
Two is not Always Better than One:
Experiences in Real-Time Bidirectional Search

Toru Ishida
Department of Information Science

Kyoto University
Kyoto, 606, JAPAN

ishida@kuis.kyoto-u.ac.jp

Abstract

This paper investigates real.time bidirectional
search (RTBS) algorithms, where two problem
solving agents, starting from the initial and goal
states, physically move toward each other. To
evaluate the RTBS performance, two kinds of al-
gozlthms, centralized RTBS and decoupled RTBS,
are proposed and axe compared to real.time
unidirectional search (RTUS). Experiments on
mazes and n-puzales show that (1) in clear situ-
ations decoupled RTBS performs better, while in
uncertain situations, centralized RTBS becomes
more efficient, and that (2) RTBS is more efficient
than RTUS for 15- and 24-puzzles but not for ran-
domly generated mazes. It will be shown that the
selection of the multi-agent organization is the
selection of the problem space, which determines
the baseline of the ozgamizational efficiency; once
a difficult problem space is selected, the local co-
ordination &mong problem solvers hardly over-
comes the deficit.

Introduction
Suppose there axe two robots trying to meet in a felly
complex maze: one is starting from the entrance and
the other from the exit. Each robot always knows its
current location in the maze, and can communicate
with the other robot; thus, each robot always knows
its goal location. Even though the robots do not have a
map of the maze, they can gather information around
them through various sensors. For further sensing,
however, the robots are required to physically move (as
opposed to state expansion); planning and execution
must be interleaved. In such a situation, how should
the robots behave to efficiently meet with each other?
Should they negotiate their actions, or make decisions
independently? Is the two robot organization really
superior to a single robot one? These are some of the
organizational performance issues of real.time bidirec-
tional search, which will be investigated throughout
this paper.

In traditional off-line bidirectional search [Pohl,
1971; de Champeaux and Sint, 1977; de Champeanx,
1983], the problem solver located at the initial state

expands its wave front toward the goal state. How-
ever, if heuristic search, such as A*, is employed, the
performance cannot easily be improved because of the
difficulty faced by the two wave fronts in trying to meet
in the middle of the problem space.

This paper studies real-time bidirectional search
(RTBS), and investigates its performance. Real-time
search always computes a plausible next move and
physically executes that move in constant time, while
off-line search computes the entire solution path be-
fore executing the first step in the path. Real-time
search is effective in uncertain situations, even though
the lookahead ability of the problem solver is limited
(note: the sensing ability of mobile robots is always
physically limited); this limitation means that plan-
ning and execution must be interleaved. Real-time
search is also promising in dynaxnic situations, where
problems change even aa they are being solved. Since
real-time search takes a constant time for each move,
if the speed of the problem solver can be made faster
than the speed of any problem change, we can expect
any problem to be solved eventually.

Thus, RTBS can be viewed as coordinated problem
solving in uncertain and dynamic situations, and as
a formal step towards organizational problem solving
[Fox, 1981; Ishida et aL, 1992], viewing DAI problems
as distributed search [Lesser, 1990]. In RTBS, two
problem solvers starting from the initial and goal states
physically move toward each other. Unlike the off-line
bidirectional search, the coordination cost is expected
to be limited within some constant time. Since the
planning time is also limited, however, the moves of
the two problem solvers may be inefficient.

This paper proposes two kinds of RTBS algorithms
and compares them to real-time unidirectional search
(RTUS). One is called centralized RTBS where the
best action is selected from all possible moves of the
two problem solvers, and the other is called dccoupled
RTBS where the two problem solvers independently
make their own decisions. These algorithms are based
on available RTUS algorithms, i.e., RTA* (Real-Time
A*), LRTA* (Learning Real-Time A*) [Korf, 1990]
and MTS (Mo~ing Target Search) [Ishida and Koff,

Lshlda

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

1991; 1995; Ishida, 1992a]. An experimental evalua-
tion has been made using mazes and n-puzzles, the
most common examples in the area of search.

