, his department, etc. If so, priorities may
be used to resolve conflicts.

Below we review some personalisation solutions developed
in the context of SIP and DFC to address these requirements.

SIP and DFC Architectures
SIP is an application layer signalling protocol used to estab-
lish, modify and terminate multimedia sessions. It under-
pins services as different as IP telephony, instant messaging,
conferencing, presence awareness, IP-TV, video gaming or
home appliance control (Sparks 2007). SIP is text-based and
its messages can be transported with the Transmission Con-
trol Protocol (TCP/IP). It also relies on media protocols like
the Real-Time Transport Protocol (RTP) to carry text, voice,
video and data between endpoints.

The SIP specification prescribes an abstract architec-
ture comprising entities such as user agents, proxy servers
and registrars. Proxy servers route messages between user
agents and dialogs are set up, modified, and terminated
through a series of request-response transactions between
adjacent entities on the connection path. Altogether, these
mechanisms enable a dynamic chaining of entities during
the dialog setup phase - a style of composition known as
composition-by-proxying (see Figure 1).

Although the specification constrains the way entities
manage the low-levels of the SIP stack (i.e., transport, mes-
sage encoding/decoding, transaction and dialog manage-
ment), it does not restrict their call control logic, e.g., the

Figure 1: Message routing in a SIP architecture.

way they generate or proxy requests. Neither does it restrict
the way they are implemented or deployed to network ele-
ments, nor does it impose any global routing policy. This
makes SIP a very versatile protocol open to different service
logic, implementation technologies and deployment models
from peer-to-peer (Bryan & Lowekamp 2007) to centralised
environments (Steinmann 2007).

Personalising SIP services
Various capabilities have been proposed to program or exert
control over SIP entities. SIP scripting languages, for in-
stance, allow one to specify fine-grained call control rules
in the form of scripts combining conditions and actions.
Scripts are uploaded to devices or application servers and in-
terpreted by embedded engines at runtime. Examples of this
approach include CPL (Lennox, Wu, & Schulzrinne 2004)
and LESS (Wu & Schulzrinne 2002). SIP APIs provide
an alternative. The SIP servlet API, for instance, provides
real-time and operational control over the invocations of SIP
servlets (Java Community Process 2007).

The scope of these capabilities remains limited to the de-
vices and servers where scripts, policies, rules or servlets
are deployed. Other proposals like the Internet Multime-
dia Subsystem (IMS) (Poikselka et al. 2006) take a holis-
tic approach and organise network architectures around SIP
routers. The latter orchestrate the flow of messages between
distributed applications by evaluating user-defined filter cri-
teria. Although these solutions support some form of per-
sonalisation, none embrace a principled feature engineering
approach to design applications and manage their interac-
tions. The abstract DFC architecture which provides its own
signalling and media protocols is relevant in this respect.

DFC
Similar to SIP and the IMS, DFC establishes a dialog be-
tween endpoints by routing a setup request encapsulating
source and target addresses. Addresses may be changed
along the way and DFC routers evolve the connection path
accordingly. Starting from the box initiating the call, feature
boxes are incorporated one after the other until a terminat-
ing box is reached. A router is used at each step to locate the
next box and relay the setup request.

1694

CL
src=x
trg=z TCS

TDR

OCS

<

CL

OCS

CL <TDR

<

TDR

CFU

<TCS

<><CL

CFUTCSCL
C

A
T

A
L

O
G

U
E

X
src=x
trg=y OCS

zone of X

Y

Z

src=x
trg=y

zone of Y

src=x
trg=z

zone of Z

src=x
trg=z

CL TCSTDR TCSOCS

source sub. of X target sub. of Y target sub. of Z

S
U

B
S

C
R

IP
T

IO
N

S
Z

O
N

E
S

SOURCE REGION TARGET REGION

ROUTING

CONFIGURATION

TCS

features

feature

box types

feature
boxes

Figure 2: DFC: Catalogues, subscriptions and sessions.

The routing method, as a whole, consists of concatenat-
ing sequences of feature boxes called zones. The sequence
of zones is itself split into a source region and a target re-
gion (see Figure 2). A source (resp., target) zone is bound
to the source (resp., target) address of the request reach-
ing its first box, that is, all its boxes act on behalf of the
owner of the address under the assumption that he/she is the
caller (resp., callee). For instance, the box Time-Dependent-
Routing (TDR) in Figure 2 runs on behalf of subscriber Y
in a callee role.

