
DIDE: A Multi-Agent Environment
for Engineering Design

Weiming SHEN, Jean-Paul A BARTHES
CNRS URA 817 HEUDIASYC

Universitd de Technologie de Compi~gne
BP 649, 60206 COMPIEGNE, FRANCE

E-mall: [wshen ; barthes]@hds.univ-compiegne.fr

Abstract

Real world engineering design projects require
the cooperation of multidisciplinary design teams
using sophisticated and powerful engineering
tools. The individuals or the individual groups of
the multidisciplinary design teams work in paral-
lel and independently with the different engineer-
ing tools which are located on the different sites
for often a long time. In order to ensure the co-
ordination of the design activities of the different
groups or the cooperation among the different en-
gineering tools, it is necessary to develop an effi-
cient distributed intelligent design environment.
This paper discusses a distributed axchitecturc
for integrating such engineering tools in an open
design environment organized as a population of
asynchronous cognitive agents. Before introduc-
ing the general architecture and the communica-
t.ion protocol, issues about the agent axchitecture
azLd the inter-agent communication axe discussed.
A prototype of such an environment with seven
independent agents located in the different work-
stations and microcomputers is presented and an
example of a sin’,all mechanical design is used for
demonstrating such an environment.

1. Introduction
Real world engineering design projects require the co-
operation of multidisciplinary design teams using sev-
eral sophisticated and powerful engineering tools. The
individuals or the individual groups of the multidis-
ciplinary design teams work in parallel and indepen-
dently often for quite a long time with different engi-
neering tools which are located on the different sites.
On the other hand, at any instant, individual mem-
bers may be working on different versions of a design
and viewing the design from various perspectives (e.g.,
electronics, manufacturing, planning), at various levels
of details. In order to coordinate the design activities
of the various groups and to guarantee a good cooper-
ation among the different engineering tools, it is neces-
sary to develop efficient distributed intelligent design
environments. Such environments should not only au-
tomate individual tasks, in the manner of tradir.ional

computer-aided engineering tools, but also help indi-
vidual members to share information and coordinate
their actions as they explore alternatives in search of a
globally optimal or near-optimal solution. A number of
researchers have proposed to use distributed problem
solving technology for concurrent design (Gcro 1987;
Morse 1990; Sriram et al 1991); or developed some
agent-based systems sudl as PACT (Cutkosky et al
1993), First-Link (Park et al 1994), Next-Link (Petrie,
Cutkosky, & Park 1994), Anarchy (Quadrel et al 1993),
some multi-expert systems such as DICE (Srirazn et al
1989; Sriram et al 1992), DESIGN-KIT (Stephanopou-
los et al 1987; Sriram et al 1989), ANAXAGORE
(Trousse 1993), CONDOR (Iffenecker 1994), EXPORT
(Monceyron & Barth~s 1992), ARCIIIX (Thoraval
Mazas 1990) and a project at UTC (Ribeiro Gouveia
& Barthks 93), some specific computer tools for inter-
agent communication such as KQML (Finin, McKay,
& Fritzson 1992), ToolTalkTM (Frankel 1991), and
(Populaire et al 1993), and some frameworks for inter-
agent control (Van 1990; Lee, Mansfield, & Sheth 1993;
Quadrel et al 1993; Boissier 1993).

We are currently developing a prototype of Dis-
tributed Intelligent Design Environment (DIDE) based
on an architecture called OSACA (Open System for
Asynchronous Cognitive Agents) (Scalabrin & Barth~s
1993), derived from previous work in the domain of
robotized assembly systems (Abriat 1991). Our goal
is to verify whether it is actually possible to build
truly open systems, that is, systems for which users
can freely add or remove agents without having to halt
or to reinitialize the work in progress in any way. We
also want to exercise the obtained prototype in order
to gain first hand experience, first with small examples,
then with larger projects. Indeed, we are interested in
very large design projects of complex systems such as
an automobile, a locomotive, a harbor, or an aircraft.
This type of design projects have the same character-
istics: the design requires a large number of individual
designers or several working groups to work together,
the design period is long, and the design is very ex-
pensive. In this case, cooperation and coordination are
very important, and the asynchronous cognitive agents

344 ICMAS-9$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

are adaptable. In particular, in this context, we like to
compare experimentally an agent-based approach with
a more conventional blackboard approach like for ex-
ample the one we already developed for harbor design
(Monceyron & Barth~s 1992).

