
Reusing Past Plans in Distributed Planning

Toshiharu Sugawara
NTT Basic Research Laboratories

3-1 Wakamiya, Morinosato
Atsugl, Kanagawa 243-01, Japan

sugawara@ntt-20.ntt.jp

Abstract

This paper describes plan reuse in multiagent do-
mains. In distributed planning, a plan is created
by distributed centers of planner agents that have
their own viewpoints. Plan reuse where a past
plan result is reused for the new problem was pro-
posed for single-agent planning and can achieve
efficient planning. A special issue for applying it
to distributed planning is that, even if the local
agent thinks that the new problem is identical
to a past problem, other agents may have quite
different goals. Another issue is to realize effi-
cient distributed planning, like in a single-agent
case. This paper shows that the past plan can
be reused regardless of other agents’ goals under
the assumption that the initial state has only "in-
facts." A generated plan and related information
are stored as a plan template so that an agent
can reuse it in future planning. This informa-
tion includes generated plans, subgoals, non-local
effects that may affect or be affected by other
agents’ plans, and their conflict resolution meth-
ods that were actually used. An agent can create
a plan efficiently using a template, because it can
skip a part of planning actions, detect conflicts in
an early stage, and reduce communication costs.
First, this paper presents the planning-with-reuse
framework. Then how plan templates are cre-
ated and reused is also illustrated using some
block world examples. Finally, we experimen-
tally show that efficient distributed planning can
be achieved.

Introduction

In cooperative distributed problem solving, distributed
planning is important to generate cooperative activi-
ties. It is, however, a sophisticated task because of
not only the computational cost of the fundamental
planning algorithm but also costs of communications
among agents, detections of task relations and genera-
tions of coordinated actions. This often results in dif-
ficulty in developing practical systems. "More efficient
distributed planning" is a very important research is-
sue.

In single-agent planning, plan reuse has been

proposed by Kambhampati(Kambhampati 1993)
achieve efficient planning by avoiding repetitive plan-
ning activities. When a new problem is given, the sys-
tem retrieves the plan that was created for a past iden-
tical or similar problem then modifies it so that it can
be applied to the new one. This paper addresses the
issue of whether or not, in hierarchical distributed plan-
ning, an agent can reuse past plans for new incoming
problems in an environment where a number of iden-
tical or similar problems recur. There are a number
of issues in realizing plan reuse in distributed planning
for multiple agent actions.

The first issue is the similarity of new and old prob-
lems. Even if an agent thinks that the new problem is
similar to a past one, other agents may have quite dif-
ferent goals. Is the plan created for the past problem
useful for planning for the new one? Another impor-
tant issue is performance, that is, can plan reuse really
achieve efficient planning? Especially, it is important
to reduce the costs of communication, conflict detec-
tion, and conflict resolution (negotiation) because they
are relatively costly. The underlying ideas to these is-
sues are that it is possible in such an environment that

(1) other agents’ goals may affect the process of special-
ization of a high-level plan such as how to minimize
and resolve conflicts, but the high level plan is usu-
ally similar or identical.

(2) even if there is a conflict, it can be detected in
earlier stage of planning and can be resolved by one
of the methods used in the past.

(3) planning activities of a peer agent that does not
reuse a past plan may also become simple by sharing
a common subgoal.

We propose the plan-reuse framework that is appli-
cable to the new problem regardless of other agents’
goals. In this framework, a generated plan is stored as
a plan template. A template has a number of plans to
achieve the goal or subgoals (intermediary goals). Pos-
sible conflicts and resolution methods that were actu-
ally detected and used in the past planning activities
are also stored. Unlike plan reuse in single-agent plan-
ning, a template is incrementally generated because a

360 ICMAS-g$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

(1) Generated plans are stored as templates

(2) Retrieve a plan template appropriate for the new problem

(3) Select one of specific plans and send conflict
information and subgoals to peer agents

t
Fail to resolve conflicts

I
(4) If a conflict is detected and its resolution methods are stored
in the template, try one of them in turn.
(5) If a common subgoal is found, try to eliminiate redundant parts
of plans by negotiation.
(6) If the conflict cannot be resolved by any of them or
resolution methods are stored, then do the original negotiation.