RTBS Algorithms
Pohi proposed the framework of off-line bidirectional
search: the control strategy first selects forward or
backward search, and then performs the actual state ex-
pansion [Pohl, 1971]. We here propose the framework
of RTBS algorithms, which inherits the framework of
off-line bidirectional search. The difference from Pohl’s
framework is that, in RTBS, the forward and backward
operations are not state expansions but physical moves
of the problem solvers.

In RTBS, the following steps are repeatedly executed
until the two problem solvers meet in the problem
space.

1. Control strategy:
Select a forward (Step~) or backward move (Step3).

2. Forward move:
The problem solver starting from the initial state
(i.e., the forward problem solver) moves toward the
problem solver starting from the goal state.

3. Backward move:
The problem solver starting from the goal state (i.e.,
the backward problem soh, er) moves toward the prob-
lem solver starting from the initial state.

In RTBS, control strategies are crucial for charac-
terizing the autonomy of the problem solvers: RTBS
algorithms can be classified into the following two cat-
egories depending on the autonomy of the problem
solvers. In centralized control, control strategy eval-
uates all possible forward and backward moves, and
selects the best one. As a result, the moves of the two
problem solvers are completely controlled by the cen-
tralized decisions. When adopting centralized control,
forward and backward moves are not always performed
alternately. In decoupled control, on the other hand,
control strategy employs the minimal control neces-
sary to guarantee the termination of the algorithm. As
a result, the two problem solvers make their decisions
independently. In the algorithms described in this sec-
tion, the control strategy simply selects forward and
backward moves alternately.

In addition to the type of control, the RTBS algo-
rithms can be further classified from the information
sharing point of view, i.e., how two problem solvers
share heuristic distances. In shared learning, the for-
ward and backward problem solvers share heuristic val-
ues, h(z, y), and maintain the values together. In dis-
tr~buted learning, each of the forward and backward
problem solvers maintains its own heuristic values, say
hl(z,y) and hb(z,y). The initial values of hy(z,y)
and hb(z, y) might be different, because each problem
solver can employ its own heuristic function.

186 ICMAS-9$

In the following two subsections, only the two ex-
tremes of the four possible combinations (centralized
control with shared learning and deconpled control with
distributed learning) will be investigated. We simply
call the two extremes centralized RTBS. and deeoupled
RTBS. The two combinations that remain will not
be discussed, because they can be generated rather
straightforwardly, and their individual performance
lies somewhere between the two extremes.

Let us take an n-puzzle example. The KTBS algo-
rithm utilizes two game boards. At the beginning, one
plate indicates the initial state and the other indicates
the goal state. The aim in this case is to achieve iden-
tical puzzle states. Centralized RTBS behaves aa if
one person operates both game boards, while deeou-
pied RTBS behaves as if each of two people operates
his/her own game plate independently.

Centralized RTBS

Below, we describe a centralized RTBS algorithm
called LKTA*/B, which is a bidirectional version of
LRTA*. The positions of two problem solvers are rep-
resented by z (forward) and y (backward), while
estimated distance between two problem solvers is rep-
resented by h(z, y).

[LRTA*/B]

I. Control strategy:

(a) Calculate h(z’, y) for each neighbor z’ of
Calculate h(z, y’) for each neighbor y, of

(b) Update the value of h(z, y) as follows:

{ h(z’,y)+l h(x, y) ,-- min=,,~, h(z, y’)

(c) If min=,h(z’,y) < miny,h(z,y’) select a forward
move.
If rain=:, h(z’, y) > rainy, h(z, y’) select a backward
move.
Otherwise, select a forward or backward move ran-
domly.

2. Forward move:
Move the forward problem solver to the neighbor z’
with the minimum h(z’,y), i.e., assign the value
zt to z. (Ties are broken randomly.)