The paper is organized as follows: Section 2 dis-
cusses the internal structure of a single agent, as well
as the inter-agent communication. Section 3 presents
the general architecture of DIDE. Section 4 describes
an implementation with a small mechanical design ex-
ample. And finally section 5 gives some concluding
remarks.

2. Agent Architecture and Inter-Agent
Communication

2.1. Internal Structure of an Agent

In our distributed intelligent design environment,
agents are autonomous cognitive entities, with deduc-
tive, storage, and communication capabilities. Au-
tonomous in our case means that an agent can func-
tion independently from any other agents. Fig I shows
the internal structure of an agent (Ribeiro Gouveia
Barth~s 1993).

~....
$:::::....:.:.:

~iiiiiiiiiiiiii:::$:::::’.’:::::::.:

~iiiiiiiii:iiii.~
Ii:::::i~iiiiiii~::~,..~ ...~...
~i:i’i:~ii:iii?:::

~=.i==.i~;ii:;::=i

~’:.ii:ii:iii:iiiii.:. :.:. "..,.........:.. :<

l, ii’,i!ii’,ii’,ii’,i’ i

local kaowldp --

J~r~l KB

Fig 1, Internal structure of an agent
An agent is composed of: (i) a network interface

(shaded portion in Fig 1); (ii) a communication inter-
face, which provides handlers for I/O notification, or
exceptions; (iii) symbolic models of the other agents,
and associated methods to use them; (iv) a model
its own expertise which is application dependent; (v)
a model of the task to be performed, or of the current
context.

When an agent is connected to a group of active
agents, then only its communication interface and its
own expertise contain information. The part recording
facts about the work to be done, or the capabilities of
the other agents is empty. Each agent builds its own
image of both the work to be done and the capabilities
of the other agents on the fly, by processing the various
messages it receives or exchanges. Of course, there
are some difficulties when doing that. One of them
concerns sharing the names of external objects when
sensors are involved (Abriat 1991).

Several strategies can be used to transfer some
knowledge about the work to be done or about the ca-
pabilities of other agents. A first one is to be passive,

letting the agent ask questions whenever needed while
executing a particular task. A second one is to have
"curious" agents that have some knowledge of their ig-
norance, and thus are capable of asking some questions
to improve their knowledge of the problem to solve. A
third one would be to have some agent that teaches
newcomers (agents) about the task being performed
and the capabilities of the existing agent team. So far,
in our experimental environment, we only considered
the first and last hypotheses.

A cognitive agent is an agent which has at least the
following properties: (i) it is knowledge-based; (ii)
has knowledge about other agents and the knowledge is
obtained during the interaction or communication with
other agents or learned from a special "tutor" agent.

2.2. Inter-Agent Communication
There are two models of inter-agent communications
(Monceyron & Barth~s 1992). The first one, used
blackboard architectures, consists of sharing informa-
tion, i.e., the current solution of the problem is stored
in a global common data structure, and is shared by all
agents in the system. In design terms, the sharing or
exchanging of information may be relative to the arte-
fact or to the control of the solution and its manage-
ment. The initial data and the different partial results
which represent the successive versions of the artefact
are stored in this kind of data structure. It is the only
means for exchanging information. The ITX system
(Lee, Mansfield, & Sheth 1993) has used this model
of communication for a teleconferencing environment.
This model of communication was also used in some
projects for engineering design, such as DICE (Sriram
et al 1992), DESIGN-KIT (Stephanopoulos et al 1987),
ANAXAGORE (Trousse 1993), CONDOR (Iffenecker
1994), EXPORT (Monceyron & Barthfis 1992),
ARCHIX (Thoraval & Mazas 1990). The second model
of communication consists of transferring information,
i.e., each agent builds its own model of the current so-
lution by acquiring information from the other agents.
This model of communication needs a protocol and a
format for the messages (common message language)
for expressing requests and replies. Each agent stores
the current solution, or at least part of the solution,
in its local database. Some projects such as MARS
(Abriat 1991), PACT (Cutkosky et al 1993), First-Link
(Park et al 1994) and Next-Link (Petrie, Cutkosky,
Park 1994) have used this model of communication. It
is also used in our distributed intelligent design envi-
ronment (DIDE).