Modify the plan template
or create a new template

No template~s retrieved J

] ~] End ofpl=ing~-

There is no conflicts or
all confclits can be resolved

Figure 1: Planning with Reuse

planning result highly depends on the other agents’
goals; in some problems, all agent goals may be inde-
pendent thus no coordination can be made from the
plan derived from this type of problem.

This paper explains plan reuse based on Corkin’s
distributed hierarchical planning algorithm and using
block world examples. First, the planning-with-reuse
framework for distributed planning is proposed in the
next section. Reference (Sugawara 1994), which is
preliminary report, also proposed the plan reuse in dis-
tributed planning, but it does not clearly discuss the
planning framework. Furthermore, the method pro-
posed there has the drawback that plan reuse does not
work well for positive relations(Martial 1992) among
plans. In this paper, the plan template is extended to
cope with this drawback. Then how a plan template is
generated and reused is described using examples. We
experimentally show that plan reuse can considerably
reduce planning time then discuss why efficient plan-
ning can be re~lt~,~d. Finally, further research issues
are discussed.

Plan Reuse Framework

Plan Template

When a plan for a given problem is generated and ac-
tually leads to the required goal or subgoal, the plan
is stored as a plan template. A plan template has the
following information:

Initial State and Goal: The initial state and its
goal are stored. A plan template is a collection of
operation sequences that can achieve this goal from
the initial state. This pair of the initial state and
goal are used to retrieve the template appropriate
for a new problem.

Generated Plans in Each Level: In hi-
erarchical planning, a plan is gradually specialized
level by level. A higher-level plan is replaced by a
sequence of lower-level plans (this lower-level plan is
called a subplan in this paper) and this specializa-
tion process is iterated until aU elements of the plan
are roplaced by operations that are executable by
the agent. These generated (sub)plans in all levels
are stored.

Subgoals of Plans: Any (sub)plan has a correspond-
ing (sub)goal. Subgoals are also stored in a plan
template to eliminate redundant actions.

Conflict Information: Actions in a plan may affect
or be affected by other agents’ activities and induce
some conflicts. A detected conflict and which sub-
plan causes or is affected by it are stored.

Resolution Methods: The resolution method for a
detected conflict which actually led to a compromise
is stored. An appropriate conflict resolution method
depends on other agents’ plans (because two compro-
mises may result in another conflict), thus the stored
methods cannot usually be utilized. We think, how-
ever, that they are helpful for planner agents work-
ing in an environment where a number of problems
recur.

Templates are created based on planning activities
for incoming problems. Generated (sub)plans and
(sub)goals are stored hierarchically. Non-local effects
and detected conflicts are also recorded and linked with
plans that are related to those effects and conflicts. Ac-
tions for resolving conflicts that were actually used are
also added. Examples of plan templates are presented
in Section 3.

Sugawara 361

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Goals

(1) Agentl’s goal

Initial on(A B)

state Agent2’s goal
on(B C)

N
on(C A), on(A T)
on(B T), clear(B) Icl
clear(C) mutual goal

(2)
Initial
state Goals

Agentl’s goal
on(A B)

Agent2’s goal
on(C A) mutual goal

(3)
Initial Goals
state Agent l’s goal ~-~

on(A B)

[~ ~J ~-]
~ Agent2’s goal

on(D A) mutual goal

Figure 2: Block World Examples

Plan Reuse Framework

Suppose that a new problem and a past problem whose
plan is stored as a template are given. An in-fact is
the fact in the initial state of the new problem but not
in that of the past problem. An out-fact is the fact
that is not in the initial state of the new problem but
is in that of the past problem. An eztra-goal is the
local goal of the new problem but not the goal of the
past problem (Kambhampati 1993). We discuss the
case where there are no extra-goals and no out-facts.
This assumption may appear to restrict applicability,
but from the global view point, extra-goals axe always
included and applicable problems are not so restricted.
This discussion is presented in Section 5.