3. Backward move:
Move the backward problem solver to the neighbor
y’ with the minimum h(z, y’), i.e., assign the value
of y~ to y. (Ties are broken randomly.)

RTA*/B is similar to LRTA*/B, but it utilizes
the second minimum value for updating heuristic dis-
tances. Both LRTA*/B and RTA*/B are complete as
follows.

Theorem 1:
In a finite problem space with positive edge costs,
in which there exists a path from every node to the

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

goal, and starting with non-negative admissible ini-
tial heuristic values, both ItTA*/B and LItTA*/B
are complete in the sense that the forward and back-
ward problem solvers will eventually share the same
state.

The proof is obtained by showing that the central-
ized RTBS algorithms is equivalent to applying the
corresponding KTUS algorithms to the RTBS problem
space.

Decoupled RTBS

At this time, MTS is the only algorithm that can han-
dle situations in which both the problem solver and the
goal move. Therefore, decoupled KTBS should employ
MTS for both forward and backward moves. In the
following description, z and y indicate the positions
of the forward and backward problem solvers, while
h! (z, y) and hb(z, y) indicate the heuristic distances es-
tirnated by the forward and backward problem solvers,
respectively. Note that the initial values of hi(z,!)
and hb(z, y) may be different, because the two prob-
lem solvers can utilize different heuristic functions.

[MTS/B]
1. Control strategy:

Select a forward or backward move alternately.

2. Forward move:
For the forward problem solver:

(a) Calculate hy(x~, y) for each neighbor x~ of x.
(b) Update the value of hy(z,y) as follows:

{ hs(z,y) }
hl(z, y) *- maz rnin=,{hy(x, y) 1}

(c) Move to the neighbor z~ with the minimum
h/(z~,y), i.e., assign the value of z~ to z. (Ties
are broken randomly.)

For the backward problem solver:

(a) Calculate hb(xZ, y) for the forward problem
solver’s new position zg

(b) Update the value of hb(x, y) as follows:

{h,(x,y) }
h~(x, y) .- maz /,b(z’, y)

(c) Reflect the forward problem solver’s move to the
backward problem solver’s goal, i.e., assign the
value of z’ to z.

3. Backtvard mo~e: Analogous to the forward move,
described above.

The original MTS algorithm assumes that the prob-
lem solver moves faster than the target. This assump-
tion was introduced to prevent the target from escap-
ing the problem solver forever. The same assumption
is even required in MTS/B, however, where the two
problem solvers try to meet each other.

Theorem 2:

In a finite problem space, in which a path exists be-
tween every pair of nodes, starting with non-negative
admissible initial heuristic values, the forward and
backward problem solvers executing MTS/B will
eventually share the same state, if the two problem
solvers move alternately, and the forward (or back-
ward) problem solver periodically skips some of its
moves.

Theorem 2 demonstrates the completeness of
MTS/B. The proof can be derived like that for MTS
[Ishida and Korf, 1991].

Performance Analysis
This section examines the performance of the RTBS
algorithms. The computational complexity will be in-
vestigated first, and then the actual performance will
be measured on typical example problems.

Computational Complexity

Figure l(a) illustrates the search tree for ILTUS. Each
node represents a position of the problem solver. An
example path from the initial state to the goal state is
represented by the thicker line. Let By be the number
of operators (branching factor) for the forward move,
B6 be the number of operators for the backward move,
and D be the number of moves before reaching the
goal state. Then, the number of generated states can
be represented by By × D.

The key to understanding the RTBS performance
is to assume that KTBS algorithms solve a totally dif-
ferent problem from RTUS; i.e., the difference between
P~TUS and ItTBS is not the number of problem solvers,.
but their problem spaces.