Communication among agents in DIDE is flexi-
ble, asynchronous, and of multicast type. An asyn-
chronous multi-agent communication is adaptable to
a distributed intelligent design environment for large
design projects. Indeed, even if synchronous commu-
nications (blackboard style) are very useful for systems
in which the cooperating agents have to work simulta-
neously, such as a multimedia teleconferencing system

Shen

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

(Lee, Mansfield, & Sheth 1993), they are not required
for large design problems, for which the design period
is often very long.

One of the major problems for developing truly open
systems is that of being able to insert or to remove
agents on a given application without halting or reini-
tializing the (distributed) system. Indeed, since large
design projects last several years, new tools or new
services appear during the life of the project; similarly,
existing tools get upgraded. Thus, it is necessary to ac-
commodate such changes smoothly without disturbing
the project. Traditional approaches, in which a group
of powerful tools may be integrated into a large, effi-
cient, decision support system, do not allow it. Such
az~ approach is viable only if the problem domain is
static, i.e., the tools, design rules, and production pro-
cess do not change over the product life-cycle. Indeed,
when new services are appended to a group of coop-
erating processes it is usually necessary to recompile
all programs on all machines on the network. This is
clearly unacceptable. New tools are becoming avail-
able that allow to avoid such a problem, although they
are currently far from satisfactory.

Finally, on the communication side, the message
content is of a fairly high semantic level. For exam-
ple:

Open breakwater-entrance by 10 degrees

This raises the question of shared vocabulary and
common ontologies, and also of the initial expert
knowledge content of each agent prior to its connec-
tion to the network. A review of such questions can be
found in (Cavalli et al 1991) in the context of "Enter-
prise Integration" and in (Gruber 1993) in the context
of "Ontologies and knowledge sharing." Our approach
in this domain is to manually organize needed concepts
into minimal ontologies as needed.

3. A General Architecture for Design

Environment

OSACA (Open Systems for Asynchronous Cognitive
Agents) is a general architecture that we apply to
our distributed intelligent design environment (DIDE).
DIDE is a programming environment under develop-
ment, in which the techniques of distributed artificial
intelligence are used to realize the interaction and com-
munication among multiple cognitive agents. Such
agents may be connected with existing engineering
tools or database/knowledge base systems, or may also
be connected with some user interface for human do-
main specialists. Two key issues are how to select a
way of communication (protocol) among such agents,
and how to organize each tool associated with a cog-
nitive agent.

We assume that all agents are connected by means
of a network - local network or Internet. Each agent
can reach any other active agent by means of a broad-
casting message. All agents receive messages. They

346 ICMAS-95

may or may not understand such messages. When
they do not understand a message, they simply do
nothing. Whenever they understand the message, then
they start working on it, provided the priority of the
message is higher than the current work they were do-
ing. Thus, agents are multi-threaded. When a new
agent is introduced, it is simply connected to the net-
work. From then on, it receives messages like the other
agents.

In our design environment, an agent offers some
specific service, usually by encapsulating an engi-
neering tool. The agent interaction relies on three
things (Cutkosky et al 1993): shared concepts and ter-
minology for communicating knowledge across disci-
plines, an interlingua for transferring knowledge among
agents, and a communication and control language
that enables agents to request information and ser-
vices. This technology allows agents working on dif-
ferent aspects of a design to interact at the knowledge
level, sharing and exchanging information about the
design independently of the format in which the infor-
mation is encoded internally.

Task Structure

Task execution is initiated locally and can be done in
different manners. Firstly, agents can broadcast infor-
mation to all the other agents and then wait until some
agent has computed the answer. In this way the task
can be carried out by several specialists of the subject
working in parallel (provided they reside on distinct
machines). Secondly, a contract protocol can be used,
i.e., an agent broadcasts an offer describing the job to
be done, waits for some time for submissions from the
other agents, and then awards the contract to a partic-
ular agent according to some local criteria. Thirdly, a
contract can be allocated directly to a known special-
ist. Note that although the last solution could appear
to be the most efficient, a general broadcast allows all
the agents to see the content of the request. There-
fore, even if agents are not directly concerned by the
request, they can nevertheless use part of its content to
update their internal representation of the task being
done or of their image of the expertise of the requesting
agent.