The proposed framework assumes that an agent has
the original planning and negotiation processes. Our
plan reuse is added to these processes. When a new
problem is given, an agent retrieves an appropriate
plan template whose initial state and goal axe iden-
tical or similar (that is, they have only in-facts)
those of the new problem (See Fig. 1). If no plan tem-
plate can be retrieved, the original planning process
is invoked. The template has a collection of plans to
achieve the goal. The agent selects one of them and
broadcasts conflict information and subgoals related to
the selected plan to the peer agents. If the agent or a
peer detects a known conflict, the agent tries to re-
solve the conflict using recorded methods in turn. If
a common subgoal is found, only one of the agents se-
lects it and others eliminate this subgoal. If the local
agent eliminates this part, it redistributes conflict and
subgoal information, because the elimination of higher-
level plans may also eliminate other nonlocal effects
and subgoals in lower-level plans. If all known conflicts
cannot be resolved or unknown conflicts are detected,
the original negotiation process is invoked. If all con-
flicts are resolved, then this planning is done, otherwise
the agent selects another plan from the template and
iterates the above steps. When no more plans can be
selected, the original planning process is invoked. After

the execution of the plan (and when it actually leads
to the desired result), the plan template is modified
based on the new plan or the plan is stored as a new
plan template.

Completeness of Planning

It is obvious that the proposed planning framework can
always generate a plan for a problem if the original
planning and negotiation can produce a plan for the
problem, since the original planning and negotiation
is invoked when it falls to reuse the past plan. How-
ever, the generated plan may not be optimal, while the
original planning can generate the optimal plan.

Planning with Reusing Old Plans
This section describes how plan templates are created
and how plan reuse proceeds using block world exam-
ples.

Distributed Planning

Corkill’s hierarchical (non-liner) planner (Corkill 1979)
is based on an analysis of the distributed NOAH sys-
tem. First, we describe his distributed planning using
the block world example in Fig. 2(1).

Given the goal on(A B), agent1 creates the first level
of the plan as shown in Fig. 3(lb), then it sends
effect that may affect other agents’ plans. A similar
plan is also generated in agent2 (Fig. 3(2b)). Agent2
then finds that the agentl’s plan denies clear(B), which
may cause a conflict. Agent2 requests synchronization
as the first resolution method, that is, it sends the
request "wait deny(clear(B))" until put(B C) is
pleted. Agentl receives and accepts this request. Since
clear(A) in agentl is not the phantom goal, this goal
is further expanded as shown in Fig. 3(lc). At this
level, however, agent1 finds the deny(dear(C))
agent2 causes a conflict, thus it sends the request "walt
deny(dear(C))" until put(C,Table) is completed.
message changes agent2’s plan as shown in Fig. 3(2d).
In addition, this plan indicates a constraint on the

362 ICMAS-9$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

r - - ~ : phantom goal
(la) Afentl (2a) Agent2 L_ .J

(2b) ,
_ar _B_Put(Am , ,-,

send: ~ deny(on(A T))~ send: deny(on 03 Table)), den¥(Cle~(C))
send: wait deny(Clear(B))

~(@-B~---- J--~-~Put(AB)[--[~ .=~fe~-e-k~.~
]wait: Clear(B): okl [~! --C~r~,(]_J.~ Put(B C]-[send: Clear(B):

send: wait: deny(Clear(C)).~
send: deny(on(C A)) (2d)

2 3

(ld) r - lJ send: Clear(C):okl I wai,: ae C): ok
[~-----~, rC_l~/r_ -B~: , ~ Put(A B)p a--------- before(wait: Clear(C): ok, send: Clear(B):

] wait: Cieatr(B): ok~ 4

Figure 3: An Example of Distributed Hierarchical Planning

order of synchronization and agent2 sends this con-
straint to agentl. For agentl, there axe no constraints
on send:clear(C) and wait:clear(B), thus it can finally
create the plan as shown in Fig. 3(ld).