By default, the first source zone is associated with the
source address of the initial setup request, e.g., zone of X
in Figure 2. A change of source address in the source re-
gion, caused for instance by an identification feature, trig-
gers the creation of a new source zone (Zave, Goguen, &
Smith 2004). If no such change occurs in a source zone and
the zone cannot be expanded further, routers switch to the
target region. Likewise, a change of target address in the
target region, as performed by TDR in Figure 2, triggers the
creation of a new target zone. If no such change occurs in
a target zone and the zone cannot be expanded further, the
request is sent to the final box identified by the encapsulated
target address.

DFC routers are only concerned with locating boxes and
assembling zones into regions. They do not make decisions
as to the type of feature boxes appearing in zones or their
ordering. They simply fetch this information from the sub-
scriptions preconfigured for each address in each region.
When a zone is to be created for an address in a region, a
router initialises a field of the setup request with the value of
the associated subscription. It then locates a feature box cor-
responding to the first feature of the subscription and routes
the request to the box. The routing process iterates by un-
folding the above mentioned field until it is exhausted (as for
Z in Figure 2) or the zone is interrupted (as for Y).

A DFC dialog may then be set up from multiple and par-
tially unfolded subscriptions. Note that dialogs may also
evolve into non-linear structures due to forking and joining
features (e.g., call-conferencing, call-queue). Overall, this
composition style allows subscribers to control dialog se-
tups. It can also prevent undesirable interactions by making

subscriptions, and thereby zones, “interaction-free”.
To this end, DFC allows designers to formulate prece-

dence constraints between features that every subscription
must comply with. These constraints are uncovered by
analysing all possible pairs of features in each region (Zave
2003). For each pair, this consists of determining which
routing order, if any, could lead to an interaction. If so, a
precedence constraint is created to impose the inverse or-
der as for the case of Originating-Call-Screening (OCS) and
Call-Logging (CL) in Figure 2. If no routing order is ac-
ceptable, two symmetric constraints are created to make the
features mutually exclusive as for the case of CL and Call-
Forwarding-Unconditional (CFU) in Figure 2.

This resolution method is safe, i.e., a constraint between
two features will prevent their interaction irrespective of the
zone the feature boxes might appear in, that is, whatever the
session. The method is also complete relative to the con-
straints uncovered by designers and bearing in mind that its
application scope is limited to zones. For instance, it does
not tackle interactions that may arise between features sub-
scribed by different addresses.

Configuring Subscriptions in DFC
The personalisation of a DFC service involves configuring a
subscription from a feature catalogue. A catalogue is a set of
source, target and reversible features - a subclass of features
that are both source and target (like CL in Figure 2) and a set
of precedence constraints between features in each region. A
subscription is a subset of catalogue features and a set of user
precedence constraints between features in each region. For
instance, the subscription of Y in the target region includes
the user precedence TDR<TCS.

Configuring a subscription involves selecting, parame-
terising and sequencing features in each region consis-
tently with the catalogue constraints and other integrity rules
(Jackson & Zave 2003). In particular, the source and target
regions of a subscription must include the same reversible
features in inverse order, i.e. source and target regions are
not configured independently.

Checking the consistency of a subscription can be reduced
to a cycle detection problem in a directed graph. Note first
that each region of a catalogue may be modelled as a di-
rected graph by mapping features to nodes and precedence
constraints to arcs. Since the two regions of a catalogue have
reversible features in common, their graphs may be merged
into a single catalogue graph by inversing target constraints
beforehand. The same transformation can be applied to sub-
scriptions to generate subscription graphs. Proving the con-
sistency of a subscription requires proving the acyclicity of
the extended graph obtained by merging the subscription
graph with the projection of the catalogue graph onto its
node set. Since cycle detection is linear in time, this equiv-
alence makes it possible to check subscriptions using inter-
active configuration systems (Lesaint et al. 2008). In this
context, the following services may be provided to users
submitting an input subscription: (verification) check the
consistency of the subscription by checking the acyclity of
the extended graph; (partial completion) if consistent, ex-
tend it with entailed precedence constraints by computing

1695

the partial order of the extended graph; (filtering) if consis-
tent, compute its anti-subscription, i.e. the set of features
and precedence constraints that would make it inconsistent
if added; (completion) if consistent, suggest complete and
consistent extensions by making its extended graph total and
acyclic; (revision) if inconsistent, suggest relaxations by
computing acyclic subgraphs of the extended graph. These
tasks are formalised in the next section.

