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Abstract

Visionary projections of a wide-axea network teeming
with intelligent agents describe an environment where
end-users and their agents can pick and choose among
a great vaxiety of potentially valuable information ser-
vices. However, neither network capabilities nor users’
time and money axe infinite. Computational markets
provide one type of mechanism for ~llocating limited
resources in such an environment in a distributed, dy-
namic way. Moreover, the underlying economic theory
provides an analytical framework for predicting aggre-
gate behavior and designing individual agents. In this
paper, we describe a prototypical computational max-
ket model for information services distributed over a
network. Our initial focus is on the economic prob-
lem of when and where to establish mirror sites for
the more popular information services. Competitive
agents choose to set up mirrors based on going prices
for network bandwidth, computational resources, and
the information service. Depending on the experimen-
tal setup, we observed a range of qualitative behaviors.

Introduction
Approaches to resource allocation in distributed sys-
tems can be bounded by two extremes. At one end
(the "top down design" approach), we write a specifi-
cation of the required behavior of the system in terms
of software assets, architectural knowledge, and re-
source constraints. If our synthesized distributed sys-
tem is guaranteed to satisfy these constraints, it is
because we have built in a set of resource commit-
ments that will lead to that result under the speci-
fied assumptions. At the other end of the spectrum
(the "distributed agent" approach), rather than spec-
ify required behavior under given resources, we design
protocols or mechanisms (Rosenschein & Zlotkin 1994)
whereby a set of relatively autonomous software mod-
ules can, through interaction and run-time allocation
of resources, achieve some desirable aggregate behavior
using available system resources. Whereas this second
approach is more flexible, it presents the problem of
how we might determine a~ design ~ime how well the
various possible configurations of agents and available
resources will achieve our desired results.

Market price systems constitute one well-studied
class of mechanisms for allocating resources among dis-
tributed decision makers. By implementing a virtual
market system for computational agents, we can hope
to realize some of the desirable properties of markets
in the distributed computing context. For example, in
some well-defined circumstances, one can demonstrate
that markets produce efficient allocations with mini-
mal communication overhead. In that sense, we can
sometimes reason about the mechanism in a princi-
pled way to decide whether it is appropriate. Indeed,
one of the primary motivations of this market-oriented
programming approach (Wellman 1993; 1995b) is to ex-
ploit the analytical framework of economic theory as a
design tool for multiagent systems.

Market-Oriented Programming

The idea of market-oriented programming is to solve a
distributed resource allocation problem by formulating
a computational economy and finding its competitive
equilibrium. To formulate a problem as a computa-
tional economy, we must cast the activities of interest
in terms of production and consumption of goods, and
define a set of agents that choose strategies for produc-
tion and consumption based on their own capabilities
and preferences and the going market prices.

To act in accord with the theory of competitive be-
havior, the agents must adhere to certain rationality
conditions. Consumer agents are endowed with an ini-
tial quantity of goods and engage in trades so as to
maximize their utility. Producer agents are associated
with a technology, which specifies an ability to trans-
form some goods into other goods. The sole objective
of producers is to choose an activity within their tech-
nology so as to maximize profits. From the agents’
perspective, the state of the world is completely de-
scribed by the going prices; that is, the prices deter-
mine the maximizing behaviors. This arrangement is
extremely modular, as agents need not expressly con-
sider the preferences or capabilities of others, and com-
munication consists exclusively of offers to exchange
goods at various prices.

Since these computational economies are instances of
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general-equilibrium systems, the analytical tools and
results of genera] equilibrium theory are directly ap-
plicable. In particular, under certain classical condi-
tions, a simultaneous equilibrium of supply and de-
mand across all of the goods is guaranteed to exist,
be reachable via a distributed bidding process, and
be Pareto optimal (that is, there is no solution that
makes some agent better off without making some
other one worse off). Other theoretical properties of
equilibrium (to be illustrated below) can be used 
designers to configure the system so that it achieves
some desired aggregate behavior. Areas where market-
oriented programming has been applied to date in-
clude transportation planning (Wellman 1993), dis-
tributed engineering design (Wellman 1995a), and
allocation of computational resources (Bogan 1994;
Doyle 1994). Although experience with the approach is
still limited, some general understanding of the tech-
nique’s characteristics is beginning to emerge (Well-
man 1995b).

