
Organic Programming for Multi-Agents

Hideyuki Nakashima, Itsuki Noda, Ichiro Ohsawa
Electrotechnicai Laboratories

1-1-4 Umezono, Tsukub~ 305 Japan
nakashim,noda,ohsaw~Qetl.go.jp

Abstract

We are developing a new software methodology for
building large, complicated systems out of simple
units. In this paper, we describe application of aa
orglmic progr~mrniug to multi-agent systems. One of
the advantages resides in that we can program the
system in a subsumptive manner.

Organic Programming
We are developing a new software methodology for
building large complicated systems out of simple
units(Nakashima 1991). The emphasis is on the ar-
chitecture that is used to combine the units, rather
than on the intelligence of individual units.

By "organic", we refer to the following characteris-
tics of living organisms such as plants and animals: (1)
Although all the cells have the same program (genetic
information coded in genes), they behave differently
according to the environment (including surrounding
cells); and (2) Genes (viewed as programs) do not 
the full information. The environment supplies the
rest. Two key concepts of our approach are situat-
edness and reflection. Situatedness corresponds to the
former property, and reflection to the latter.

An organic program(Nakashima, Noda, & Ohsawa
1995) consists of (I) processes: execution a pro-
gram in a certain environment, (2) cells: storage 
fragments of programs, and (3) contexts for processes.
The context is formed by a collection of cells. Each
cell contains information on certain aspects of the en-
vironment, and the overall context is determined by
the interaction of those fragments. Cells provide the
following two functions to programs: (1) name to con-
tent mapping, and (2) keeping background conditions.

The process determines the structure of the context,
and the context determines the meaning of the pro-
gram, and thus the behavior of the process. In this
sense, the process is reflective.

Subsumptive Programming
We selected soccer as our test bench because the game
has many essential properties of multi-agent systems.

physical
players1 s2-. bl... Judge slmulater

@

Figure 1: Distributed set up for a soccer game

Our implementation (figure 1) is designed for dis-
tributed environment where machines are connected
via networks.

One advantage of this architecture is that we can
program an agent in a way similar to subsumption ar-
chitecture(Brooks 1988): (1) We can program a system
by functional layers; (2) Programs in higher functional
layers can override programs in lower layers.

The top-level process of an agent calls programs by
their names. Those programs may exist in any layers.
If more than one program of the same name exists, the
program in an upper layer gets precedence over those
in lower layers. If we use logic programming, there is
a further possibility to backtrack to lower levels when
a higher level program fails to perform its function.

References
Brooks, R. A. 1988. Intelligence without representa-
tion. Technical report, MIT.

Nakashima, H.; Noda, I.; and Ohsawa, I. 1995. Or-
ganic programming language gaca for multi-agents.
TR-95-11, ETL.

Nakushima, H. 1991. New models for software
architecture project. New Generation Computin9
9(3,4):475-477.

Nakashima 459

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 