Formalisation
Let fi and fj be features, we write a precedence constraint of
fi before fj as 〈fi, fj〉, or alternatively, pij . A feature cata-
logue is a tuple 〈F, P 〉, where F is a set of features and P is
a set of precedence constraints on F . Note that an exclusion
constraint between features fi and fj expresses that these
features cannot appear together in a feature subscription. We
encode this as the pair of precedence constraints 〈fi, fj〉 and
〈fj , fi〉. The transpose of a catalogue 〈F, P 〉 is 〈F, PT 〉
such that ∀〈fi, fj〉 ∈ F 2 : 〈fi, fj〉 ∈ P ⇔ 〈fj , fi〉 ∈ PT .
As described above, a source catalogue 〈Fs, Ps〉 and a target
catalogue 〈Ft, Pt〉 can be composed into a single catalogue
〈Fc, Pc〉 ≡ 〈Fs ∪ Ft, Ps ∪ Pt

T 〉.
A feature subscription S of catalogue 〈Fc, Pc〉 is a tuple
〈F,C, U, WF , WU 〉, where F ⊆ Fc, C is the projection of
Pc on F , i.e., Pc ↓F = {〈fi, fj〉 ∈ Pc : {fi, fj} ⊆ F},
U is a set of (user defined) precedence constraints on F ,
WF : F → N is a function that assigns weights to features
and WU : U → N is a function that assigns weights to
user precedence constraints. The value of S is defined by
Value(S) =

∑
f∈F WF (f) +

∑
p∈U WU (p). Note that a

weight associated with a feature signifies its importance for
the user. These weights can be elicited using data-mining or
analysis of user interactions.

A feature subscription S = 〈F,C, U, WF , WU 〉 is de-
fined to be consistent if and only if the corresponding graph
〈F,C ∪ U〉 is acyclic. Due to the composition of the source
and target catalogues into a single catalogue, a feature sub-
scription S is consistent if and only if both source and tar-
get regions are consistent in the DFC sense. Determining
whether a feature subscription 〈F,C, U, WF , WU 〉 is con-
sistent or not can be checked inO(|F |+ |C|+ |U |) by using
Topological Sort (Cormen, Leiserson, & Rivest 1990).

Let S = 〈F,C, U, WF , WU 〉 be an inconsistent feature
subscription. The set RS of all relaxations of S, is the set of
consistent feature subscriptions 〈Fi, Ci, Ui, WFi , WUi〉 such
that Fi ⊆ F , Ci = Pc↓Fi , Ui ⊆ U↓Fi , WFi = WF↓Fi , and
WUi = WU↓Ui . We say that Si ∈ RS is an optimal relax-
ation of S if it has maximum value among all relaxations,
i.e., if and only if there does not exist Sj ∈ RS such that
Value(Sj) > Value(Si). Finding an optimal relaxation of
an inconsistent feature subscription is NP-Hard.

Given a catalogue 〈Fc, Pc〉 and a consistent feature sub-
scription S = 〈F,C, U, WF , WU 〉, the anti-subscription is
the tuple 〈Fa, Pa〉 defined as follows. f ∈ Fc is an el-
ement of Fa if and only if the directed graph associated
with the subscription obtained after adding feature f , i.e.,
〈F ∪ {f}, Pc ↓F∪{f} ∪ U〉 is cyclic; pair 〈fi, fj〉 ∈ F 2 is
in Pa if and only if the directed graph associated with the

subscription obtained after adding precedence 〈fi, fj〉, i.e.,
〈F ∪ {fi, fj}, Pc ↓F∪{fi,fj} ∪ U ∪ {〈fi, fj〉}〉 is cyclic.

The definition of anti-subscription suggests one way of
implementing this task. To test whether a feature/precedence
belongs to the anti-subscription we check the consistency
of the resulting subscription. As there are O(|Fc|2) pos-
sible checks, the overall complexity of computing an anti-
subscription is O(|Fc|2 × (|F |+ |C|+ |U |)).

Given a consistent feature subscription S =
〈F,C, U, WF , WU 〉, the partial order of the subscrip-
tion is the transitive closure (C ∪U)∗ of the relation C ∪U .
The worst-case complexity of finding this transitive closure
is O(|F |3). A total order of consistent subscription S is
a topological sort of the directed graph 〈F,C ∪ U〉, i.e., a
total order extending the relation C ∪ U . The worst-case
complexity of finding such a total order is linear in time
with respect to the size of the corresponding graph.

