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Abstract
Exploration is a central issue for autonomous

agents which must carry out navigation tasks in
environments whose description is not known a priori.
In our approach the environment is described, from a
symbolic point of view, by means of a graph;
clustering techniques allow for further levels of
abstraction to be defined, leading to a multi-layered
representation. In this work we propose an
unsupervised exploration algorithm in which several
agents cooperate to acquire knowledge of the
environment at the different abstraction levels; a
broadcast model is adopted for inter-agent
communication. All agents are structurally equal and
pursue the same local exploration strategy;
nevertheless, the existence of multiple levels of
abstraction in the environment representation allows
for the agents’ behaviours to differentiate. Agents
carry out exploration at different abstraction levels,
aimed at reproducing an ideal exploration profile;
each agent selects dynamically its exploration level,
based on the current demand.

I. Introduction
Autonomous agents are mobile versatile machines capable
of interacting coherently with an environment and
executing a variety of tasks in unpredictable conditions
(Covrigaru & Lindsay 1991) (Nitzan 1995). Autonomy
means capability of navigating the environment;
navigation, in turn, necessarily relies on a topological and
metric description of the environment.

In our work we consider the case where the agent is
given no a priori knowledge, so that it must learn the
description of the environment on-line by exploring it and
interpreting sensor data. However, we assume that some
general information concerning the type of environment to
be explored is available (meta-knowledge). Firstly, we
assume that the descriptions of typical sensory patterns
present in the environment are given; the selection of
patterns corresponding to distinctive or significant
categories of objects and places enables recognition of
landmarks through a sensor-based classification algorithm
(Christensen et al. 1994) (Kuipers & Byun 1988) (Philfips

et al. 1988). Examples of landmarks are computers and
telephones in office environments, medical equipment and
receptions in hospital environments. Secondly, we assume
that characterization of semantically significant clusters of
objects or places is possible; agents recognize cluster
borders by sensing the passageways between adjacent
clusters (Maio & Rizzi 1993a). Example of clusters 
office environments are rooms and floors, identified by
recognizing doors and stairs respectively.

Based on these assumptions, we have proposed in (Male
& Rizzi 1993b) a multi-layered architecture for
representing the environmental knowledge to be used by an
autonomous agent for navigation. The concepts and
formalisms necessary in the context of this paper are
outlined in section II.

The lack of a priori knowledge of the environment gives
relevance to the problem of on-line exploration. In order to
be ready to carry out navigation tasks as soon as possible,
the agents should acquire rapidly a topological and metric
description of the whole environment; an agent which
knows in deep detail the description of a single room will
be less useful, for most tasks, than an agent which knows
less about each room but owns a general picture of the
disposition of the rooms into departments and floors.
Aimed at giving a formal evaluation of an exploration
strategy from this point of view, in section HI we define an
optimal exploration profile.

In (Maio & Rizzi 1993c) we have proposed an algorithm
for supervised multi-agent exploration, where the
supervisor dynamically assigns each agent the task of
exploring the environment at a specific abstraction level,
and coordinates the agents assigned to the same level.
Since the supervisor owns, at any time, an exact picture of
the exploration progress, the supervised architecture allows
for an accurate scheduling of the resources. On the other
hand, the supervised architecture is based on a point-to-
point communication model which is not always feasible
and leads however to high communication costs. Besides,
since knowledge of the environment is stored in the
supervisor, the existence of several agents is not fully
exploited to achieve fault tolerance.

In the unsupervised architecture we describe in this
work, we adopt a broadcast communication model; fault
tolerance is improved by having each piece of knowledge
shared by several agents. The exploration script is
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presented in section IV, and its performance is discussed in
section V.

II. Clusters and layers
Our approach to autonomous agents is based, in the first
place, on the distinction between reactive motion control
and high-level path planning, which are carried out by
relying on sub-symbolic and symbolic knowledge,
respectively (Ciaccia, Maio & Rizzi 1991) (Gat 1993). 
symbolic representation of the environment is distributed
on different abstraction levels (layers) in order to supply a
richer description of the environment and, at the same time,
carry out navigation tasks more efficiently (Maio & Rizzi
1994). In this section we briefly introduce the knowledge
representation formalism used in the rest of the paper.