Let an KTBS state be a pair of ItTUS states of two
problem solvers: where z and y are RTUS states. Then
the pair of ItTUS states (z, #) becomes an ttTBS state.
Thus, when the number of RTUS states is n, the num-
ber of RTBS states becomes n2. Let i be the RTUS ini-
tial state, and g be the ItTUS goal state; then, the pair
of RTUS states (i, g) becomes the RTBS initial state.
The goal state of RTBS requires both problem solvers
to share the same l~US state, i.e., consequently, all
(z,y), where z -- y, are RTBS goal states. Thus, the
RTBS goal state is not unique, i.e., when there is one
ttTUS goal state and n RTUS states, there are n RTBS
goal states. Each state transition in the RTBS prob-
lem space corresponds to a move by one of the problem
solvers. Thus, the branching factor in RTBS is the sum
of the branching factors of the two problem solvers.

Figure l(b) represents the search tree for centralized
RTBS. At each move, the best action is selected from
all possible By -I- B~ moves of the two problem solvers.
Let D be the sum of the moves of the two problem
solvers before meeting each other. Then, the number
of generated states can be represented by (Bj-FBb)×D.

Ishida 187

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

(a) RTUS Co) Centralized RTBS

,4i-~ " Jk"

’. /fl
’
I /~ ~ Bb
, .///
i ,4qi;~,,.~
. /Ar I k ".2."......

(c) Decouplcd RTBS

Figure 1: Comparison of Computational Complexities

In decoupled RTBS, two problem solvers indepen-
dently make their own decisions and alternately move
toward the other problem solver. Let us assume, how-
ever, that even in decoupled RTBS, the two problem
solvers move in art RTBS problem space. Figure 1(c)
represents the search tree for decoupled RTBS. Each
problem solver selects the best action from possible B/
or Bb moves (represented by solid edges), but does not
examine the moves of the other problem solver (repre-
sented by dashed edges). Therefore the selected action
may not be the best among all the possible B/+ Bb
moves of the two problem solvers. Let D be the sum
of the moves of the two problem solvers. Since de-
coupled RTBS uses partial information, D increases
in contrast to centralized RTBS. On the other hand,
the number of generated states can be represented by
{(By + Bb)/2} × D, which can decrease in contrast
centralized RTBS.

Measurement on Typical Problems

The RTUS and RTBS algorithms are applied to two
typical path finding problems.

(1) Randomly Generated Mazes

Mazes have been used for testing search algorithms,
in particular bidirectional search [Kwa, 1989]. In
this measurement, we represent a maze as a grid
space, replacing an arbitrary number of junctions
by obstacles. With a high obstacle ratio (more than
20%), the obstacles combine and form walls of var-
ious shapes. The complexity of the maze rapidly
increases as the ratio increases from 25% to 35%.
At the start, two problem solvers are placed so that
the Manhattan distance between them is 50 (i.e., the
direct path between the initial and goal states con-
sists of 50 edges). Both problem solvers can move
up, down, right or left in the grid space. The Man-
hattan distance is used as the heuristic function.

(2) n-Puzzles

n-puzzle problems, especially 15-puzzles, have been
appearing repeatedly in bidirectional search litera-
ture [Pohl, 1971; de Charnpeanx et al. 1977; Poli-
towski and Pohl, 1985]. In this evaluation, with
15-puzzles, the first ten problems of the 100 prob-
lems presented in [Korf, 1985] are used. A further
evaluation is based on ten randomly generated 24-
puzzles. The distance between two n-puzzle states
is estimated by summing the Manhattan distances
between the locations of all the tiles.

Figures 2 to 4 display the experimental results. The
z-axis represents the obstacle ratio in mazes and the
problem ID in n-puzzles. The y-axis represents the to-
tal number of moves, generated states, and the CPU
time taken by the two problem solvers. Note that
the number of generated states determines the plan-
ning time, and the number of moves determines the
execution time. Programs are written in Allegro Com-
mon Lisp running on a SparcStation2. The results in
Figures 2 and 3 are obtained by averaging 100 trials,
while Figure 4 uses only 30 trials due to the limitations
of computing resource.