Note that checking the consistency of a feature subscrip-
tion, and computing the anti-subscription, the partial order
and a total order are all polynomial tasks. The most chal-
lenging task is finding an optimal relaxation of a subscrip-
tion when it is not consistent, since it is NP-Hard. In the
remainder of the paper we focus only on this particular task.

Finding an Optimal Relaxation
We have used a constraint programming (CP) (Rossi,
van Beek, & Walsh 2006), a Partial Weighted Maximum
Boolean Satisfiability (PWMSAT) (Argelich & Manyà 2007)
and an Integer Linear Programming (ILP) (Vanderbei 2007)
technique to solve this particular task. Because of space
restrictions, we shall only present the constraint program-
ming formulation for finding an optimal relaxation. We
empirically evaluated all our formulations of the differ-
ent approaches. A constraint programming formulation
for finding an optimal relaxation of the input subscription
〈F,C, U, WF , WU 〉, when inconsistent, is outlined below.

Variables. We associate each feature fi ∈ F with two
variables: a Boolean variable bfi and an integer variable
pfi. The variable bfi is instantiated to 1 or 0 depending
on whether fi is included in the computed subscription or
not, respectively. The domain of each integer variable pfi is
{1, . . . , |F |}. We associate each user precedence constraint
pij ≡ 〈fi, fj〉 ∈ U with a Boolean variable bpij . The vari-
able bpij is instantiated to 1 or 0 depending on whether pij is
respected in the computed subscription or not, respectively.

Constraints. A catalogue precedence constraint pij ∈ C
that feature fi should be before feature fj can be expressed
as bfi ∧ bfj ⇒ (pfi < pfj). A user precedence constraint
pij ∈ U that fi should be placed before fj in their subscrip-
tion can be expressed as bpij ⇔ (bfi ∧ bfj ∧ (pfi < pfj)).
Note that if a user precedence constraint holds then the fea-
tures fi and fj are included in the subscription and also the
feature fi is placed before fj , that is, the selection variables
bfi and bfj are instantiated to 1 and pfi < pfj is true.

The objective function for finding an optimal relaxation of
the input feature subscription can be expressed as follows:

Maximize
∑
fi∈F

bfi ×WF (fi) +
∑

pij∈P

bpij ×WU (pij).

1696

A depth-first branch and bound algorithm is used to find
an optimal relaxation. Although the worst-case time com-
plexity of the algorithm is exponential, its efficiency can
be improved significantly by computing tight upper bounds
at each node of the search tree. The quality of the upper
bound can be improved by increasing the level of local con-
sistency that is maintained at each node of the search tree.
The different levels of local consistency we have used within
branch and bound search are Generalized Arc Consistency
(GAC) (Bessière & Régin 1997) and a form of mixed consis-
tency (Dooms, Deville, & Dupont 2005), which means en-
forcing different levels of consistency on different variables.

Evaluation of Different Approaches
We generated and experimented with a variety of random
catalogues and many classes of random feature subscription
(RFS). A uniform distribution was used for randomly select-
ing elements from the sets. A random catalogue is defined
by a tuple 〈fc, bc, Tc〉. Here, fc is the number of features, bc

is the number of binary constraints and Tc ⊆ {<, >,<>}
is a set of types of constraints. Note that fi <> fj means
that in any given subscription both fi and fj cannot exist
together. A random catalogue is generated by selecting bc

pairs of features randomly from the set of all fc(fc − 1)/2
pairs of features. Each selected pair of features is then as-
sociated with a type of constraint that is selected randomly
from Tc. A RFS is defined by a tuple 〈fu, pu, w〉. Here, fu

is the number of features that are selected randomly from fc

features, pu is the number of user precedence constraints be-
tween the pairs of features that are selected randomly from
fu(fu − 1)/2 pairs of features, and w is an integer greater
than 0. Each feature and each user precedence constraint is
associated with an integer weight that is selected randomly
between 1 and w inclusive.

We generated catalogues of the following forms:
〈50, 250, {<, >}〉, 〈50, 500, {<, >,<>}〉 and 〈50, 750, {<
, >}〉, but due to space limitations, we present the details
only for the last class, since they are representative of all
others. For each random catalogue, we generated classes
of RFSs of the following forms: 〈10, 5, 4〉, 〈15, 20, 4〉,
〈20, 10, 4〉, 〈25, 40, 4〉, 〈30, 20, 4〉, 〈35, 35, 4〉, 〈40, 40, 4〉,
〈45, 90, 4〉 and 〈50, 5, 4〉. For each class 10 instances were
generated and their mean results are reported in this paper.