4. Implementation

We have built an experimental distributed intelligent
design environment (DIDE) on a network of SUN and
VAX workstations and microcomputers. Each agent is
implemented as a MOSS environment (Barth~s 1989),
a system of recursive frames capable of modeling ob-
jects with versions and well adapted to design activ-
ities. MOSS is itself constructed on top of Common
LISP. Agents are built as a set of MOSS objects to-
gether with their behavior. Communications are im-
plemented by using ToolTaUcTM for local communica-
tion and employing the ELM mail system for remote

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

communication among the agents located in the dif-
ferent local networks. Communications must be pro-
grammed using C++.

4.1. ToolTalk for Local Communication
TooITalk TM was developed by SunSof~TM as a part
of Solaris TM OpenWindowsTM (Frankel 1991). Pro-
grams interact with ToolTulk TM by calling func-
tions defined in the application programming interface
(API). The API gives TooITalkTM the appearance of a
simple library, hiding the facts of its implementation as
both a library and a collection of communicating pro-
cesses running on computers throughout a local area
network. TooiTalk TM allows processes to communi-
cate in a variety of ways with minimal knowledge of
each other and no knowledge of the local area network.
It acts as a message switch, tracking automatically the
various process identities and locations. ToolTallcTM

makes use of the local network as a "software bus" into
which engineering tools may be freely plugged and un-
plugged by the user. Connected tools automatically
register themselves to send and receive messages that
they can understand and act upon.

TooITalkTM thus gives us the capacity of connect-
ing our various agents located anywhere on the local
network without having to keep track of where they
actually reside. In addition, such connections can be
dynamic.

Communications with TooITalkTM are done using
two types of messages: notices and requests (corre-
sponding to publish and request in First-Link (Park
et al 1994) and Next-Link (Petrie, Cutkosky, & Park
1994). A notice message is informational - a way for
process to announce an event. Processes that receive a
notice absorb the message without returning anything
to the sender. A request message is a call for action,
the results of which must be returned to the sender as
a reply. This is a too simple approach for our purposes.
However, we implemented the various communication
modes by using mainly notice messages (which contain
the identity of the sender). A typical mechanism for
the message management is shown as in Fig 2.

This paragraph shows how one can use the
TooiTalkTM notice and request message types to im-
plement a contract protocol. Consider the six agents
(corresponding to six engineering tools) of Fig 2. Each
agent only knows TooiTalkTM and a set of patterns
identifying the type of profile defining another agent.
Agent 1 sends a notice message to TeoiTalkTM de-
scribing a job to be done. Agents 2, 3 and 4, having a
pattern that matches the pattern of the notice message
sent by agent 1, process the message in parallel. Then,
they each return a notice message with the results to
ToolTalkTM. Agent 1 receives all of these three no-
tice messages sent by agent 2, 3 and 4. Agent 1 then
analyses and compares the offers from the three differ-
ent engineering tools, and can make a decision as to

[

meee~

ToolTalk
Server

0

Fig 2. A mechanism for message management under the TooiTalk Service

which tool to be selected for performing the required
job. Agent 1 then sends a request message (point-to-
point) for granting the job to the selected agent (se-
lected tool). The final result will be automatically re-
turned to Agent 1.

In the agent, the message is described as a MOSS ob-
ject, and must be transformed into a message attribute
list and a string (including other data or results) before
it can be sent.

Although ToolTaik TM suffers from a number of
problems, it was nevertheless available, which is the
main reason for using it. We are developing other pro-
tocols and tools for the OSACA multi-agent platform.

4.2. ELM for Remote Communication

In large design projects, the various activities and their
corresponding computational tools may be located on
different sites, and may not be on the same local net-
work. In this case, TooITalk falls short from meeting
the requirements.