The superiority or inferiority of centralized and de-
coupled RTBS depends on whether the situation is
clear or uncertain, i.e., whether the heuristic function
returns accurate values or not.

¯ In clear situations (i.e., heuristic functions return
accurate values), decoupled RTBS performs better.
From the maze experiences in Figure 2, when the
obstacle ratio is low, there is not much difference in
the number of moves between centralized and decou-
pied RTBS. This means that, in clear situations, two
problem solvers can independently make decisions
without losing efficiency. However, since centralized
RTBS expands twice as many states as decoupled
RTBS, the planning time for decoupled RTBS is al-
most 1/2 that of centralized RTBS.

¯ In uncertain situations (i.e., heuristic functions re-
turn inaccurate values), centralized RTBS performs

188 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

/
/

/
//.

S000

®2500

S:
Z 1000

soo

oI
0 § 10 15 20 2S 30 35

Obstacle Ftmlo (%)

(a)

9000]
8000:,
7000, !
6000 !

4ooo,!
aooo,!

loooI
oI

/
/
/

0 s 10 is 2o 25 3o 35
O~htde Ratio (%)

(b)

7O(

B0(

&4o(
O

O20(

10(

o

o

o

o

o

o

o

ol
0 S 10 lS 20 2S 30 35

Obstacle Ratk) (%)
(el

/
//

AV

~ RTA" ~ LRTA" -,4- RTA*/B -,m-.. LRTA’#B -6- MT~B I
(RTUS) (Centmli~sd RTBS) (De0ouplKI RTBS)I

Figure 2: Performance for Randomly Generated Mazes

better. It is clearly observed from the maze experi-
ences that, as the situation becomes uncertain (the
obstacle ratio exceeds 20%), centralized RTBS be-
comes much more efficient than decoupled RTBS.
The n-puzzle experiences in Figures 3 and 4,1 also
show that the number of moves for centralized RTBS
is about 1/2 that of decoupled RTBS.

By comparing RTUS and RTBS performances, in-
teresting observations can be made.

¯ In clear situations, both RTUS and RTBS have a
similar performance. Our maze experiences in Fig-
ure 2 show that, in clear situations, where the ob-
stacle ratio is less than 10%, the number of moves
in RTUS and RTBS are not much different. This is
because, in clear situations, near optimal solutions
can be easily obtained by applying various search
techniques.

¯ In uncertain situations, the superiority or inferior-
ity of RTUS and RTBS relies hea~ily on the problem
type. RTBS can solve 15- and 24-puzzles with fewer
moves than RTUS as in Figures 3 and 4; the num-
ber of moves for centralized RTBS is approximately
halved for 15-puzzles and reduced by a factor of 6
for 24-puzzles compared to RTUS. In randomly gen-
erated mazes, however, when the obstacle ratio be-
comes more than 10%, Figure 2 shows that RTBS

ZIn mazes, when the obstacle ratio becomes 35%, while
the optima] path length is 60 to 80, the number of moves
becomes 400 to 4000, i.e., T to 50 times longer than the opti-
mal path length. Similarly, in 15-puzzles, while the optimal
path length is 40 to 60, 2000 to 5000 moves are required,
i.e., 50 to 80 times longer than the optimal path length.
These numbers show that the situation in 15-puzzles is as
uncertain as that in fairly complex mazes.

cannot perform better than RTUS. As the obsta-
cle ratio increases, this tendency becomes even more
clear; the number of moves for RTBS is roughly dou-
bled compared to RTUS.

Heuristic Topographies
The performance of real-time search depends greatly
on the topography of the estimated problem space.
This is because, in real-time search, the problem solver
always commits to its decision, and thus will seriously
affect the consequent problem solving process. To ex-
plain the problem solver’s behavior, we define a heuris-
tic depression, with respect to a single goal state, as a
set of connected states whose heuristic values are less
than or equal to those of the set of immediate and com-
pletely surrounding states. Note that no depression ex-
ists in the actual distance. However, as the situation
becomes uncertain, heuristic values differ significantly
from the actual distances, and so heuristic depressions
tend to appear more frequently in the problem space.