The CP model for finding an optimal relaxation
was implemented and solved using Choco (http://
choco-solver.net), a Java library for constraint pro-
gramming systems. In our implementation we maintain re-
stricted singleton generalized arc consistency (Prosser, Ster-
giou, & Walsh 2000) on Boolean variables and GAC on
the remaining variables. Our experience is that maintain-
ing (restricted) singleton generalized arc consistency on the
Boolean variables often reduces the search space and time
of the branch and bound algorithm significantly. The PWM-
SAT model of the problem was implemented and solved us-
ing SAT4J (http://www.sat4j.org), an efficient li-
brary of SAT solvers in Java. The ILP model of the problem
was solved using ILOG CPLEX (http://www.ilog.
com/products/cplex/). All the experiments were per-
formed on a PC Pentium 4 (CPU 1.8 GHz and 768MB of RAM)

Table 1: A sample of results on catalogue 〈50, 750, {<, >}〉.

PWMSAT CPLEX CP
〈f, p〉 #nodes time #nodes time #nodes time
〈10, 5〉 226 761 22 122 14 40
〈15, 20〉 865 1,614 273 976 36 132
〈20, 10〉 1,886 3,016 877 2,990 67 301
〈25, 40〉 7,247 6,861 12218 35,216 236 2,732
〈30, 20〉 10,726 11,042 28,503 107,988 669 6,096
〈35, 35〉 24,945 26,161 159,930 1,582,155 1,688 21,899
〈40, 40〉 57,429 84,291 400,546 5,199,400 4,883 75,031
〈45, 90〉 532,684 2,571,336 (1) 823,073 14,400,025 (10) 13,397 336,076
〈50, 4〉 182,869 472,325 808,054 14,400,025 (10) 44,390 536,975

processor. The performance of all the approaches was mea-
sured in terms of search nodes (#nodes) and runtime in mil-
liseconds (time). We used the time limit of 4 hours to cut the
search. In the tables, a number in parenthesis after the time
marks the number of instances not solved (last two lines).

We present a sample of our detailed results in Table 1.
These results suggest that our CP approach performs best
overall, solving all instances. Even though in very few cases
it is outperformed by the other two approaches, it manages
to make a significant gap in all other cases. Experimental
results suggest that our ILP and PWMSAT approaches require
noticeably more time than the CP approach.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

5045403530252015105

T
im

e
in

 m
ill

is
ec

on
ds

Number of Features

SAT
CP

CPLEX

(a) Results for 〈fu, 0, 1〉: fu varies
from 5 to 50 in steps of 5.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

5045403530252015105

T
im

e
in

 m
ill

is
ec

on
ds

Number of Features

SAT
CP

CPLEX

(b) Results for 〈fu, pu, 1〉: fu = pu and
fu varies from 5 to 50 in steps of 5.

Figure 3: Comparing the different approaches.

Figure 3(a) presents a comparison of the different ap-
proaches in terms of their runtimes for subscriptions, when
|U | = 0 and the weight of each feature is 1. The runtimes
of the approaches for the classes of RFS when |F | = |U | are
presented in Figure 3(b). The PWMSAT approach is outper-
formed by the other two approaches when |F | is less than
35 and 25 in Figures 3(a) and 3(b), respectively. However,

1697

it performs better than the other approaches for |F | > 35
and |U | = 0. It would be interesting to find out whether the
PWMSAT approach deteriorates when |F | > 50. We observe
that when |F | > 35, the runtime of CPLEX is the worst. In
Figure 3(b), when |F | = 50, neither the ILP approach nor
the PWMSAT approach managed to solve all the instances.
In fact, this is why their average runtime, for the case of 50
features, is basically the timeout. The gap between the CP
approach and the other approaches, for the case of 50 fea-
tures in Figure 3(b), does not seem very remarkable because
the timeout is relatively close to the time spent by the CP
approach. However, other experiments suggest that the gap
would be more significant if the timeout were higher.

Conclusions
We have presented an approach to personalised feature com-
position in telecommunications systems. Our architecture
is based on SIP and DFC that provide a sound foundation
for developing safe and flexible personalisation solutions.
We considered feature composition as a configuration prob-
lem. We presented, and evaluated, an optimisation-based
approach to finding optimal reconfigurations of network fea-
tures when the user’s preferences violate the technical con-
straints defined by a set of DFC rules. Our results suggest
that finding an optimal relaxation for concrete catalogues
(e.g., (Bond et al. 2005) presents a catalogue of 25 features)
is feasible using constraint programming. The results also
show that CP outperforms the other approaches. Another
benefit of using CP is that more complex constraints on fea-
tures can be formulated in a more natural way. In our future
work we will develop approaches to managing context-rich
subscriptions.