Some Related Work

Market or market-like mechanisms have been consid-
ered previously in Distributed AI research, most no-
tably in the form of the Contract Net Protocol (Davis
& Smith 1983). Although the contract net per se
did not use real economic mechanisms, some eco-
nomic concepts can be readily incorporated (Sand-
holm 1993). Recently, the market approach to re-
source allocation seems to be gaining in interest in
the distributed computing community, for allocating
computational resources of various kinds (Agorics, Inc.
1994; Clearwater et al. 1995; Ferguson et al. 1995;
Harry & Cheriton 1995; Huberman & Hogg 1995;
Kurose & Simha 1989; Waldspurger et al. 1992). Gen-
erally, these applications are centered around a global
model for the resource, from which each agent or mod-
ule calculates the marginal value of resource for itself.
By using this value for bidding, the market allocates
goods efficiently according to marginal value. An im-
portant distinguishing feature of market-oriented pro-
gramming is that we are generally concerned with find-
ing an allocation involving multiple interrelated re-
sources. In other words, each agent is potentially
interested in combinations or bundles of goods (re-
sources, services), rather than a single type. For in-
formation networks of significant scope, such as digi-
tal libraries (Birmingham et al. 1994) or distributed
databases (Stonebraker et al. 1994), it appears in-
evitable that considering the allocation of multiple re-
sources and services at once will be necessary.

Network Information Services Economy

Current users of the internet are witnessing an explo-
sive growth in the number and kind of information
services offered. We expect this growth to continue
and accelerate, and eventually for the range of ser-
vices to start catering toward automated as well as
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human agents. Even in the current environment, eco-
nomic issues are coming to the fore, as numerous pro-
posals for internet billing protocols, transaction secu-
rity, and electronic cash are being put forth for consid-
eration. In some proposed schemes for internet pric-
ing (MacKie-Mason & Varian 1994), prices and alloca-
tions are determined by dynamic bidding mechanisms.
In such an environment, economically savvy computa-
tional agents will be at a premium.

It is widely recognized that the information ser-
vices network of the future is fertile ground for com-
putational agents. We believe moreover that the eco-
nomic model of agent interaction provides a useful
framework for system design. To explore this possi-
bility, we are currently applying the ideas of market-
oriented programming to one large-scale information
services network, the University of Michigan Digital
Library (Birmingham et al. 1994). Our design for this
system is based on a network of specialized information
agents, interacting as suppliers and producers in a vir-
tual information-services economy (Birmingham et al.
1995). Within this system, efficient allocation of basic
computational resources (memory, processing, band-
width) as well as information goods and more complex
value-added services will be a key to effective behavior
of the overall system.

Blue-Skies Economy

For our initial exploration of resource allocation on
an information services network, we have developed a
simple computational economy consisting of one type
of service offered at a variety of sites. The model is
a direct extension of our previously developed trans-
portation economy (Wellman 1993), which solved a dis-
tributed version of the multicommodity flow problem.
The problem of routing information over a communi-
cations network is analogous; here, too, we have to
choose routes simultaneously between several origins
and destinations.