Creating Plan Templates

Let us focus only on agentl’s plan. This plan in-
cludes a number of results. It has clear(A) as a sub-
goal. It causes non-local effects deny(on(A Table))
and deny(clear(B)). Deny(clear(B)) actually
agent2’s plan and the conflict could be resolved by syn-
chronization. Furthermore, the subgoal clear(A) was
affected by deny(clear(C)) and this conflict was also
solved by synchronization. With the initial state and
the goal of the problem, the final plan, subgoals, con-
flicts, and conflict resolution results are stored as a
plan template, an example of which is illustrated in
Fig. 4(la) (the initial state is not included in the fig-
ures for brevity). Here ’deny’ terms connected with
actions, such as deny(on(C A)), are non-local effects
and the underlined ones are ’resolved’ by the method
indicated by the lines (in this case, ’by synchroniza-
tion’). Clear(A) and on(A B) are subgoals and
inside the corresponding rectangles are their subplans
and operations. Collectively, these descriptions of ef-
fects and resolution methods are called annotations.

Plan I~euse (Detecting Conflicts)

The initial states and agentl’s goals are identical but
agent2’s goals are not in the first and second problems
(see Fig. 2 (1) and (2)). Given the initial state
goal of the second example, agent1 retrieves the tem-
plate (Fig. 4(la)), then sends the related subgoals
non-local effects described in the template. For exam-
ple, the message, tellme:deny(clear(C)) indicates
request that, if agent2’s plan denies clear(C), the ef-
fect should immediately be sent since agentl’s plan is
affected by it.

On(C A), which agent2 thinks is a phantom goal,
is denied by agent1. By additional communications,
agent2 finds it is no longer a phantom goal and it has
to be ze-achieved after it is denied (Fig. 4(2b))t. The
node on(C A) is expanded (Fig. 4(2c)), then the effects
caused by the plan are sent. The effect deny(clesx(A))
may cause a conflict and should be resolved (in this
case by synchronization). Also agent1 can conclude
that agent2’s plan does not cause deny(clear(C)) and
not affected by deny(clear(B)). The actions for resolv-
ing these conflicts are, thus, eliminated. The resulting
plans are illustrated in Fig. 4(lb) and (2d).

tNegotiation is out of the scope of this paper, thus how
to obtain & compromise is not discussed here.

Sugawara 363

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Agent1 _&_n.y[ge_ _~C)} Asent2

(la) deny(on(C A))

k r .
(2a)

i - ;end:cancel: deny(on(C A))

on(A B)/wai :i;ci;~B)" H iiiii:i::::;:i;ii;i¢;:i!i!i:.il;;;:i;ii:.::.:; ;!."::;’iii~:~,:"{’ :.:7..]..]
[~ wait: Put(C T) ~ (2b)sync _deny(C_lea~__ B)) deny(on(A

recv: Put(C T)

(2c)send: deny(on (A T)), deny(Clear(B)), deny(on(C ~r~ear ~k~--~, _~--~
send: tellme: deny(Clear(C)) [~wait: Put(C T~(-~lea~ ~ Put(C A)[-I
send: subgoal(Clear(A)), subgoai(on(A B))

~ send: deny(Clear(A)}, deny(C T)
(lb) /-~ send-~t~41r(C):okk..~

r I ~ I ~
~

I ~ ~

r=(~_ C_ l_e_~_C_~ send: Put(C T):ok]--~t~
~~C_ l_egr-B~: /[~lPut(A B~ send: Oe~A):ok/

lwait:~le~l:ok[send: wait: deny(Clear(A))

~ , (2d)
i~Clear A\......

before(wait: put(C T), wait: Clear(A):

Figure 4: An Example of Plan Template and Plan Reuse

Modifying Plan Templates

New conflict information and resolution methods
should be added into the plan template. The new
template must be composed of the new plan and the
original template, and it can be easily obtained by the
following method. When a plan is reused, some nodes
in the template, such as the ’wait:clear(B):ok’ node,
may be omitted. These nodes axe not actually deleted
in the memory but just have ’deleted’ flags. The final
templates can be acquired by eliminating the ’deleted’
flags. The plan template is shown in Fig. 5(la).