Let L(0) and R(0) be, respectively, the sets of landmarks
and feasible inter-landmark paths (routes) experienced at a
given time. We define as symbolic layer the (weakly
connected) directed graph £(0) = (L(0),R(0)); each 
labelled with the cost paid when covering the
corresponding route.

Given a graph ~=(V,A), with V a set of vertices and A 
set of arcs, we denominate with clustering a partition of the
vertices and arcs of ~ into a set of clusters and a set of
bridges. A cluster is a connected sub-graph of g. The
bridge between two clusters ~ and ~ is the set of the arcs
of ~ which connect a vertex of Ct to a vertex of 9" All
clusters and bridges are disjointed.

J

L 2)

1-dustar,,
"~

= .............~1)

1-bridge °" ?: :i"!. i i , ..!:i/!:~i~..

landmark ~-~--~.~:~.-~"-
¯ ~v-.~ .~~

,.(0)
Jaroute-.~.r ~ .f~--

--J~-----~Fr-------1"- ....... r ....... J" ....

Figure l. Definition of clustered layers. The two grey
circles at the bottom are subgraphs of the symbolic layer,
represented in the 1-clustered layer as vertices (1-clusters).
The 1-bridge connecting the two l-clusters corresponds, in
£(0), to the two dark-grey routes.

We call l-clusters and 1-bridges the clusters and bridges
determined by clustering the symbolic layer. The directed
graph whose vertices and arcs correspond, respectively, to
the 1-clusters and the 1-bridges is called the 1-clustered
layer (see Figure 1). A clustered layer may in turn 
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clustered; in general, we name k-clustered layer and denote
with £(k) (k=l,..n, where n is the maximum abstraction
level) the graph obtained by applying clustering k times,
starting from the symbolic layer. The clusters and bridges
of a k-clustered layer are called k-clusters and k-bridges,
respectively. The symbol C(k) denotes a k-cluster; we call
cardinality of C(k) the number of (k-l)-clusters it contains.
We will assume that the n-clustered layer contains exactly
one n-cluster ~n).

Figure 2 shows an example of how clustering can be
applied to an office environment.
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: :, ....
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Figure 2. Clustering of an office environment. Landmarks
in the symbolic layer correspond to useful objects, and are
grouped in 1-clusters corresponding to rooms. Rooms in
the l-clustered layer, in turn, are grouped into floors which
form the 2-clustered layer. The 3-clustered layer describes
the whole building as a set of floors.

HI. An optimal profile for exploration

We call w-optimal an exploration strategy whose primary
goal is to acquire knowledge of the w-clustered layer £(w).
A w-optimal strategy aims at exploring exhaustively the
whole w-clustered layer, without considering the other
abstraction levels. The w-clustered layer is completely
explored when all the w-bridges have been experienced in
both directions, i.e., at least two opposite routesbelonging
to each w-bridge have been covered.

Let r be the number of routes covered at a given time t.
It is possible to estimate the number rw(k) of k-bridges
which should have been experienced at time t when a w-
optimal strategy is followed (of course, when an agent
takes a route, it also experiences the higher-level bridges
which include that route); rw(k) is proportional to r, and is
function of k and w. It is thus possible to define a w-
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optimal exploration profile as a vector:

Pw = [pw(l),...Pw(n’l)]

where

pw(k) = rw(k
r

If landmarks and routes are uniformly distributed within
the map and clusters are regularly-shaped, the approximate
expression of pw(k) turns out to be:

f
1

for kfl,...w

pw(k) __. ~ck
1 ( w=O,...n-I ck.w~cw , for k--w+l,...n- 1

where c is the average cardinality of clusters. A strategy is
w-optimal if, at any time during exploration, the ratio
between the number of k-bridges and the number of routes
in the knowledge base is equal to pw(k), for k=l,...n-l.