Electronic Mail (E-Mail) services as the primary
medium for both human communication and tool com-
munication. Engineers use e-mail routinely for discus-
sions and information exchanges. Computer agents can
do the same. Using structured messages, they can re-
quest information and services from other agents, com-
municate results, notify agents of design changes, and
so forth. E-mail has a combination of characteristics
that make it well-suited for integrating loosely cou-
pled applications in wide-area networks demonstrably
heterogeneous and scalable. Secondly, recent stan-
dards in multimedia e-mail make it possible to ex-
change compound documents containing text, images,
audio, video, and programs. Thirdly, it is relatively
easy to connect existing applications to e-mail. Finally,
e-mail’s explicit asynchrony matches the way engineers
prefer to work. Indeed, publishing design changes and
"checking-in" for changing notices at will allows them

Shen 347

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

~- under dovMopment

future dovulopn~nt

SDB: Database of Englmmdng Standard

D.R. Tool: Design Representation Tool

G. Tool: GraplticJ Tool
TDB: Technological Database
CAPP: Expert System for CAPP

t’---.--J

--.....
locale mmiage

=a-

Fig 3. An Experimental System Architecture of DIDE

to feel in full control of the design process (Toye et al
1993).

In DIDE, an e-mail tool called ELM is used for re-
mote communication, i.e., for exchanging information
among the agents located in the different local net-
works.

4.3. Version Mechanism for Conflict
Resolution

Conflicts occur in multidisciplinary design environ-
ments mainly for two reasons: individual participants
in the cooperative process lack the complete knowl-
edge of global objectives necessary to ensure that their
locally-preferred solutions are in alignment with these
higher objectives, and individual disciplines have indi-
vidual ideas about what constitutes the best design.
Even individual design requires trade-offs because of
competing design criteria, such as safety, cost and so-
cial acceptance, as well as artifact requirements and
specifications. The ability of designers to avoid or min-
imize conflicts through judicious trade-offs and other
methods is one of their most valuable skills.

Resolution and detection of conflicts are especially
difficult when the design task as well as knowledge con-
cerning such competing factors are distributed among
different actors with different perspectives. Certain
methods such as negotiation, hierarchical structures,
constraint weakening, creation of new variables and
user interaction can be used for conflict resolution. It
is also possible to combine several methods in the same
system.

In DIDE, we leave each group of designers de-
velop possible conflicting partial solutions (divergence)
(Barth~s 1993). Such solutions are managed as paral-

lel versions. Then, at the review meetings all groups
have to compromise on a commonly agreed solution or
on a solution imposed by the project manager (recon-
ciliation). This relates to the global consistency of the
project and not to the consistency within each partial
solution, which we have not yet addressed (see also
Project Manager in the next section).

4.4. A Small Experimental Example for
DIDE

DIDE currently comprises seven independent agents:
project manager interface, design representation, en-
gineering calculation, database of national engineering
standards, agent administration monitor, a 3D graph-
ical environment (AutoCAD on SUN/UNIX) for dis-
playing the design results, and another 3D graphical
environment (SDRC I-DEAS on VAX/VMS) for pro-
cess engineers (as shown in Fig 3):

ProjecL Manager:. The interaction mechanism for
agents in DIDE has been developed to meet the needs
of human designers working on a collaborative project.
Here the agent Project Manager is taken as this type
of "human" agent for specifying the initial parameters
and some constraints for the design project. Its po-
tential functions which are under development include
the version control for conflict detection and resolu-
tion by using the strategy of divergence/reconciliation
(Barth~s 1993) and by combining two methods: user
interaction and the optimum calculation for some spe-
cial constraint conflicts. In the future DIDE environ-
ment, there will be several agents for human specialists
in the different domains such as dynamics, electronics,
economics and process engineering.

348 ICMAS-9S

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Design Representation Tool: This agent is responsi-
ble for the generation and management of geometric
entities and their properties of a particular mechanical
system. The geometric information imports from or
exports to a specific CAD tool via the agent Graphical
Tool1. All classes, instances and methods are defined
in this tool. The objects can be stored in an object-
oriented database (e.g., MATISSETM). The propa-
gation of modifications (Shen, Barth~s, & EL Dahshan
1994) is done by this agent.