Plan Reuse (Sharing a Common Subgoal)

The example problem in Fig. 2(3) has a different ini-
tial state but only in-facts, thus agent1 can reuse the
same template. In this problem, both agents have a
common subgoal, cleat(A). Agent2 plans this problem
from scratch, but can take advantage of reusing a tem-
plate in agent1.

Agent1 selects the same template and broadcast con-
flict and subgoal information. Agent2 concurrently
starts its planning and sends conflict information in
the first level to agent1 (Fig. 5(2a) and (2b)).
effect deny(clear(A)) is a known conflict and its reso-
lution is attempted by synchronization that is recorded
in the plan template (Pig. 5(lb)). In the second level
of planning, agent2 finds the common goal cleax(A)
and commits this subgoal to agent1. Agent1 accepts

this commitment. Then both agents can obtain the
planning results in Fig. 5(lc) and (2c).

Another exatnple in which plans in a template can-
not be reused and thus the final plan is generated from
scratch is described in (Sugawara 1994). In this case,
the new generated plan and its conflict information are
added into the template as alternative plan.

Evaluations
The experimental results ate shown in Table. 6. The
examples in Fig. 2 are too simple to evaluate plan
reuse, so more complex examples were used in the
experiments2. In E1 and E2, agentl achieved ap-
proximately 7 times faster run time when it planned
with reusing the template than when it planned from
scratch. The elapsed time of both agent1 and agent2
was almost reduced by half. The run time of agent2
planning was also slightly improved. In E1 and E2, this
plan reuse enabled the agents to quickly find conflicts
and reduce the cost of communications. On the other
hand, agent1 and agent2 drastically reduced their plan-
ning run time in E3. E3 had a number of common sub-
goals (positive relations), and planning from scratch
was rather costly. Plan reuse could reduce planning
time not only in agent1 but also in agent2 because

2Some results of planning time are shorter than those in
(Sugawara 1994) because the author improved the planning
program.

364 ICMAS-9$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Age,,a Age~
(la) d~..y..(C=l= =e~C..)) (2a)

¯ ~-~~ , -~:~--’~’---=-’-~".~="’~- .,~Z.~#~:. ~:::~.~:.~.~::=~:~~,..,.,,~~ send-Cle~,,’C~-~:~...:,-,~.~-,I~ ~>.. ¯ -.~:::.:~.~:..~ .2b.

Put(A B)m send" Cle~_ #, "ok ~

s~c # deny((~lem’(A))
deny~C_l~)) - - ~x _ _~2_~ v oenyton(A

send: deny(on (A 3")), deny(Clear(B)), deny(on(C
send: tellme: deny(Clear(A)), deny(Clear(C))
send: subgoal(Clear(A)), subgoal(on(A

(1 bs)end: wait:Clear(A).
~_ ~wait:complete(clear(A))k (2c)

,r’(~l~’])~ , ~ Put(D A>~’~]
walt’.cle:rii~okr

Figure 8: An Example of Plan Reuse (Sharing a Common Subgoa~)

Initial

Agent l’s goal

Agent2’s goal
Elapsed time

of Agent 1
Run time
of Agentl

Elapsed time
of Agent2
Run time
of Agent2

goal

tr~i~g
example

on(A B)

!on0~ N)

goal goal goal

experiment:El experiment:E3
ex zriment:E2

on(A B) on(A B) on(A B)

on(N M) on(C A) on(B C)
171ms 9 ’t~i 156ms ~ 16 125ms _ ^^

(367ms) (337ms) (498ms)~’9~

31ms 7 84
(243ms)
169ms
I369ms)2.18

35ms 6 49
(227ms)
158ms , t 1

(333ms)
54ms 1.35

(73ms)
60ms 1.18
(71ms)

29ms 9 93
(288ms)
127ms _ __

(663ms)a’zz

Figure 6: Experimental Results

plan-~me

I lm,2,,I
(3~57ms~ ~"

form scratch

ratio of planning speed

Sugawara 365

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

agent2 was able to utilize the common goal clear(A)
thus taking advantage of agentl’s plan template.