The derivation of the formula above is omitted here for
briefness; it is based on the assumption that the agent’s
path, seen on the different clustered layers, has very
different characteristics. Consider for instance an agent
following a l-optimal strategy in an office: its aim is to
discover as quickly as possible new l-clusters, i.e. rooms.
Seen on the symbolic layer, the agent moves in long
straight-line paths which traverse the rooms without
visiting all their landmarks; seen on the l-clustered layer,
the agent follows a path which, floor by floor, exhaustively
visits all the rooms. Hence, if c is the average cardinality of
clusters, the agent discovers a new room approximately for

each ~c landmarks visited (cluster diameter), whereas 
discovers a new floor for each c rooms visited.

I
0.8

0.6"
p(k) 0.4"

0.2"

0

Figure 3. Optimal exploration profile as a function of k
(n=5, c=10).

The exploration profile we pursue in this work is the
average of n profiles, each aimed at a different abstraction
level (see Figure 3):

p = ~(1),...p(n-I)]

where

n°l
p(k) _l ~ pw(k) _ c’k/2 fl-c’k/2 + n~cI/2-I k~,

-n - n
- )(k=l,...n-l)

w=O

If f is the average number of k-bridges entering a k-
cluster, and cn’k is the number of k-clusters, cn’k-f is an
estimate of the total number of k-bridges in the k-clustered
layer. As exploration proceeds and the number r of routes
experienced increases, the expected number of experienced
k-bridges, p(k).r, exceeds cn-k.f, meaning that the
exploration of the k-clustered layer has been completed.
Following the optimal profile this happens first for kfn-1
and then, progressively, for decreasing values of k down to
0.

Let r be the number of routes covered at a given time t;
we define optimal a strategy if the number r(k) of k-bridges
experienced at time t is:

r(k) = min{ p(k)x, cn’k.f 

IV. The exploration script
In our approach, exploration is carried out at a symbolic
level. The link between symbolic exploration and the
sensor level is established by assuming that:
¯ When an agent is located in a landmark, it can

determine the directions of the routes departing from
that landmark. If a restricted number of paths are
physically possible in the environment (for instance, the
streets in a city), these can be directly recognized by
sensors (for instance, a sonar array); otherwise,
assuming that landmarks can be sensed only within a
given distance range, the agent will consider as routes
all the paths leading to the neighbouring landmarks.

¯ When an agent is located in a landmark, it can choose to
explore one of the routes sensed.

¯ The agents know the number of levels of clustering at
which the environment is to be represented; they can
recognize the routes belonging to a k-bridge for any k
(for instance, a route traversing a threshold).

All the agents are structurally equal; on the other hand,
the hierarchical clustering defined on the symbolic layer
enables the agents to diversify their behaviours by
assigning themselves to increasing abstraction levels. We
wili call k-agent (k=0,..n-1) one whose task consists 
exploring the graph representing the k-clustered layer, i.e.,
one following a k-strategy.

A. Graph exploration

The k-agents tend to carry out exploration locally, that is,
within the (k+l)-cluster they are currently in (scope). The
graph-exploration algorithm that agents adopt to explore
their scope is a variant of Tremaux’s algorithm (Rosentiehl
1971).

The classical Tremaux’s algorithm carries out exhaustive
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exploration of a directed graph by considering local
knowledge only; it requires that all arcs are bi-directional
and it is optimal, meaning that each arc is visited exactly
once.

In our approach, several agents may have the same
scope and thus interfere in each other’s exploration
schedule; moreover, we assume that mono-directional
mutes may exist in the environment (one-way s~ets, doors
which can be opened one way only, etc.). Hence, an agent
following Tremaux’s algorithm may occasionally "get lost",
i.e., it may reach a vertex and know not which arc to
choose next.

Figure 4. Different exploration paths followed by a 0-agent
and a l-agent. Dashed routes are those belonging to 1-
bridges; black mutes are those already covered. The square
and the triangle show, respectively, the current positions of
the O- and the 1-agent.