Computation Tool: This agent is responsible for en-
gineering calculations. It may be a Finite Element
Analysis tool or some other engineering computation
tool. Currently it is simply used for bolt stress calcu-
lations.

SDB (Database of Engineering Standards):
database of national engineering standards is very use-
ful in the domain of mechanical CAD. This agent is
served for searching required standard dimensions in
the database of engineering standards.

Monitor: This can be seen as an administrative
agent. Generally it works for the project manager. It
receives all messages sent by all the other active agents
in the same system and displays some important infor-
mation on a specific interface. It stores all information
about the task being performed and the capabilities of
all other agents in its temporal local knowledge base.
When a new agent connects to the system or an active
agent withdraws, it will update its knowledge base and
send a broadcast message to all other agents. It can
also serve as a "tutor" for newcomers. (This is however
not the case as of now).

Graphical Tool1: Currently this graphical tool is Au-
toCAD, located in a microcomputer, which is used to
display the design results on a 3D graphical interface.
It can be also used to prepare a mechanical drawing or
to modify the drawings by a human domain specialist,
in the latter case, the agent is taken as a human agent.
This tool will be soon replaced with a UNIX version of
AutoCAD on a SUN workstation, which will facilitate
the storage and retrieval of the graphical objects. The
data exchange with other agents is done by means of
standard DXF (Drawing Interchange Format) files.

Graphical ToolP.: This graphical tool is SDRC I-
DEAS located on the network of VAX workstations.
This graphical interface allows process engineers to ver-
ify technological constraints. This agent communicates
with other agents by means of the ELM mall system.

We illustrate how easily each agent can communi-
cate with other agents using a small academic example.
We consider a mechanical assembly as a design exam-
ple, already described in details in (Shen, Barth~s,
EL Dahshan 1994). If a designer (here the project
manager) desires to design or redesign this mechanical
assembly, he can specify all the necessary parameters
such as the total pulling force and some constraints
such as the bolt head type, the safety factor by means
of a specific interface for agent Project Manager. The

agent Project Manager sends a notice message with a
predefined pattern and other initial data. The agent
Compntation Tool receives this message by matching
the pattern and takes the required calculation to ob-
tain a bolt diameter as a result, and then sends a notice
message with this result and a predefined pattern. The
agent Design Representation Tool receives the message
by matching the pattern and begins to design or mod-
ify the mechanical assembly. When it needs standard
tables for obtaining the standard (nominal) diameter
of the bolt or the nut or the washer, it sends a no-
tice message with a predefined pattern and calculated
data and waits for a reply. Here we use notice message
but not request message because there may be several
databases of engineering standards in the future design
environment. The agent SDB receives this message by
matching the pattern and searches required informa-
tion in the database of national engineering standards
and then sends a notice message with the results and
a predefined pattern. The agent Design Representa-
tion Tool receives this message and continues its de-
sign or modification. After the design or modification
is finished, the agent Design Representation Toolsends
a notice message with all information about this me-
chanical assembly and a predefined pattern, and also
an ELM message with the same information to the
agent Graphical TooiP,. The agent Graphical Tool1 re-
ceives this message and transforms all information into
a DXF file for AutoCAD. The agent Graphical Tool~
receives this ELM message and transforms all infor-
mation into the format IGES for I-DEAS. If the pro-
cess engineer makes a modification to this mechani-
cal assembly because of a technological constraint or
other technological restrictions, the Process Engineer
will send an ELM message to the agent Design Repre-
sentation Tool for asking a modification, which is still
under development. Agent Monitor receives all above
mentioned messages, displays them on a specific inter-
face, and stores the information about the task being
performed and the capabilities of the other agents in
a temporal local knowledge base. Each agent has to
register its capabilities when it connects to the design
environment.

As a result from our experiments, it appears that
TooiTalkTM is more intended to synchronize tools
than to really serve as a communication medium for
actors that want to talk with one another. In prac-
tice, it centralizes messages, thus defeating somehow
the purpose of distributed control. However, on an
open network of workstations, one must anyway limit
the diffusion of broadcasted messages, meaning that
there has to be somewhere a list of machines that are
potential receivers. To implement a true broadcast,
the mechanism would have to be changed.