From our experiments, we can conclude that plan
reuse can achieve efficient planning overall. There are
a number of reasons for efficient planning:

Skipping planning activities: An agent that reuses
a template can skip a part of the planning process,
as well as plan resuse in a single agent case. In the
examples described in the previous sections, agentl’s
planning actions were only to retrieve the template,
to detect unknown conflicts, and to resolve these
conflicts.

Reducing communications: Plan reuse can be ex-
pected to reduce cost of communications. An agent
that reuses the template can send recorded possible
conflicts to its peers when it selects a specific plan
among the template. Communications use little of
the CPU resource but is time-consuming. Less com-
munications can drastically shorten planning time in
both the agent and its peers.

Detecting conflicts in earlier stages:
Conflicts can be detected in an earlier stage, so effi-
cient distributed planning can be achieved. An agent
reusing a template can quickly find affected conflicts
and then quickly invoke the negotiation process. A
peer agent can also reduce planning time. This is
because

(I) based on received conflict information, it can gen-
erate a plan that has less conflicts.

(2) it can find conflicts in an earlier step. For example,
in the second example, if ngentl did not use the
template, agent2 would have thought that on(C
A) was a phantom goal, so it would have done
nothing at first. However, after agent1 generated
its plan, agent2 would have finally found that the
goal was not a phantom anymore then would have
invoked the planning process.

Sharing a common subgoah By sharing common
goals, an agent can indirectly take advantage of plan
reuse in a peer agent because it can eliminate a num-
ber of planning steps for the common goals. The
third example problem illustrates that agent2 could
commit a subgoal to agentl and skipped this plan-
ning part. The experiment E3 dearly shows that
plan reuse in agentl reduces planning time in agent2.

We can conclude, in general, that plan reuse in dis-
tributed planning is potentially more effective than in
planning by a single agent, in the sense of planning
time. Trade-off between the amount of memory to
store plan templates, required planning time to cre-
ate a plan and how frequently used each of templates
should be considered in the future research (see the
next section).

366 ICMAS-95

Discussion and Further Research Issues

Our plan reuse assumes that a new problem has only
in-facts. This assumption may seem to be a strong
limitation but, in fact, it is not. From the global view
point, our plan reuse can be applied to problems that
have extra-goals, because only the goal of an agent is
identical and goals in other agents are thought to be
extra-goals. It is also pointed out that planning from
scratch is often faster than plan reuse. Costs for plan
reuse is usually originate from the retrieval and mod-
ification of a past plan. In our framework, (1) a plan
template which has only in-facts is retrieved (thus fast
retrieval can be achieved), and (2) the modification
only done for conflict resolutions, which is also required
to planning from scratch. Moreover, it is possible to
reduce the number of communications which dominate
planning time. The author thinks that, after a number
of training instances, planning from a template is more
efficient than planning from scratch, in multiagent do-
mains.

On the other hand, another agent may also use an-
other template in multiagent distributed planning, so
the first issue is to discuss, in detail, the negotiation
strategy for plan reuse. This paper assumes one of the
conventional negotiation algorithms for the block world
domain is used. This might be inefficient however. The
required negotiation algorithm should be taken into
account templates each agent has. For example, in
the third example, the agents selected agentl’s plan to
achieve the common subgoal since it was already gener-
ated in the template. This strategy sounds reasonable.
So when both of agents use the templates, which plan
should be selected? The plan that has less non-local
effects may be better, but not always.

