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Abstract

If participating agents in a multiagent system can
be assumed to be cooperative in nature, coor-
dination mechanisms can be used that will re-
alize desirable system performance. Such as-
sumptions, however, are untenable in open sys-
tems. Agent designers have to design agents and
agent environments with the understanding that
participating agents will act to serve their self-
interests instead of working towards group goals.
We investigate the choice of interaction strate-
gies and environmental characteristics that will
make the best sell-interested actions to be coop-
erative in nature. We analyze the inadequacy of
traditional deterministic reciprocity mechanisms
to promote cooperative behavior with a fair dis-
tribution of the workload. A probabilistic reci-
procity mechanism is introduced and shown to
generate stable and cooperative behavior among
a group of self-interested agents. The resultant
system exhibits close to optimal throughput with
a fair distribution of the workload among the par-
ticipating agents.

Introduction

Researchers involved in the design of intelligent agents
that will interact with other agents in an open, dis-
tributed system are faced with the challenge of model-
ing other agents and their behavior {WeiB & Sen 1996).
If one can can assume that all agents will be coopera-
tive in nature, efficient mechanisms can be developed
to take advantage of mutual cooperation. These will
lead to improved global as well as individual perfor-
mance. But, in an open system, assumptions about
cooperative agents or system-wide common goals are
hard to justify. More often, we will find different agents
have different goals and motivations and no real in-
clination to help another agent achieve its objectives.
Agents, therefore, need to adapt their behaviors de-
pending on the nature or characteristics of the other
agents in the environment.

Mechanisms for adaptation that use a lot of in-
formation and require complex processing of that
information consume significant computational re-
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sources (Booker 1988; Watkins 1989). We are inter-
ested in developing adaptive mechanisms that are sim-
ple and impose little cognitive burden on the agents.
Also, whereas the above and other researchers are in-
terested in developing strategies for adapting to the en-
vironment of the agent (Kephart, Hogg, & Huberman
1989; WeiBl & Sen 1996), we are particularly interested
in developing mechanisms for adapting to other agents
in a group.

In this paper, we assume agents to be self-motivated
in their interactions with other agents. and that the
interacting agents are uniquely identifiable. An agent
may help others in performing assigned tasks. We plan
to develop a criteria for an agent to decide to help or
not to help another agent when the latter requests for
help. The decision criteria should be such that it allows
an agent to perform effectively in the long run. This
means that to be effective, an agent must be able to
adapt its behavior depending on the behavior of other
agents in the environment.

We investigate a simple decision mechanism using
the principle of rectprocity, which means that agents
help others who have helped them in the past or can
help them in the future. In this paper, we use a mul-
tiagent domain where agents can exchange their tasks.
We show that agents can use the principle of reci-
procity to effectively adapt to the environment (for
our discussion, the nature of the other agents deter-
mine the environment).

Reciprocity as an adaptive mechanism

The evolution of cooperative behavior among a group
of self-interested agents have reccived considerable at-
tention among researchers in the social sciences and
cconornics cominunity. Researchers in the social sci-
ences have focused on the nature of altruism and the
cause for its evolution and sustenance in groups of ani-
mals (Krebs 1970; Schmitz 1993; Trivers 1972). Math-
ematical biologist and economists have tried to ex-
plain the rationality of altruistic behavior in groups
of self-interested agents by proposing various fithess
models that analyze the success of altruistic individu-
als and more importantly the evolution of genetic traits
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supporting altruistic behavior (Dugatkin et al. 1994;
Nee 1989; Nowak, May, & Sigmund 1995). Our goal
in this paper is not to model altruistic behavior in an-
itnals; so we do not address the issues raised in the
social science literature on this topic. Qur purpose is
to propose mechanisms by which cooperation can be
encouraged and established in groups of self-interested
agents. To this end, we have to compare and contrast
and build upon the work reported by game theorists
and economists on this topic. Space limitations do not
permit a thorough review of the literature. Hence, we
first identify a common trait in most of this body of
work that we have surveyed, identify some underlying
problems with the common trait, and then motivate
how our proposed approach addressess these problems.

