
Deciding When to Commit To Action During Observation-based
Coordination

Marcus J. Huber and Edmund H. Durfee*
Distributed Intelligent Agents Group (DIAG)

The University of Michigan
marcushQengin.umich.edu duffee~engin.umich.edu

http://ai.eecs.umich.edu/people

Abstract

We have developed a multiagent scheme which utilizes
plan recognition as its primary means of acquiring the
information necessary to coordinate the activities of
agents. Pr~llmlnary research has demonstrated that
the plan recognition system developed makes coordi-
nation of multiple agents possible. An important is-
sue that arises when observation is the primary means
of information acquisition is the introduction of un-
certainty into the coordination process. We have ex-
plored the issue of early versus late commitment to the
uncertain information thus gained and the resulting
tradeof between time and effort as the commitment
level is changed. Our results show that while in some
situations it is worthwhile delaying commitment until
uncertainty is reduced, in other situations it is impor-
tant to act even when uncertainty is high. The long-
term goal of the research is to develop the notion of
coordination through observation, where agents utilize
plan recognition to acquire coordination information.

Introduction

To coordinate its plans with those of others, an agent
must have a model of the plans of each of the other
agents. It may then compare these plans to its own
plans and goals and determine the potential for conflict
or cooperation. Traditional techniques in multi-agent
planning and coordination typically allow agents to
explicitly communicate about their intentions, plans,
and the relationships between them (Conry, Meyer, 
Lesser 1988; Durfee, Lesser, & Corkill 1987). Some
environments might not admit to explicit communica-
tion, however. This may arise because the communi-
cation medium between two agents that can commu-
nicate with each other might be unreliable (e.g. RF
interference). Or, perhaps, using the communication
channel might introduce new risks to one or more of the
agents involved in the communications, such as may
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occur when operating in an environment in which there
are hostile agents. And in situations where agents are
antagonistic, the agents will certainly not wish to com-
municate plans and goals with other agents, and may
have to rely on other means to ascertain the intentions
of these other agents. In addition, traditional DAI
techniques rely on strong assumptions of common com-
munication language, communication protocol, and
plan and goal representation (Cohen & Perrault 1979;
Durfee & Montgomery 1990).

Communication-poor coordination techniques do ex-
ist, including social conventions (Shoham & Tennen-
holtz 1992), focal points (Kraus & Rosenschein 1991),
decision-theoretic (Genesereth, Ginsberg, & Rosen-
schein 1984), and game-theoretic recursive modeling
(Gmytrasiewicz, Durfee, & Wehe 1991). In general,
these techniques emphasize implicitly or explicitly in-
feting others’ actions based on established norms for
behavior or on beliefs about the preferences or inter-
ests of others. Thus, social conventions constrain be-
havior to make others predictable, but can be over-
constraining in variable environments. Meanwhile, us-
ing focal points depends on agents identifying choices
that are somehow universally distinctive, and so agents
must see the world very similarly for this technique to
work. Decision and game-theoretic techniques allow
agents to model others as being utility-maximizing,
and thus require agents to model the preferences over
(utilities of) alternative choices of others. Therefore,
communication-poor techniques generally assume ei-
ther that agents are constrained in their actions in
some commonly known way, or that agents can antic-
ipate each others’ actions based on knowledge of what
others consider relevant or desirable.

Another alternative, and the approach that we have
taken, is for the agents to infer the plans of each other
by observing the actions or behaviors of the other
agents (Charniak & Goldman 1991), rather than either
actively communicating plans, goals, and intentions, or
inferring these through knowledge of what others con-
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sider relevant or desirable. Moreover, the same coor-
dination techniques may be applied to the recognized
plans that were employed when explicit communica-
tion about plans was the means used for acquiring co-
ordination information. Agents coordinating through
the use of plan recognition do not even need to have
a common communications medium or language. In
fact, nothing has to be in common among the agents
other than the knowledge of the observed agent’s possi-
ble goals, and the actions it will exhibit while pursuing
those goals. Perception capable of making observa-
tions of other agents’ behavior is also necessary, but is
not dependent upon the other agents in the world. The
various agents, then, may be heterogeneous, having dif-
ferent representations of models and plans, perceptual