The economic issue we have focused on is the lo-
cation decision for service provision: when and where
should mirror sites be established? Our initial model
represents a simple network composed of one inter-
net site and two local sites and uses Blue-Skies (Sam-
son, Hay, & Ferguson 1994), (a real-time interactive
weather-images service at the University of Michigan),
as our generic information service. In the model, Blue-
Skies is produced on the internet and local users ac-
cess it frequently. To continue accessing Blue-Skies
from the internet means longer delays, but setting up
a mirror site means using up local resources like disk
space and computing, and also imposes an initial over-
head cost of transporting the entire product line to the
mirror site. Which setup makes more sense clearly de-
pends on these costs, as well as current and anticipated
access patterns by the end users on the local network.
Figure 1 shows how one particular Blue-Skies economy
was configured.
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Figure 1: Blue-Skies Economy

Configuration

In order to design a computational economy, we need
to specify the goods produced and consumed, the
agents participating in the econolny, and the agents’
production and consumption behavior. Selecting the
array of goods available strongly constrains the design
space. The more standardized the goods, the simpler
are the choices for each agent, but the less diverse the
marketplace is. Thus, depending on design require-
ments, goods may either be decomposed according to
various properties such as location, quality, and time-
liness, or else they can be combined to hide relatively
unimportant distinctions. In our model, we employed
both of these options. For example, each of our con-
sumers is endowed with basic network resources which
they can "spend" buying Blue-Skies. Although we
treat network resources as a single good, it actually
denotes an amalgamation of network service character-
istics (including throughput and reliability), which to-
gether constitute an "effective bandwidth". The units
for this good combine both quantity and quality ele-
ments, which can be measured, for example, in terms
of kilobytes of images delivered within a certain time
period.1

On the other hand, location is an important charac-
teristic here: users want to purchase Blue-Skies, not at
the internet site, but on their local site. We represent
this distinction by defining Blue-Skies as a separate
good from Blue-Skies@local-site. (This is the most

1 Since our entire model operates over the same time
period, it was .not necessary to explicitly determine whether
the time period was per hour, per day, or per week.

important way that this model extends the existing
transportation economy.)

Producers are defined by their technology, which de-
scribes what resources are required to produce various
amounts of output goods. In our model, we use five
types of producers. Carriers produce transportation
from one node to another, given network resources. We
assume the network is congested, so that the cost per
unit of effective bandwidth provided increases with the
load on the communication link. Like Carriers, manu-
facturers of cpu access, disk storage, and Blue-Skies
have decreasing returns to scale technologies. The
third kind of producer, transport arbitrageurs, takes
as input transport from node a to node b and trans-
port from node b to node e, and produce as output
transport from a to c. Delivery arbitrageurs are sim-
ilar, except they bundle information services at a lo-
cation (e.g., Blue-Skies@internet) with transport from
that location to another (e.g, local-site), to produce
that service at the second location (Blue-Skies@local-
site). Finally, our fifth type of producer, the mirror
provider, has the capability of transforming local stor-
age and other resources into provision of the informa-
tion service at its local site. It can also choose to access
the service from another site instead of mirroring, in
which case it acts just like the delivery arbitrageur.
If it were possible to provide Blue-Skies using a mix-
ture of sources (i.e., some from the net, some locally)
then the two technologies encapsulated by the mirror
provider could just as well be represented by distinct
competing producers.

Consumers are defined by their initial endowment
of resources and their preferences, which dictate the
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E~periment Choices Resale Cache only

No. i site 1: mirror, internet internet mirror
site 2: internet internet internet

No. 2 site 1: mirror, internet internet mirror/internet
site 2: mirror, internet internet internet/mirror

No. 3 site 1: mirror, internet mirror oscillates
site 2: site1, internet sitel oscillates

Table 1: Experiment Results

relative value to them of alternative combinations of
information services and resource usage. For analyt-
ical convenience, we specify preferences using a CES
(constant elasticity of substitution) utility function,
specifying the tradeoff between network resources re-
tained and consumption of the service good, Blue-
Skies~local-site. Note that we can view a consumer
agent in this model either as an individual end uscr, or
as an aggregate of all the users at a particular site.

Behavior of the Model

In running our preliminary experiments, we have con-
sidered two different mirror site functions. First, the
mirror serves as a cache for users at its local site. Sec-
ond, depending on licensing issues, the mirror may also
act as a reseller of the information service to other sites.
We ran each of our experiments in two configurations.
The first, labeled resale, permitted the mirrors to pro-
vide both the cache and resale functions. The second,
cache only, prohibited resale beyond the local site. For
each experiment, Table 1 lists the available choices for
each site, as well as the the final market result for each
configuration.