From a conceptual point of view, the algorithm adopted
by all agents to explore the levels they are assigned to is the
same. Nevertheless, while the O-agents apply the algorithm
to landmarks and mutes, which are physical entities in the
environment, the other agents apply it to clusters and
bridges, which are only useful abstractions. In particular,
while visibility of the mutes departing from a landmark is
guaranteed by the sensor level, the same is not true for k-
clusters (k>O): for instance, knowing which l-bridges
depart from a l-cluster entails following the whole edge of
the 1-cluster. Figure 4 shows the different exploration paths
followed by a O-agent and a l-agent on the same map: the
O-agent carries out exhaustive exploration inside l-clusters;
the 1-agent, instead, follows the edges of the l-clusters and
takes the routes contained in the 1-bridges. From a
behavioural point of view we might say that, though all
agents are equally "curious" (due to their standard
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exploration strategy), those working on low layers are
"meticulous", while those working on high layers are more
"superficial".

Our graph-exploration algorithm can be sketched as
follows:

Tremaux
[ I* the agent has reached vertex v through arc from a *1

if v has already been visited
{ find the set of arcs departing from v, A;

I* at level k>O, this entails following the edge of v *1
if 3 to_a¢ A: to_a is the opposite of from_a

and to_a is unknown
return to_a;
I* a cycle has been closed: if possible, go back *1

else
return null;
I* lost: from._a is one-way, or some other agent has
experienced its opposite *1

}
else

if 3 to_a¢ A: to._a and its opposite are unknown
return to_a; I* if possible, go ahead *1

else
if 3 to_ae A: to_a is unknown

return to_a; I* cul-de-sac: turn back *1
else

return null; I* lost *1
}

B. The agenda

In order to be able to continue exploration when it gets lost,
each agent owns a personal agenda which is structured in
layers corresponding to the different clustered layers: the k-
th layer of the agenda reports, for each (k+l)-cluster
visited, all the mutes belonging to k-bridges that have not
been explored yet. The agenda is updated every time the
agent reaches an unknown landmark by adding the
departing mutes; routes are removed from the agenda as
they are explored. When a k-agent gets lost, it first consults
its agenda locally, that is, it looks for an unexplored k-
bridge contained in the scope. If no such routes are found,
the agenda is consulted globally, that is, the agent accepts
to change its scope to a different (k+l)-cluster.

C. Communication

The agents communicate by broadcasting messages; a
message sent from an agent is received only by the agents
who are currently placed within a circular area centred in
the sender. We assume that message reception is error-free.
Messages are aimed at:

1. Cooperation. Agents situated in the same area should
coordinate with each other in order to avoid repeated
exploration of clusters and bridges.

2. Knowledge sharing. During exploration, and especially
when exploration is over, agents should know as much
as possible about the whole environment.
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Cooperation is accomplished by encouraging agenda
sharing between near agents. Every time an agent discovers
a new landmark, it transmits the set of departing routes;
each agent receiving the message puts these routes in its
agenda. Every time an agent explores a route, it transmits a
message so that the near agents can remove that route from
their agenda (message delMSG).

When an agent receives any message from another
agent, if he has not received other messages from the same
agent recently, it broadcasts its whole knowledge base and
its agenda (message knowled&eShareMSG). Thus, two
agents who have not met for some time are enabled to
share their knowledge.

D. Level assignment

A k-agent explores the environment at abstraction level k.
Each agent dynamically selects its exploration level, aimed
at reproducing faithfully the optimal profile. Consider a k-
agent who, after getting lost, consults its agenda locally and
finds no routes to be explored within its scope. Before
consulting its agenda globally, this agent will try to
discover if, according to the demand of agents on the
different levels, "moving" from level k to another level k’ is
convenient. This is done by comparing the current profile
of exploration,

,:
where r and r(k) (k=l,...n-l) are, respectively, the number
of routes and of k-bridges (kffil,...n-1) experienced, with
the optimal profile, p. The level k’ to which the agent
should be moved is the one whose exploration is behind
schedule to the greatest extent.

E. The script

In this section the agent’s exploration script is sketched.
Variable k is used to store the current abstraction level of
the agent. Variable mode has value "explore" if the agent is
following Tremaux’s algorithm, value "goTo" if the agent
has successfully consulted its agenda and is following the
shortest path to an unknown mute.