The real-time problem solver repeatedly moves along
the slope of heuristic values. If an erroneous decision
is made at the boundary of a heuristic depression, the
problem solver cannot stop moving toward the bot-
tom of the depression. When placed in a heuristic
depression, the problem solver often finds no way of
decreasing the heuristic difference, and recognizes that
its heuristic values are inaccurate. In such cases, the
problem solver cannot reach the target without "fill-
ing" the depression by repeatedly updating the heuris-
tic values. To summarize, the performance bottleneck
of real-time search resu/ts from its inej~iciencp in fill-
ing heuristic depressions. This fact will be the key to
understanding the RTBS performance.

We believe the RTBS performance, measured in the
previous section, results from the difference between

Ishida 189

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

16000,,

14000]

12000.:

1000O .:

8000.:

6000.:

4000.:

2000]

0.:

w
o,

w
Ip ~, ,#

1 2 3 4 5 8 7 8 910
Problem ID

(b)

=!

2000O

I ~ RTA" o LRTA*
(RTUS)

-4-- RTA’/B -a- LRTA*/B
(Centndlzed RTBS)

Figure 3: Performance for 15-Puzzles
6O0OO

,A
V

\ w

,m V~

A..A,. &,.b]bd~ A

A m- IlL ,eb, ’ll~*,n-- -- m. m...m

500OO

,0000
15 3OO00

1000O

o
1 2 3 4 5 6 7 8 91o

Problem ID

(a)

(RTUS)

20000O

180000

16000O

140000

I 120000

~100000
r3 80000
15

50000

~ 4~
z

0
1 2 3 4 5 8 7 8 910

Problem ID

123 45678910
Problem ID

{c)

(OecouplKI R’I’B8)

II
I~I~
I~I ~ ’~

I l~,~r,

II

1 2 3 4 5 6 7 8 9 10
Problem ID

(b) (c)

RTA* ~ LRTA* -.4- RTA*/B -!- LRTA*/8 .-4,- MTS,’B
(CenVallzed RTBS) (Deooupled RTBS)

Figure 4: Performance for 24-Puzzles

the RTUS and RTBS problem spaces. Our expectation
is that the effectiveness of RTBS can be determined by
comparing the two problem spaces. Unfortunately, the
problem spaces (especially the RTBS problem spaces)
of the example problems are too large to examine with
existing computer systems. This section therfore pro-
vides a complete example of topographical changes be-
tween the RTUS and RTBS problem spaces to provide
better understanding of the R,TBS performance.

Figure 5 displays two RTUS problem spaces of 15 x
15 mazes. Figure 5(a) represents the maze with a single
wall (we call this maze Bar), while Figure 5(b) includes
three walls (we call this maze Hole). In both mazes,
the initial state is represented by I, and the goal state
byG.

The heuristic depressions in the lgTUS problem
spaces are represented by dark areas. In both mazes,

heuristic depressions are spread between the initial
state and walls. Table 1 summarizes the width, depth,
capacity, circumference, ezit and n~mber of heuristic
depressions. The width represents the number of states
in a heuristic depression. We call a state an ezit of a
depression, if the state is a part of the circumference,
and if its heuristic value is equal to that of the adja-
cent outside state. The depth indicates the maximum
difference between the heuristic value of any state in
the depression and that of the czit. Since the heuristic
depression is defined as a set of states whose heuristic
distances are less than or equal to those of surround-
ing states, the depth can be 0. The capacity is defined
as ~’~(depth(i) 1)where i r epresents a state in the
depression. This is to reflect the width of the depres-
sion to the capacity. The circumference represents the
number of states, each of which belongs to the depres-

190 ICMAS-9$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

[....