¯ capabilities, communication means, etc.
We recognize, however, that there are costs associ-

ated with the plan recognition process. These costs in-
clude the introduction of uncertainty due to imperfect
observation and inferencing (Huber & Durfee 1993),
additional computation time and effort to perform plan
and goal inferencing, and the relative difficulty (com-
pared to direct communication methods) of recogniz-
ing and incorporating new goals and behaviors into
the models of other agents (Huber, Durfee, & Well-
man 1994). Cooperating agents will need to weigh the
costs and risks associated with explicit communication
against the costs associated with plan recognition. If
explicit communication is relatively inexpensive and
risk free it is probably advantageous for the agent to
utilize it. On the other hand, as explained above,
there will be circumstances that may force an agent
to use observation and plan recognition to cooperate
with other agents. We think that by experimenting
with plan recognition in a variety of domains, we will
gain a deeper understanding of the situations in which
plan recognition is, and is not, a useful process.

In this paper, we present preliminary research results
showing that multiple agents employing plan recogni-
tion can successfully coordinate their activities. We
have further explored one of the significant issues iden-
tified during the preliminary research, that of the un-
certainty introduced by inferencing during the plan
recognition process, and we present the results of this
research. We are working towards a more formal
examination of coordination through observation, the
paradigm in which multiple agents can coordinate their
behavior through the use of plan recognition for plan
and goal recognition.

Probabilistic Plan Recognition

In this section, we first discuss our experimentation
environment and agent capabilities. We then describe
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our plan recognition system and the integration of the
plan recognition system into agents performing navi-
gation tasks in the environment.

The environment in which our agents act is a discrete
time, two-dimensional, simulated grid world. This
environment was created using MICE (Montgomery
& Durfee 1990), a testbed designed explicitly for ex~
perimentation with multiple agcnt coordination tech-
niques. The agents in this environment were limited
to the primitive actions of motion (movement north,
south, east, or west) or no motion. Two types of
agents were implemented: observed agents ("bounding
agents" or "bounders") and observing agents ("over-
watching agents" or "overwatchers"). The bounding
agents were given a goal to occupy a certain desig-
nated location, and would head directly for that lo-
cation throughout an experiment. The overwatching
agents observed the actions of the bounding agents,
tried to infer the goals of the observed agents (the par-
ticular goal destination), and acted accordingly. The
behavior of the overwatching agents will be explained
in more detail later.

The bounding agent’s heuristics were quite simple.
Placed in some initial starting location, and given
a goal location, the agent would plan the shortest,
straight-line path to the goal and then start moving
toward it. Once the bounding agent arrived at its goal,
it would then remain motionless for the remainder of
the experiment.

The overwatching agent’s heuristics were variable.
In all cases the agent would react to its beliefs by mov-
ing to a particular destination location. This destina-
tion could be the same location, a nearby location, or
a location opposite to that which the bounding agent
was moving towards, depending upon the heuristics
specified at the beginning of tile experiment. The first
heuristic, moving to the same location as thc observed
agent, might be used if the agents were supposed to
rendezvous, enabling them to do this without having
to explicitly communicate with each other. The sec-
ond heuristic, moving to a nearby destination location,
might be used if the two agents were supposed to per-
form surveillance, where the "destinations" might be
hilltops and the coordination results in a larger cov-
erage area. The third type of heuristic, moving to an
opposite location, might be used if the agents were ad-
versaries and the overwatching agent wanted to avoid
being noticed by the other agent.

Goal Inference

The overwatching agent’s primary objective was to
accurately infer the goal (the final destination) 
the bounding agent. To do this, each overwatching
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agent employed a belief network implemented using the
IDEAL system (Srinivas & Breese 1990). The IDEAL
system consists of a collection of LISP functions that
permit the construction and maintenance of belief net-
works, the accumulation of observations, and the sub-
sequent propagation of the beliefs throughout the net-
work in order to perform plan inferencing. At each
simulated time step, the overwatching agent would ob-
serve the actions of the bounding agent. This evidence
was added to the history of previously observed ac-
tions and the beliefs of the Bayesian network would
then be updated. With consistent and reinforcing ev-
idence, belief in a possible destination would increase.
Conversely, contradictory evidence would cause a be-
lief in a destination to decrease, possibly to zero.