The economy configuration for Experiment 1 corre-
sponds to that shown in Figure 12. Site 1 must choose
between being a mirror site or getting Blue-Skies from
the internet (site 1: mirror, internet) while site 2 only
had a single option--to get Blue-Skies from the inter-
net (site 2: internet). In the case of the resale mirror,
site 1 chose to get Blue-Skies from the internet. It had
no one to resell the mirrored goods to, so that was not
a profitable choice. For the cache-only setup, site 1
chose to have a mirror site; even though it couldn’t
resell the goods, it was still cheaper (given the cost pa-
rameters we used) to cache the product at its site than
to perform all its access over the internet.

The results of all three experiments are what one
would expect, except perhaps for the oscillation oc-
curring in Experiment 3 for the caching mirror. The

2We have pictured three separate basic resources in Fig-
ure 1 for clarity of understanding. In the actual experi-
ments, they were combined into one "Resource" for reasons
discussed below.

cycling occurs because setting up a mirror site reduces
the overall traffic on the network. This in turn causes
bandwidth prices to drop, which then makes it appear
to the agents that it would be cheaper to get Blue-Skies
via internet. Of course, as soon as they switch to get-
ting the product from the internet, it drives the price
back up, making the mirror appear more profitable. It
is interesting to note, however, that the resale mirror
model does not cycle. Site 1 choosing to be a mirror is
only profitable if site 2 decides to get Blue-Skies from
it, and once the system falls into this optimal choice,
it will stay there.

Oscillation in the system can be attributed to two
main sources: violation of competitive market assump-
tions and the presence of non-substitutable goods. For
each cause, there are countermeasures available to the
designer of network economies.

The competitive market assumption dictates that
the agents be price takers, ignoring the effect of their
own behavior on the resulting prices. This was clearly
violated in our third experiment above, where the
choice of one mirror producer dramatically influenced
traffic and thereby moved prices. We expect that ex-
panding the scale of the network economy, thus de-
creasing the influence of any one agent, would mitigate
the effect on prices and tend to reduce the likelihood
of the kind of synchronous flip-flop behavior seen in
Experiment 3.

Non-substitutability of goods caused a problem in
our original configuration, where we had separate
goods for each kind of production resource: transporta-
tion, internet, and machine resources. Convergence
was hindered by the fact that prices go to zero when-
ever there is an excess supply of some good. In our
early tests, when site 1 chose to be mirror site, the
economy was left with a large amount of transporta-
tion goods that could not be used elsewhere. Merging
the three goods resolved that problem by making the
different resources substitutable. However, the long-
term solution here is also to scale up the economy. As
long as there is some potential use for the excess trans-
portation resources in the economy (even a very low-
valued one), the problem of zero prices (and hence zero
income for the consumers who own the resources) does
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Blue-Skies: Manufacturer

Demand Function: z = .01y2 + .Sy
Historical Supply: y = 400 units Blue-SkiesQinternet
Minimum Input: 1,800 units Network resources

Delivery(internet,sitel): Arbitrageur

Production Function: y = min(zl, :r,2)

Demand Function: x=y
Historical Supply: y = 200 units BlueSkies~sitel
Minimum Input: 200 units Blue-Skies@internet AND

200 units Link(internet,sitel)

Table 2: Minimum Input Requirements

not arise.

In summary, we have defined a very simple compu-
tational market model for setting up mirror sites on an
information services network. The model behaves pre-
dictably according to market principles, and exhibits
a range of qualitatively distinct behaviors according to
the market structure.

Designing a Blue-Skies Consumer

A consumer is defined by its initial endowment (which
dictates its budget), and its preferences for different
combinations of goods. If this information has not
been specified externally, then it is up to the designers
of the multiagent system to choose appropriate param-
eters. And as we have seen above, different configura-
tions and parameters can lead to qualitatively different
overall behaviors.