(a) Bar

I:
0:
Ill:
[]:
a,b,c,d:

$,#:

Co) Hole

Initial state
Goal state
Obstacles
Heuristic depsressions in the RTUS problem space
Pairs of problem solvers’ states resulting
heuristic depressions in the RTBS problem space
Circumference (both $ and #) and exit (#)

Figure 5: Two Mazes

sion but is adjacent to the outside of the depression.
In Figure 5(a), for example, the circumference is rep-
resented by $ and #, and the ezit by #.

Recall that the ItTBS state is composed of a com-
bination of two RTUS states. Thus, the heuristic de-
pressions in the RTBS problem space are caused by
the positions of two problem solvers. For example,
a pair of positions across the wall creates a heuris-
tic depression. Table 1 represents all locally maximal
heuristic depressions in the RTUS and ItTBS prob-
lem spaces. To compute all depressions, an exhaustive
search was performed in both the RTUS and RTBS
problem spaces. Pairs of problem solver positions,
which cause the heuristic depressions, are indicated as
a,b, c, d both in Figure 5 and Table 1. The major ob-
servations from Table 1 are as follows.

¯ In the RTUS problem space, each maze contains one
deep heuristic depression.

¯ In the RTBS problem space, the heuristic topogra-
phy changes significantly. In Bar, both the depth
and capacity of the depression decrease dranmtically,
compared to the RTUS problem space. On the other
hand, in Hole, the depth decreases, while the capac-
ity increases by the factor of 102.

Why is RTBS effective for 15- and 24-puzzles, but
not for randomly generated mazes? Intuitively, as the
width and depth of heuristic depressions increase, it be-
comes difficult to get out of them. In such a situation,
the capacity can indicate the cost of the search. How-
ever, wide and shallow depressions with a long circum-
ference (especially with a wide exit) are not too hard

to get out, even if the depressions are fairly wide. In
/tTBS, since the problem space is widened, the number
of states in heuristic depressions also increases. This
leads to a problem that is difficult to solve. On the
other hand, since various paths axe created, heuristic
depressions in RTBS become shallow. This leads to a
problem that is easy to solve. These effects are com-
bined and appear differently in different problems. We
measured the number of moves of the RTUS and RTBS
algorithms on the two mazes in Figure 5. In Bar, the
number of moves of LRTA*/B is between a half and
two third compared to LRTA*, while in Hole, it is 10
times greater than that of LRTA*.

Conclusion
This paper has proposed real-time bidirectional search
(RTBS) algorithms, and has investigated their per-
formance. Several issues still remain unresolved. In
previous research, where off-line search has primar-
ily been studied, heuristic functions have been investi-
gated from the probabilistic point of view [Pearl, 1984].
However, as shown in this paper, the performance of
real-time search is sensitive to heuristic depressions.
We are now aware that heuristic topography is cru-
cial to understanding the real-time search performance,
and that we must establish a theory behind the topo-
graphical changes between the RTUS and RTBS prob-
lem spaces.

This work can be considered as the first step toward
organizational problem solving [Ishida, 1992b; Ishida,
1993]. Note that RTBS is not the only way to organize
two problem solvers. Another possible way is to have

Ishida 191

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Problem Sp’~ze
Bar

Width] Depth Capacity I] Circumference(Exit) Number
Hole

Circun~

RTUS 61 7 201 14 (2) 1 79 13 641 2 (2) 1

a 1 1 2 I (1) 2 37 1 50 26 (2) 2
n

RTBS b 63 1 76 52 (2) 2 2381 8 7379 579(4) 2
m

¢ 23 i 29 18 (t) 8

d i i 2 I (I) 4

Table 1: Heuristic Depressions in the Two Mazes

both problem solvers start from the initial state and
move toward the goal state. The problem space then
becomes different from the KTBS case. This means
that the selection of the multi-agent organization is
the selection of the problem space, which determines
the baseline of the organizational efficiency; once a dif-
fcult problem space is selected, the local coordination
among problem solvers hardly overcomes the deficit.
The theory behind the KTBS performance will provide
a computational basis for coordinating and organizing
multiple problem solving agents.