The belief network architecture is quite simple, and
isshown in Figure l(b). In this figure, nodes are prob-
abilistic variables and arcs represent causality or de-
pendence. Each of the nodes contains a set of possible
states, representing the possible values that each value
may take. Root nodes (i.c. the Location and Destina-
tion nodes) contain values conditionally independent of
any other node. The dependent nodes (i.e. the Mo~e
node) are conditionally dependent upon its immediate
predecessors. The belief network shown represents the
idea that a move is dependent upon both the goal des-
tination and the particular location the agent is in.

The state spaces of each of the nodes varies. The
Move node contains the states of {North, South, East,
West, Stay}. The Location and Destination nodes con-
rain a mutually exclusive and exhaustive list of regions
of the environment, (a hierarchical, multi-resolution
representation similar in form to a quad-tree represen-
tation.

For the belief network shown, we had to determine
the prior probabilities for each of the possible states
of the independent nodes (the Location and Destina-
tion nodes), and the conditional probabilities for the
dependent nodes (the Mo~e node). The probabilities
were computed with the implicit assumption that the
agent will move in a straight line to its destination
from its current location, so the network is "fooled" in
situations where the watched agent is trying to trick
the watching agent by making feinting maneuvers, or is
taking a path that takes it around some obstacle that
is in its way.

For the Location node, the state that represents the
current position of the agent is set to a probability of
1.0, since the observing agent can tell where the other
agent is at all times and sensors are assumed to be per-
fect in this implementation.1 The Destination node’s

1Further experiments, motivated by experiments with
actual robots (Huber & Durfee 1993), where uncertainty
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Figure I: (a) Initial belief network architecture and (b)
grid-world plan recognition environment.

states are initially equiprobable, as the observing agent
starts without any bias toward which goal the bound-
ing agent will be heading toward.

Once the belief network is constructed, an agent
can make observations of another agent and add this
"evidence" to nodes in the belief network. This evi-
dence can then be propagated throughout the network
to the other nodes, resulting in posterior probabilities
(the observing agent’s "beliefs" in the observed agent’s
goals and intentions) given the evidence. In the next
section, we discuss the issue of when to commit to this
uncertain information concerning other agents’ inten-
tions.

Commitment
In this section, we discuss the tradeoffs an agent faces
when dealing with the uncertain information generated
by the plan recognition system. For example, suppose
the overwatching agent observes the behavior of an-
other agent, uses the plan recognition system to deter-
mine the most likely plans of the agent, and then acts
"appropriately" based upon this inferred information.
If the observing agent is always in motion, moving to-
ward whichever destination location that was most ap-
propriate for the highest probability plan believed to
be held by the other agent, the agent would possibly
be performing unnecessary actions due to errors in its
beliefs of the other agent’s goals. These extra actions
would also be performed regardless of the level of belief

of position is added, demonstrates that the system under-
goes graceful degradation of performance with increased
uncertainty.
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held for the most probable goal.
Early commitment, then, was shown to result in ex-

tra effort on the part of the watching agent. It is easy
to see that this extra effort could be eliminated by
simply having the watching agent wait until the other
agent had reached its final destination and then plan an
optimal, least-effort path to its own destination. The
cost of doing this, however, is the extra time taken
waiting for the watching agent to reach its goal.

With respect to building intelligent agents, we were
interested in the tradeoff between these two factors to
determine the situations in which it was preferable to
commit early or late. We also wanted to get a feel
for belief level thresholds and intervals that were sig-
nificant in their impact upon the time and movement
costs of the agents. With this meta-level knowledge
then, agents finding themselves in a particular envi-
ronment can more wisely decide upon belief thresholds
and their courses of action. To explore these questions,
we performed a series of experiments, described below.

In the following simulation experiments, we mea-
sured several parameters that we felt would reveal the
tradeoff discussed above. These were:

Ave End Time: The average time step at which the
simulation ended. The criterion for this was the time
at which all agents arrived at their final destinations.