{ choose my initial assignment level, k;
set mode to "explore";
set scope to (k+l)-cluster where I am;
let v be the landmark where I am;
put v in knowledgeBase;
let R be the set of the routes departing from v;
put the mutes in R in agenda;
while agenda is not completely empty do

handle event landmark(v, from r)
and message reception;

Event handling:

when landmark(v, fromr) do
/* reached landmark v through route from_r */
{ if mode---="goTo"

if the goal has been reached
{ set mode to "explore";

set scope to (k+l)-cluster where I am;
}
else

take the next route in the planned path;
if mode=---’ ’explore"
{ let R be the set of the routes departing from v;

/* since mode/s "explore", from_r is certainly
unknown */

put from_.r in knowledgeBase;
if v is unknown
{ put v in knowledgeBase;

put the routes in R in agenda;
broadcast: landmkMSG(v,R);

!
/* determine a route to_r for leaving v */
try to apply Tremaux’s algorithm;
if lost
{ consult agenda locally;

if agenda is locally empty
if agenda is not completely empty
{ find the level where agents are most needed, k’;

if k’~k
i* changing level is not convenient *1

consult agenda globally;
else
I* changing level is convenient *1
{ k=k’; I* become a k’-agent *1

set scope to (k+l)-cluster where I am;
at the new level,
try to apply Tremaux’s algorithm;
if lost
{ consult agenda locally;

if agenda is locally empty
consult agenda globally;

}
}

)
}
if mute to_r has been determined
I* leave v through route to_r *1
{ delete to_r from agenda;

broadcast: delMSG(to_r,k);
take route to_r;

]

By denoting with agenda[k] the k-th level of the agenda,
the procedures for local and global consultation of the
agenda can be summarized, respectively, as follows:
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localConsult
{ I* within scope, find the nearest k-cluster whose k-

bridges have not been completely explored *1
goal=nearest{c: (=lr~ agenda{k]: c is the starting k-cluster

for r and r is within scope)};
plan the shortest path to goal;
set mode to "goTo";
return first route in the planned path;

}

globalConsult
{ I*find the nearest k-cluster whose k-bridges have not

been completely explored *1
goal=nearest{c: (=lr¢ agenda{k]: c is the starting k-cluster

for r)};
plan the shortest path to goal;
set mode to "goTo";
return first route in the planned path;

}

V. Conclusion

In this section we discuss the performance of our algorithm
from three points of view: adherence to the optimal
exploration profile, efficiency, fault tolerance.

The deviation of the exploration profile from the optimal
one can he evaluated at time t, when r route have been
covered, as

~,1 ir,(k)(t)_ I1
profileDeviation(t)

n-I k~__l r(k)

where r’(k)(t) is the number of k-bridges actually
experienced at time t and r(k) is the optimal number of 
bridges calculated in function of r as shown in section III.

Efficiency is evaluated by comparing the cost of
exploration per agent with the ideal cost which would be
paid from each agent if no route had been taken more than
once:

totalCost idealCostcostPerAgent = ----, ideaICostPerAgent -
g g

where g is the number of agents and idealCost is the sum of
the costs of all the routes in the environment.

Fault tolerance is calculated as the average percentage
degree of knowledge sharing:

1 1 g. .
= "- __~lrh0)< faultTolerance(t) g r 

i

where r is the total number of known routes and h(i) is the
number of routes known to i agents at time t. If
faultTolerance(t) is 1, then all agents share all the
knowledge.

Figure 5 shows, for a sample map, how the average
profile deviation, the efficiency and the fault tolerance
depend on the number of agents. It appears that profile
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deviation is always contained within 15%, and fault
tolerance is more than 90%. Efficiency is lower when
several agents are employed, since they tend to interfere
with each other.

V. Conclusion

In this paper we have presented an algorithm for
unsupervised multi-agent exploration of unknown
environments. According to the current necessity, each
agent dynamically selects a specific abstraction level for
exploring the environment; coordination with the other
agents and knowledge sharing are accomplished by
message broadcasting.
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Figure 5. (a) Profile deviation and fault tolerance, both
averaged on the wholeexploration, and (b) overprice 
function of the number of agents. The sample map
employed has more than 500 landmarks and 1400 routes,
and has 4 clustering levels. The transmission range is 10%
of the total map diameter.
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