Acknowledgements
This material is based upon research supported by Sci-
ence Foundation Ireland (Grant No. 05/IN/I886), and the
Embark Initiative (Fellowship Nos. CT1080049908 and
CT1080049909). The authors would also like to thank
Hadrien Cambazard for his support in using Choco.

References
Argelich, J., and Manyà, F. 2007. Partial Max-SAT solvers
with clause learning. In SAT, 28–40.
Bessière, C., and Régin, J.-C. 1997. Arc consistency for
general constraint networks: Preliminary results. In IJCAI,
398–404.
Bond, G. W.; Cheung, E.; Goguen, H.; Hanson, K. J.; Hen-
derson, D.; Karam, G. M.; Purdy, K. H.; Smith, T. M.; and
Zave, P. 2005. Experience with Component-Based Devel-
opment of a Telecommunication Service. In CBSE 2005,
298–305.
Bryan, D. A., and Lowekamp, B. B. 2007. Decentralizing
SIP. ACM Queue 5(2):34–41.
Calder, M.; Kolberg, M.; Magill, E. H.; and Reiff-
Marganiec, S. 2003. Feature Interaction: a critical review
and considered forecast. Comp. Networks 41(1):115–141.

Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduc-
tion to Algorithms. The MIT Press.
Dooms, G.; Deville, Y.; and Dupont, P. 2005. CP(Graph):
Introducing a graph computation domain in constraint pro-
gramming. In CP 2005.
International Telecommunication Union. 1993. Introduc-
tion to Intelligent Network Capability Set 1. Recommen-
dation Q.1211, ITU, Geneva, Switzerland.
International Telecommunication Union. 1997. Introduc-
tion to Intelligent Network Capability Set 2. Recommen-
dation Q.1221, ITU, Geneva, Switzerland.
Jackson, M., and Zave, P. 1998. Distributed Feature Com-
position: a Virtual Architecture for Telecommunications
Services. IEEE TSE 24(10):831–847.
Jackson, M., and Zave, P. 2003. The DFC Manual. AT&T.
Java Community Process. 2007. SIP servlet version 1.1.
Java Specification Request 289, JCP.
Lennox, J.; Wu, X.; and Schulzrinne, H. 2004. Call Pro-
cessing Language (CPL): A Language for User Control of
Internet Telephony Services. RFC 3880 (standard), IETF.
Lesaint, D., and Papamargaritis, G. 2008. Personalised
Communications. In Service Chain Management - Tech-
nology Innovation for the Service Business. 187–203.
Lesaint, D.; Mehta, D.; O’Sullivan, B.; Quesada, L.; and
Wilson, N. 2008. A Constraint-Based System for the Con-
figuration of Subscriptions to Feature-Based Telecommu-
nications Services. Patent report, BT, Ipswich, UK.
Poikselka, M.; Mayer, G.; Khartabil, H.; and Niemi, A.
2006. The IMS: IP Multimedia Concepts and Services.
John Wiley & Sons.
Prosser, P.; Stergiou, K.; and Walsh, T. 2000. Singleton
Consistencies. In Dechter, R., ed., CP-2000, 353–368.
Rosenberg, J.; Schulzrinne, H.; Camarillo, G.; Johnston,
A. B.; Peterson, J.; Sparks, R.; Handley, M.; and Schooler,
E. M. 2002. SIP: Session Initiation Protocol. RFC 3261
(standard), IETF.
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Elsevier Science Inc.
Sparks, R. 2007. SIP: Basics and Beyond. ACM Queue
5(2):22–33.
Steinmann, M. J. 2007. Unified Communications with SIP.
ACM Queue 5(2):50–55.
Vanderbei, R. J. 2007. Linear Programming: Foundations
and Extensions. Springer.
Wu, X., and Schulzrinne, H. 2002. Programmable End
System Services Using SIP. In 2nd New York Metro Area
Networking Workshop.
Zave, P.; Goguen, H.; and Smith, T. M. 2004. Component
Coordination: a Telecommunication Case Study. Com-
puter Networks 45(5):645–664.
Zave, P. 2003. An Experiment in Feature Engineering. In
McIver, A., and Morgan, C., eds., Programming Method-
ology. Springer-Verlag. 353–377.

1698