Ave Last Move Time: The average time step at
which the observing agent performed its last move-
ment action. The observing agent stopped moving
once it had arrived at the destination determined by
the heuristics described earlier (the same, nearby, or
"opposite" location as that of the observed agent.)

Ave Total Moves: The average number of moves
made by the observing agent throughout the exper-
iment.

Symmetric Destination Distribution

Our first experiments were within the environment
shown in Figure l(a), in which the destinations were
distributed fairly evenly and symmetrically through-
out the 32x32 grid "world". In each experiment, the
bounding agent’s initial location was picked at random,
and the agent always moved to Destination 1. Three
variations of the overwatching agent’s behavior were
experimented with, corresponding to the three heuris-
tics described earlier: moving to the same, nearby, or
opposite location as that of the watched agent. For
each experiment we measured the total time taken for
the simulated run, the last time step in which the ob-
serving agent moved, and the total number of moves
taken by the observing agent.

Because we wanted to get an understanding of the
tradeoffs of time versus effort as commitment changed,
we established a threshold of belief. Only when the
overwatching agent held belief in a potential destina-
tion location above this threshold would it commit to
the appropriate destination location. In the exper-
iments where the overwatching agent moved to the
same location which it believed the other agent was
moving toward, shown in Figure 2, the tradeoff be-
tween time and effort is clearly seen.

In Figure 2 it is evident that, as the watching agent
waits for higher levels of belief before committing to
action, it saves in the total number of moves that it has
to make, on the average. In this scenario, the agent
saves approximately two moves if it waits until it is
absolutely sure which destination the agent that it is
watching is going to. The extra time spent waiting, six
time steps, might be quite costly relative to the cost
of motion, however, and would have to be considered
within the constraints of the domain (i.e. some utility
function). Another observation from these results is
that there seems to be little effect of having a threshold
below 0.3 or 0.4. It appears that beliefs below this
level indicate that the overwatching agent is still pretty
confused about the final destination of the other agent.

The results of experiments in which the overwatch-
ing agent moved to a "nearby" destination location
is shown in Figure 3. The "near" destination for each
destination was predefined at the beginning of the sim-
ulation, and was never changed (e.g. Destination 
was "near" to Destination 4, Destination 5 was "near"
to Destination 1, etc.) In this scenario, the tradeoff
between effort and time is reversed. As the thresh-
old level increases, the effort saved by the watching
agent is six moves, while the time saved is only two
time steps. This is due in part to the nonlinear re-
lationships between the "near" destinations, resulting
in moves that are more likely to take the watching
agent further from the final destination of the watched
robot. Using the "same" heuristic resulted in moves
that, although headed toward the wrong destination,
were pretty much always in the right general direction.

The results of the experiments in which the over-
watching agent moved to an "opposite" destination lo-
cation show a great deal of similarity with the "near"
destination heuristic, with the only significant differ-
ence being the relatively high values for the "opposite"
heuristic (about eight points higher for all the curves).

Asymmetric Destination Distribution

Three scenarios were explored in which the goals
(the destinations) were not arranged symmetrically
throughout the environment as they were above. We
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thought that this would be more realistic and reveal
other intercsting phenomena. Two of the environments
were designed to accentuate the tradeoffs present in the
environments above by placing the destinations in such
a manner as to make it costly for the watching agent
to make a mistake. These two environments are shown
in Figure 4(a) and Figure 5(a). The compact distribu-
tion of destinations was designed to make it dimcult for
the observing agent to distinguish the final destination
until very late in the simulation. The second environ-
rnent was designed to be a worst case situation, where
switching between two probable destinations would re-
sult in a complimentary destination a great distance
away from the previous complimentary destination.

In the experiments in the compact destination distri-
bution, thc results of which are shown in Figure 4(b),
the graphs indicate distinct changes in the behavior of
the observing agent. Notable is the nearly constant
number of moves made, regardless of the threshold
value. As the threshold increases, however, the time
cost becomcs quite large, approaching eight time steps
at the upper limit of the threshold range. The thresh-
old level at which this becomes apparent (0.2) is signif-
icantly lower than in other environments, also indicat-
ing that the observing agent can make decisions with
quite a higher level of uncertainty in its beliefs.