One of the benefits of the economic framework is
that we can use the properties of competitive equi-
librium derived from the underlying theory to design
agents that will achieve the desired results. Although
the following analysis is specific to the Blue-Skies econ-
omy, it demonstrates more generally the methodologi-
cal utility of adopting a framework with firm theoreti-
cal underpinnings.

Based on our problem description, we made two as-
sumptions. First, that the amount of Blue-Skies de-
manded historically (i.e., when local sites were sup-
plied with Blue-Skies from the internet) was known,
and that historic demand is an appropriate benchmark
for demand in the expanded model with mirroring.
Second, we assume that the CES utility function is
a reasonable model of preferences. Given these two
assumptions, our task is to set the parameters of the
computational economy so that consumers can support
their historic demands.

Finding the Initial Endowments

In any economy, producing a given amount of out-
put requires some minimum amount of input be avail-
able. Since all of the basic resources are initially owned
by the consumers, we have to make sure that the to-
tal endowment allocated to consumers is at least the
minimum amount required to produce the desired ag-
gregate output. Historical demand data tells us how
much output was produced, so by working backwards
through the production technologies we can derive the
minimum amount of basic resource necessary. In Ta-
ble 2, minimum input amounts are calculated for two
particular producers. Similar calculations can be car-
ried out for all the producers in the network.

Initial endowment amounts can then be determined
in one of two ways, depending on the symmetry of
the economic configuration. For symmetric economies,
(where the network is symmetric and consumers have
identical preferences), each consumer is assigned an
equal share of the required input goods. Otherwise,
one reasonable estimate of the required endowment is
in proportion to the historical demands. Since our ex-
perimental economy is symmetric, we divide the total
amount of network resources required (170,800 units)
equally between our two consumers.

Utility Function Parameters

The CES utility function (for n goods) has the follow-
ing form:

ft

= (1)
i=1

The coefficients c~ weight the consumer’s preference
for each good, and the p parameter controls the sub-
stitutability between goods. For concreteness, we ar-
bitrarily set p = 1/9. and seek a set of as such that
each consumer spends their network resources to buy
Blue-Skies. Let p = (Pl,... ,Pn) be the vector of prices
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for the n goods. The demand function zi for good i,
derived from maximizing the utility function subject
to the budget constraint (total expenditures equal in-
come) is:

zi(p, income) cqP~l/2inc°me

Our requirement is that the consumer’s demands at
equilibrium match the historical demand. Unfortu-
nately, ensuring this is not as straightforward as it
might seem; to evaluate the demand function we need
to know the equilibrium prices, and the equilibrium
prices depend on the demands. However, using the
competitiveness assumption we can determine analyti-
cally the relative prices of the economy at equilibrium.

First, we use the fact that in equilibrium, price
equals marginal cost (MC). If the cost c(y) of produc-
ing y units of output is measured in units of input, then
MC(y) -- Pout/Pin, where Pout is the price of output,

Pin the price of input, and MC(y) the derivative of
c(y).

For example, the Blue-Skies producer has an in-
put of network resources and an output of Blue-
Skies@internet. Let the prices of these goods be Pnr
and Pba, respectively. Since the cost function for
this producer is c(y) -- .01#2 + .Sy, it follows that
MC(y) .0 2y + .5 . Us ing th e hi storical de mand
of y -- 400, at equilibrium it must be the case that
MC(400) -- .02(400) + .5 Pb,/P,~r. From this wecan
derive a constraint on the relative equilibrium prices,
Pb, = 8.5pnr.

By a similar analysis of the other producers’ tech-
nologies, we can derive constraints on other combi-
nations of relative prices, and then propagate these
to express constraints between any connected pair of
prices. For example, from the delivery arbitrageur we
can determine that the price of Blue-Skies@sitel (Pb, t)
equals the sum of prices of Blue-Skies@internet (PbJ)
and transportation to sitel, which (via some other con-
straints) comes out to 824.5pn~. Combining this with
the constraint above yields Pb,1 = 833pn~.