5. Conclusion and Future Work
The objective of our research is to develop a distributed
intelligent design environment for supporting cooper-

Shen 349

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

ation among the existing engineering tools. The tech-
niques of Distributed Artificial Intelligence provide a
natural model for such applications. In this paper,
we discussed a distributed architecture for intelligent
design environment based upon asynchronous cogni-
tive agents combining a number of mechanisms alreaxiy
found in the literature. Such an architecture is spe-
cially useful for large design problems. It also offers
some important features such as modularity, flexibil-
ity, extensibility and transportability.

We have implemented an experimental distributed
intelligent design environment by employing an object-
oriented communication module called TooITalkTM

and an ELM mail system to support the cooperation
among the engineering tools organized as independent
agents. In this environment, we have successfully im-
plemented communications among seven independent
agents located in the different workstations and mi-
crocomputers, which proves that the architecture pro-
posed in this paper is feasible. However, as a result
of our experiments, we found that commercially avail-
able products like ToolTalkT~, although usable, are
not the best support for this kind of approach, and
that new tools are required. Our goal, as mentioned
previously, is to obtain first hand experience in the case
of large design projects.

DIDE is an ongoing research project. Future work
in several areas is now in progress: (1) better use
the version mechanism of MOSS for conflict resolution
in the agent Project Manager;, (2) a distributed multi-
media database for facilitate the information exchang-
ing among the agents; (3) additional agents such
Process Engineer for verifying the technological con-
straints, Technological Database for a special manu-
facturer; CAPP for extending CAD to CAM, etc.;
(4) development of a special communication proto-
col by combining the ToolTaik TM and KQML (Finin,
McKay, & Fritzson 1992) (project OSACA).

References

Abriat, P. 1991. Conception et rdaiisation d’un sys-
t~me multi-agent de robotique permettant de rdcupdrer
les erreurs deals lea cellules flexibles. Th~se de Doc-
torat, Universitd de Technologie de Compi~gne.

BarthAs, J.P. 1989. MOSS: a multi-user object en-
vironment. In Proceeding of 2nd Symposium on AI,
Monterrey, Mexico.

Barth~s, J.P. 1993. La probl~matique de reconcilia-
tion en ingdnierie simultande. In Actes 01 DESIGN’93,
Tunis.

Boissier, O. 1993. Probl~me du controle darts un sys-
t~me intdgrd de vision: Utilisation d’un syst~me multi-
agent. In Actes de la l~re journdes francophones Intel-
ligence Artificielle Distribude et Syst~me Multi-Agents,
Toulouse, France.

Cavalli, A.; Hardin, J.; Petrie, C.; Smith, R.; and
Speyer, B. 1991. Technical Issues of Enterprise Inte-

350 ICMAS-95

gration, Research Report EID-349-91, MCC, Austin,
Texas.

Cutkosky, M.R.; Engelmore, R.S.; Fikes, R.E.;
Genesereth, M.R.; Gruber, T.R.; Mark, W.S.; Tenen-
baum, J.M.; and Weber, J.C. 1993. PACT: An Exper-
iment in Integrating Concurrent Engineering Systems.
IEEE Computer, January 1993: 28-37.

Finin, T.; McKay, D.; and Fritzson, R. 1992. Spec-
ification of the KQML: Agent-Communication Lan-
guage, Tech. Report EIT TR 92-04, Entreprise In-
tegration Technologies, Palo Alto, Calif., USA.

Frankel, R. 1991. The ToolTalk Service, A Technical
Report, SunSoft.

Gero, J.S. 1987. Ezpert systems in computer-aided
design. Elsevier Science Publishers B.V., North-
Holland, Amsterdam.

Gruber, T. 1993. A Translation Approach to
Portable Ontology Specification. Knowledge Acquisi-
tion 5(2): 199-220.

Iffenecker, C. 1994. Moddlisation et rdutilisation
d’expertises varides en Conception. In Actes du Sdmi-
naire Interdisciplinaire "Mdmoire Collective", Com-
pi~gne, France.