The second issue is the inconsistency of conflict res-
olutions. Suppose that agentl uses a template and
agent2 and agent3 are its peers. Agent1 and agent2
have a conflict and it can be resolved by the method in
the template. Agentl and Agent3 have another conflict
and it can also be resolved by another method there.
However, using both of these resolution methods si-
multaneously may cause another conflict. It may be
better that information on inconsistency among reso-
lutions be stored in a template. The third issue, which
is related to the second, is whether or not more infor-
mation to select a conflict resolution method should
be stored. If a template has more than two methods,
conditions when one of them is successful and when
another is better should be identified and stored. The
author thinks that this issue has a strong relation with
learning for coordination actions (Sugawara 1993).

The fourth issue is not only to add new infor-
mation to templates but also to cut off obsolete or
hardly used information, because plan reuse is effec-
tive for recurring problems. If a rare problem oc-
curs as the first problem, its template is generated but
hardly used. If the environment of an agent changes,
a number of conflicts in a template may never oc-

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

cur and thus conflict resolutions for these conflicts
axe also never used. These obsolete data cause in-
et~cient planning or, more harmfully, confuse other
agents’ planning. The author thinks that statistics
such as usage of a plan, occurrence of a conflict, us-
age of a resolution method should be calculated and
then unnecessary data should be eliminated according
to them. The final issue is adaptation of this plan
reuse to other multiagent planning algorithms such as
(generic) partial goal planning(Duffee & Lesser 1991;
Decker & Lesser 1992). We think that important rela-
tions (not only logical relations but also quantitative
relations) between tasks that frequently appear in dif-
ferent agents should be stored as conflict information.
More research on this issue is also strongly needed.

Conclusion
Plan reuse for distributed planning was proposed. The
idea behind this plan reuse is that other agents’ goals
may affect how high-level plans axe specialized to min-
imize and avoid conflicts but higher-level plans are
hardly affected. Furthermore, possible conflicts can
be expected in an early stage of planning. A plan cre-
ated for an actual incoming problem is stored as a plan
template then it is reused for identical or similar prob-
lems (that have only in-facts from the local viewpoint).
A more complete plan template is incrementally gen-
erated based on further incoming problems. A plan
template provides an action sequence to reach the goal
from the initial state. For multiagent planning, it also
includes the known conflicts that critically affect the lo-
cal and other agents’ plans. Resolution methods actu-
ally used in past plans are also stored in the templates.
By sharing a common subgoal, the peer agents can also
eliminate a number of planning steps. Through a num-
ber of experiments, plan reuse was shown to achieve
efficient planning overall. Plan reuse in distributed hi-
erarchical planning is, at least, expected to be more
effective than in single-agent planning.

References
CorkiU, D. D. 1979. Hierarchical Planning in a Dis-
tributed Environment. in Proc. of IJCAI, 168-175.
Decker K.; and Lesser V. 1992. Generalizing the Par-
tial Global Planning Algorithm, International Jour-
nal on Intelligent Cooperative Information Systems,
1(2):319-346.
Duffee E. H.; and Lesser V. R. 1991. Partial global
planning: A coordination framework for distributed
hypothesis formation, IEEE Trans. on System, Man
and Cybernetics, 21(5):1167-1183.
Kambhampati S. 1993. Supporting Flexible Plan
Reuse, in Machine Learning Methods/or Planning ed.
by Minton S., 397-434.
von Martial F. 1992. Coordinating Plans of Au-
tonomous Agents, Lecture Notes in AI 610, Springer-
Verlag, Berlin.

Sugawara T. and Lesser V. R. 1993. On-Line Learn-
ing of Coordination Plans, COINS Technical Report,
93-27, Dept. of Computer Science, Univ. of Mas-
sachusetts. (A shorter version of this paper is also
published in Proceedings of the 12th Int. AAAI Work-
shop on Distributed AI, 1993)
Sagawara T. 1994. Plan Reuse in Cooperative Dis-
tributed Problem Solving, In Proceedings of the Sev-
enth Australian Joint Conference on Artificial Intelli-
gence (AI94).

Sugawara 367

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