We can also use the fact that for each consumer (in
equilibrium), the ratio of its marginal utilities for pairs
of goods equals the ratio of the prices for those goods.
From this we can derive constraints on the ~i param-
eters of the consumer’s CES utility function. We cal-
culate marginal utility (MU) by taking the derivative
of the CES utility function (1),

MUi = __p_p-t
Pcxi ~i "

Since p < 1, this means that marginal utility is unde-
fined at zi = 0. Therefore, even though the consumers
really want network resources only for the purpose of
trading them for Blue-Skies, we require that the con-
sumers have some other direct use for the resource, not
explicitly modeled by the economy. To ensure this, we
arbitrarily set the consumption values for the resource
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goods to some small amount, for example, Znr - 16.
Solving for consumer@sitel (using p = 1/2), we have:

MUnr
112 -z12 112= 1/2o~m. (16) = 1/8an,.

1/2 --1/2 2 I/:~MUb.1 -~ 1/2~b.1(200 ) : V/2/40OCb~l

From the analysis of producers above, we know
that Pbal -" 833pnr. Using the equilibrium condition
MUi/MUj = Pi/Pj, we can find the relative values for
the CES ~ parameters:

MUb, I/MUnr -" Pb, I/Pnr

112 112
(V~/5)(c%,i/ct.r -- (833pnr)/Pnr

1/2
(4165/vr~)~1/2hal

~b,l = (8.67 x lOS)~,~-

If we set ~nr = 1, we will thus have one particular
realization of a Blue-Skies consumer. And, since this is
a symmetric economy, the consumer@site2 is the same,
Oebj1 -- ~bs2.3

Note that in the foregoing analysis, we made several
arbitrary choices (p -- 1/2, C~nr : I, Znr = 16). This
is simply because the problem is underconstrained. To
achieve a given behavior, there are in general many
parameter settings that will do the job. If we had
further behavioral constraints, these arbitrary settings
are available as extra degrees of freedom.

Finally, we note that indeed, when run under WAL-
~tAS (our market-oriented programming environment,
see (Wellman 1993)), this economy in fact produces
the expected results. That is, the theoretical analysis
is in fact validated by the behavior actually resulting
from the distributed bidding behavior of the consumer
agents we constructed.

Conclusion
Preliminary results show that under certain conditions
the optimal mirror site configuration is chosen. How-
ever, because the current model is so small, problems
with the competitiveness assumption and the limited
range of resource-usage opportunities can cause the
economy to oscillate. The solution to these problems
is to scale up the economy by expanding the number of
sites, adding more services, and distinguishing services
based on different quality features, (e.g., having mir-
ror sites that update less frequently but are cheaper,

s For non-symmetric economies, we may also need to cal-
culate the profits of the producers, in order to use relation-
ships depending on the income of consumers. For exam-
ple, to find the Bhe-Skies producer’s profit (revenue minus
cost):

PnrY -- C(y)pb, ~- 400pb. -- 1800pnr

= 400(8.5p,,)- 1800p.,
= 1600pnp.
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or more expensive sites carry a higher-quality version
of Blue-Skies).

Other extensions include providing for explicit trad-
ing of licensing and distribution rights, and exchange
of resources across multiple time periods. We expect
that practical deployment of this model will also re-
quire compromises of the pure economic framework.
For example, it would not be reasonable in general for
the network of agents to reach a competitive equilib-
rium for each transaction, so different kinds of bidding
protocols and periodic price-adjustment mechanisms
will have to be explored.

Broader aims include developing general method-
ologies, and whenever possible, analytic techniques,
for determining and directing the behavior of the sys-
tem by specifying the initial economic configuration
and the appropriate incentive mechanisms (possibly
through taxes or subsidies). Although decentralized
consumer and producer agents can act on these in-
centives in whatever manner they see fit individually,
confidence in the aggregate behavior of the system can
be maintained.
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