Lee, K.C.; Mansfield, W.H.Jr.; and Sheth, A.P.
1993. A Framework for Controlling Cooperative
Agents. IEEE Computer, July 1993: 8-16.

Monceyron, E. and Baxth~s, J.P. 1992. Architec-
ture for ICAD Systems: an Example from Harbor De-
sign. Re,me Science et Techniqttes de la Conception
1(1): 49-68.

Morse, D.V. 1990. Communication in Automated
Interactive Engineering Design. PhD thesis, Carnegie
Mellon University.

Park, H.; Cutkosky, M.R.; Conru, A.B.; and Lee,
S.H. 1994. An Agent-Based Approach to Concurrent
Cable Harness Design. AIEDAM 8(1).

Petrie, C.; Cutkosky, M.; and Park, H. 1994. Design
Space Navigation as a Collaborative Aide. In Proceed-
ing of the Third International Conference on AI in De-
sign, Lausanne.

Populaire, Ph.; Demazean, Y.; Boissier, O.; and
Sichman, J. 1993. Description et impldmentation de
protocole de communication en univers multi-agents.
In Actes de la l~re journdes francophones Intelli-
gence Artificielle Distribute et Syst6me Multi-Agents,
Toulouse, France.

Qua&el, R.W.; Woodbury, R.F.; Fenves, S.J.; and
Talukdar, S.N. 1993. Controlling Asynchronous Team
Design Environments by Simulated Annealing. Re-
search in Engineering Design 5(2): 88-104.

Ribeiro Gouveia, F. and Barth6s, J.P. 1993. Coop-
erstive Agents in Engineering Environments. In Pro-
ceedings of EuropIA’93 Workshop on Intelligent Infor-
mation Environments, Delft.

Scalabrin, E. and Barth~s, J.P. 1993. OSACA,
une architecture ouverte d’agents cognitifs inddpen-
dants. In Actes de la Journde "Syst6mes Multi-
Agents", Montpellier, France.

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Shun, W.; Barth~s, J.P.; and EL Dahshan K. 1994.
Propagation de Contraintes dans les Syst~mes de CAO
en M~canique. Revue internationale de CFAO et
d’infographie 9(1-2): 25-40.

Sriram, D.; Stephanopou]os, G.; Logcher, R.; Gos-
saxd, D.; Groleau, N.; Serrano, D.; and Navinchandra,
1989. D. Knowledge-based Systems. Applications in
Engineering Design: Research at MIT. AI Magazine
10(3): 79-96.

Sriram, D.; Logcher, R.; Wong, A.; and Ahmed, S.
1991. An object-oriented framework for Collaborative
Engineering Design. In Lecture Notes in Computer
Science, pp.51-92. Springer-Verlag.

Sriram, D.; Logcher, R.; Groleau, N.; and Chern-
eft, J. 1992. DICE: An Object Oriented Programming
Environment for Cooperative Engineering Design. AI
in Engineering Design Vo.3, Tong C. and Sriram D.
(Eds.), Academic Press.

Stephanopoulos, G.; Johnston, J.; Kriticos, T.; Lak-
shmanan, R.; Mavrovouniotis, M.; and Siletti, C. 1987.
DESIGN-KIT: An Object-Oriented Environment for
Process Engineering. Computer in Chemical Engineer-
ing 11(6).

Thoraval, P.; and Mazas, Ph. 1990. ARCHIX, an
Experiment with Intelligent Design in the Automobile
Industry. In Proceeding of4th Eurographics Workshop
on Intelligent CAD Systems, Mortefontaine, France.

Toye, G.; Cutkosky, M.; Leifer, L.; Tenenbaum, J.;
and Glicksman, J. 1993. SHARE: A Methodology and
Environment for Collaborative Product Development.
In Proceeding of 2rid Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
IEEE Computer Press, pp.33-47.

Trousse, B. 1993. Towards a multi-agent approach
for cooperative distributed design assistants. In Pro-
ceeding of EuropIA’93 Workshop on Intelligent Infor-
mation Environments, Delft.

Van Dyke Parunak H. 1990. Toward a formal model
of inter-agent control. In Proceeding of 10th AAAI
Int’l Workshop on Distributed Artificial Intelligence,
Bandera, TX.

Shun 351

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