In this environment, it does not benefit the over-
watching agent to wait for the emergence of a highly
probable destination, but to commit itself to whichever
destination is most likely at each time step. The en-
vironment characteristic that results in this behavior
is the compact distribution of the potential destination
locations. All of the destinations are in a very small re-
gion of the environment, so the observing agent’s best
course of action is to start moving toward the group-
ing, regardless of thc particular goal destination of the
other agent. Otherwise, the agent must wait quite a
while until the watched agent’s behavior distinguishes
the particular destination to which it is going.

In the experiments in the worst-case destination dis-
tribution, the results of which are shown in Figure 5(b),
we see a phenomenon not seen in any of the other envi-
ronments. Here we see a sharp and very large decrease
(approximately twenty) in the total number of moves.
Most notable, however, is the decrease in the sinmla-
tion times. This "worst-case" scenario brought out the
behavior that we were looking for. Namely, that early
commitment to an incorrect final destination, result-
ing in subsequently switching to the correct destina-
tion later in the simulation, led to movement on the
part of the observing agent that took it pretty much
in the opposite direction of where it eventually wanted
to go. The decrease in the simulation times for large
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Figure 5: (a) Worst-case destination distribution, and
(b) experimental results, "Worst-case opposite" com-
plimentary destination.

thresholds results from not moving in the wrong di-
rection, which would require later backtracking. And,
of general note, is the relatively high values for all of
the variables in this environment. This is an indica-
tion that it is a very difficult environment in which to
operate, requiring a high level of effort for all random
placements of the agents.

Discussion
It is apparent that there is a distinct tradeoff between
time and effort as a function of commitment. In almost
all of the experiments, there was a noticeable increase
in the time of completion of the simulations, iudicat-
ing that the observing agent waited for some amount
of time until it was certain of the intentions of the
watched agent. And, while this generally resulted in
a decrease in the total effort expended by the observ-
ing agent, it was also apparent that the magnitude of
this reduction in effort depended markedly upon the
environment. In some scenarios, the small decrease
in expended effort may not be enough of a savings to
the agent to compensate for the extra time taken. In
one particular scenario, both the time and the effort
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decreased as the level of belief before commitment was
increased, showing that there may be domains in which
the cost of waiting may indeed be justified.

The implications of these experiments is that an
agent will have to be able to recognize certain char-
acteristics of the environment, and the particular sit-
uation that it is in, in order to determine the relative
cost of acting versus perceiving. It appears that in
the domain specified here, pretty much regardless of
the environment setup, that a threshold of below 0.30
was useless. Committing to beliefs below this value
resulted in little or no improvement in either coordi-
nation time or effort. On the contrary, while in gen-
eral an upper threshold of approximately 0.50 to 0.70
seems be the point at which benefits of reduced effort
are first realized, it is not true for all environments; the
observing agent must first categorize the environment
(perhaps by determining how costly it is to commit to
an incorrect final destination) before deciding upon its
belief threshold.

For the sake of simplicity, our analysis in all of
these experiments assumed the agent had a very sim-
ple "cost", or "utility" function, which simply com-
pared the raw values of elapsed time and number of
moves. Agents may certainly have more complex cost
functions, of course, to reflect the relative importance
of time, movement, and other factors.

Summary

We have developed a multiagent scheme which utilizes
plan recognition as its primacy means of acquiring the
information necessary to coordinate the activities of
agents. The research domain to which we have ap-
plied our scheme is coordinated motion and naviga-
tion among multiple robots, both in simulation and in
the real world. Preliminary research has demonstrated
that the plan recognition system developed makes co-

ordination of multiple agents possible. It has also iden-
tified an important issue: observation is the primary
means of information acquisition, and is responsible for
the introduction of uncertainty into the coordination
process. We have, therefore, explored the issue of early
versus late commitment to the information thus gained
and the resulting tradeoff between time and effort as
the commitment level is changed. The long-term goal
of the proposed research is to develop the notion of
coordination through observation, whereby agents can
successfully utilize plan recognition processes to ac-
quire coordination information. We believe that by
developing such a system in real-world domains, it will
allow us to identify and begin solving critical issues in
plan recognition and coordination.