Most of the work by mathematical biologists or
economists on the evolution of altruistic behavior
deals with the idealized problem called Prisoner’s
dilemma (Rapoport 1989) or some other repetitive,
symmetrical, and identical ‘games’. Some objections
have already been raised to using such sanitized, ab-
stract games for understanding the evolution of com-
plex phenomena like reciprocal altruism (Boyd 1988).
In the following we analyze in some detail one of the
often-cited work that share the typical assumptions
made by economists and mathematical biologists, and
then present our own set of suggestions for relaxing the
restrictive assumptions made in that work.

In a seminal piece of work Robert Axelrod has
shown how stable cooperative behavior can arise in
self-interested agents when they adopt a reciprocative
attitude towards each other (Axelrod 1984). The basic
assumptions in this work include the following: agents
are interested in maximizing individual utilities and are
not pre-disposed to help each other; agents in a group
repeatedly interact over an extended period of time;
all interactions are identical (they are playing the same
“game” again and again); agents can individually iden-
tify other agents and maintain a history of interactions
with other agents; individual agents do not change
their behavioral strategy over time; composition of
agent groups change infrequently and the changes are
minimal (only a few agent leaves and joins a group
at a time). Using primarily simulated games, and, to
a lesser extent, theoretical analysis, Axelrod convine-
ingly argues for the effectiveness of simple behavioral
rules for a variety of agent interactions. Specifically, he
shows that a simple, deterministic reciprocal scheme
of cooperating with another agent who has cooperated
in the previous interaction (this strategy, for obvious
reasons, is referred to as the tit-for-fat strategy), is
quite robust and efficient in maximizing local utility.
Whereas such a behavioral strategy can be exploited
by strategies designed for that purpose, in general, the
tit-for-tat strategy fairs well against a wide variety of
other strategies. Two properties of the tit-for-tat strat-
egy deserve special mention:

o if all agents use this strategy, system performance is

optimal,

e it is stable against invasion by agents using other
strategies (i.e., if an agent using another strategy is
introduced into a group of tit-for-tat agents, the for-
mer cannot obtain greater utility than that obtained
by tit-for-tat agents).

Though Axelrod’s work is interesting and convinc-
ing, we believe that the assumptions used in his work
makes the results inapplicable in a number of domains
of practical interest. We now analyze some of this crit-
ical assumptions, identifying how they are violated in
domains of practical interest, and motivate the need for
an alternative framework for reciprocal behavior (we
believe the term reciprocal behavior, as compared to
the term altruistic behavior, more appropriately sum-
marizes the motivation and mechanism that we use)
that avoids these unrealistic assumptions:

Initial decision: Since tit-for-tat uses the history of
one interaction, the first decision is crucial. Axelrod
assumes that such agents start of cooperating, which
leads to everybody cooperating forever thereafter. If
agents start off by not cooperating, then the same tit-
for-tat strategy will never produce cooperative action.
Either of the above assumptions about initial decisions
are equally meaningful for the tit-for-tat strategy.
Symmetrical interactions: Axelrod assumes that
every interaction is perfectly symmetrical. This im-
plies that if two agents cooperate in any interaction,
both incur the same cost and benefit. In real-life inter-
actions, more often than not in any one interaction one
agent incurs the cost and the other incurs the benefit.
While individual interacts are asymmetrical, averaging
over an ensemble of interactions can put one agent as
many times in the position of the benefactor as in the
position of the beneficiary. Because of this, an agent
has to decide whether to help another agent or not in
an interaction by considering past history and future
expectations of interactions.

Repetition of identical scenarios: The same situ-
ation recurs very infrequently in real-life. More often
than not, either the parties involved or the environ-
mental conditions that have an impact on the agent
decisions, are at least slightly different. Even if an
identical situation recurs one or a few times, it is highly
unlikely to be repeated again and again as assumed by
the game-playing framework used by Axelrod. As such,
in real-life situations, agent decisions will be affected
by other factors not addressed in the above-mentioned
body of work.