Let us revisit the example at the beginning of this
paper. The two robots first make decisions indepen-
dently to move toward each other. However, the prob-
lem is hardly solved. To overcome this inefficiency,
the robots then introduce centralized decision making
to choose the appropriate robot to move next. They
think that two is better than one, because the two
robot organization has more freedom for selecting ac-
tions; better actions can be selected through sufficient
coordination. However, the result appears miserable.
The robots are not aware of the changes that have oc-
curred in their problem space.

Acknowledgments

The author thanks Richard Korf, Kazuhiro Kuwabara
and Makoto Yokoo for their helpful discussions.

References
[de Champeaux and Sint, 1977] D. de Champeaux
and L. Sint, "An Improved Bidirectional Heuristic
Search Algorithm, " J. ACM, Vol. 24, No. 2, pp.
177- 191, 1977.

[de Champeaux, 1983] D. de Champeaux, "Bidirec-
tional Heuristic Search Again, " J. ACM, Vol. 30,
No. 1, pp. 22-32, 1983.

[Fox, 1981] M. S. Fox, "An Organizational View of
Distributed Systems," IEEE Transactions on Sys-
tems, Man, and Cybernetics, Vol. 11, No. 1, pp. 70-
80, 1981.

[Ishida and Korf, 1991] T. Ishida and R. E. Korf,
"Moving Target Search," IJCA[-gl, pp. 204-210,

1991.
[Ishida, 1992a] T. Ishida, "Moving Target Search with
Intelligence," AAAI-92, pp. 525-532, 1992.

[Ishida, 1992b] T. Ishida, "The Tower of Babel:
Towards Organization-Centered Problem Solving,"
111h Distributed Artificial Intelligence Workshop,
pp. 141-153, 1992.

[Ishida et al., 1992] T. Ishida, L. Gasser and
M. Yokoo, "Organization Self-Design of Dis-
tributed Production Systems," IEEE Transactions
on Knowledge and Data Engineering, Vol. 4, No. 2,
pp. 123-134, 1992.

[Ishida, 1993] T. Ishida, "Towards Organizational
Problem Solving," IEEE International Conference
on Robotics and Automation, pp. 839-845, 1993.

[Ishida and Koff, 1995] T. Ishida and K. E. Korf,
"A Moving Target Search: A Real-Time Search for
Changing Goals," IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1995 (to appear).

[Korf, 1985] R. E. Korf, "Depth-first Iteration-
Deepening: An Optimal Admissible Tree Search,"
Artificial Intelligence, Vol. 27, No. 1, pp. 97-109,
1985.

[Korf, 1990] K. E. Korf, "Real-Time Heuristic
Search,~ Artificial Intelligence, Vol. 42, No. 2-3,
pp. 189-211. 1990.

[Kwa, 1989] J. B. H. Kwa, "An Admissible Bidirec-
tional Staged Heuristic Search Algorithm," Artificial
Intelligence, Vol. 38, pp. 95-109, 1989.

[Lesser, 1990] V. K. Lesser, "An Overview of DAh
Viewing Distributed AI as Distributed Search,"
JSAI Journal, Vol. 5, No. 4, pp392-400, 1990.

[Pearl, 1984] J. Pearl, Heuristics: Intelligent Search
Strategies for Computer Problem Solring, Addison-
Wesley, Reading, Mass., 1984.

[Pohl, 1971] I. Pohl, "Bi-directional Search," Machine
Intelligence, Vol. 6, pp. 127-140, 1971.

[Politowski and Pohl, 1985] G. Politowski and I.
Pohl, "D-node Retsrgetting in Bi-directional Heuris-
tic Search," AAAI-84, pp. 274-277, 1984.

192 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