Extensions that we have been working on (see (Hu-
her & Durfee 1993)) include modeling the uncertainty
inherent in sensor-based observations into the plan
recognition architecture, a necessity for real-world en-
vironments. Realistic domains will also require an ex-
tension of the spatial representation beyond that of
the simple quad-tree representation used thus far. An
agent will also need to be able to observe multiple
agents and infer (potentially multiple) plans and goals
for each of these individuals, and possibly for a group of
agents as well. Furthermore, the assumption that the
observing agent has a complete and accurate model of
the observed agents’ plan hierarchy is unrealistic and
will have to be relaxed.

Acknowledgements

We would like to thank Mike Wellmaa for many dis-
cussions regarding belief networks and reasoning under
uncertainty. We would also like to thank the reviewers
for their constructive comments.

Huber 169

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



References

Charniak, E., and Goldman, R. 1991. A probabilistic
model of plan recognition. In Proceedings Ninth Na-
tional Conference on Artificial Intelligence, 160-165.
Anaheim, CA: American Association for Artificial In-
telligence.

Cohen, P. R., and Perrault, C. It. 1979. Elements of
a plan-based theory of speech acts. Cognitive Science
3(3):177-212.

Conry, S. E.; Meyer, It. A.; and Lesser, V. R.
1988. Multistage negotiation in distributed planning.
In Bond, A. H., and Gasser, L., eds., Readings in
Distributed Artificial Intelligence. Morgan Kaufman.
367-384.

Durfee, E. H., and Montgomery, T. A. 1990. A hierar-
chical protocol for coordinating multiagent behaviors.
In Proceedings of the National Conference on Artifi-
cial Intelligence, 86-93.

Durfee, E. H.; Lesser, V. R.; and Corkill, D. D.
1987. Coherent cooperation among communicating
problem solvers. IEEE Transactions on Computers
C-36(11):1275-1291. (Also published Readings in
Distributed Artificial Intelligence, Alan H. Bond and
Les Gasser, editors, pages 268-284, Morgan Kauf-
mann, 1988.).

Genesereth, M.; Ginsberg, M.; and Rosenschein,
J. 1984. Cooperation without communications.
Technical Report 84-36, Stanford Heuristic Program-
ming Project, Computer Science Department, Stan-
ford University, Stanford, California 94305. (Also
published in Readings in Distributed Artificial In-
telligence, Alan H. Bond and Lea Gasser, editors,
pages 220-226, Morgan Kaufmann, 1988.).

Gmytrasiewicz, P. J.; Duffee, E. H.; and Wehe, D. K.
1991. A decision-theoretic approach to coordinating
multiagent interactions. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelli-
gence.

Huber, M. J., and Durfee, E. H. 1993. Observa-
tional uncertainty in plan recognition among inter-
acting robots. In Working Notes: Workshop on Dy-
namically Interacting Robots, 68-75.

Huber, M. J.; Durfee, E. H.; and Wellman, M. P.
1994. The automated mapping of plans for plan
recognition. In Proceedings of the 199~ Distributed
AI Workshop, 137-152.

Krans, S., and Rosenschein, J. S. 1991. The role of
representation in interaction: Discovering focal points
among alternative solutions. In Demnzeau, Y., mad
Muller, J.-P., eds., Decentralized AI. North Holland.

170 ICMAS-95

Montgomery, T. A., and Durfee, E. H. 1990. MICE
users guide. Technical Report CSE-TR-64-90, Com-
puter Science and Engineering Division, EE and CS
Department, University of Michigan, Ann Arbor, MI
48109. (Revised 1992).

Shoham, Y., and Tennenholtz, M. 1992. On the syn-
thesis of useful social laws for artificial agents societies
(preliminary report). In Proceedings of the National
Conference on Artificial Intelligence.

Srinivas, S., and Breese, J. 1990. Ideal: A software
package for analysis of influence diagrams. In Pro-
ceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, 212-219.

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 