Lack of a measure of work: Since all interactions
are assumed to be identical, there is no need to measure
the cost of cooperation. Real life scenarios present dif-
fering circumstances which need to be compared based
on some common metric. For example, consider a sce-
nario where time is the cost metric of cooperation.
Suppose that A helped B by picking up a set of pho-
tographs that B had dropped off to a local store for
developing; this act of cooperation cost A 5 minutes.
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Now, A asks B to drive him/her to the nearest air-
port which will cost B 2 hours. Should B honor such
a request? The simple tit-for-tat mechanism will sug-
gest that B cooperates, but that may not be the best
choice. Lets take the example a little further. What if
A keeps on repeating similar requests before any situa-
tion arises where A may be of help to B. Just because A
had helped B the last time it was asked to help, should
B keep on continuing to help A? The most straight-
forward application of the tit-for-tat strategy would
suggest just that (we can always modify it by saying
one cooperative action would be reciprocated by ex-
actly one cooperative action, but that still does not
address the question of comparing the cost of cooper-
ation). The point is that there is no mechanism for
comparing past favors and future expectations in the
tit-for-tat strategy. It was not designed for scenarios
in which individual cooperation acts benefits one party
while the other incurs a cost.

Hence, the simple reciprocative strategy is not the
most appropriate strategy to use in most real-life sit-
uations because most of the underlying assumptions
that motivate its use are violated in these situations.
Our proposal is for agents to use a reciprocity-based
interaction scheme that is based on more realistic as-
sumptions. More specifically, we believe that a proba-
bilistic, rather than a deterministic reciprocity scheme
is more suitable for real-life problems. Such a scheme
should have at least the following properties:

e allow agents to initiate cooperative relationships
(this implies that it should be able to handle asym-
metrical interactions),

e use a mechanism to compare cooperation costs,

o allow agents to be inclined to help someone with
whom it has a favorable balance of help (have re-
ceived more help than have offered help),

e be able to flexibly adjust inclination to cooperate
based on current work-load (e.g., more inclined to
cooperate when less busy, etc.).

Probabilistic reciprocity

We assume a multiagent system with N agents. Each
agent is assigned to carry out T tasks. The jth task
assigned to the ith agent is ¢;;, and if agent k carried
out this task independently of other tasks, the cost
incurred is C¥. However, if agent k carried out this
task together with its own task £, the cost incurred
for task i;; is (,"J' Also, the cost incurred by agent k
to carry out its own task {x; while carrying out task ¢;;
for agent i is ",’:,”. In this paper, we allow an agent to
carry out a task for another agent only in conjunction
with another of its own tasks.

We now identify the scopes for cooperation. If an
agent, k, can carry out the task of another agent, i,
with a lower cost than the cost incurred by the agent
who has been assigned that task ((",'J > Cf‘j'), the first
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agent can cooperate with the second agent by carrying
out this task. If agent k decides to help agent i, then
it incurs an extra cost of ij’ but agent i saves a cost
of C,?'j. The obvious question is why should one agent
incur any extra cost for another agent. If we consider
only one such decision, cooperation makes litile sense.
If, however, we look at a collection of such decisions,
then reciprocal cooperation makes perfect sense. Sim-
ple reciprocity means that an agent k& will help another
agent i, if the latter has helped the former in the past.
But simple reciprocity by itself does not promote coop-
erative behavior. This is because. no one is motivated
to take the first cooperative action. and hence nobody
ever cooperates!

In practice, reciprocity also involves a predictive
mechanism. An agent helps another agent, if it ex-
pects to receive some benefit from the latter in the
future. Developing a domain-independent predictive
model is a very difficult problem. In absence of such a
general predictive mechanism, we propose a inuch sim-
pler but equally effective stochastic choice mechanism
to circumvent the problem of simple reciprocity. In the
following, we propose a probabilistic decision meccha-
nism that satisfies the set of criteria for choosing when
to honor a request for help that we described at the
end of the previous section. [t should be noted that
the probability function used here is only a represen-
tative function that we have found to be very effective
in promoting cooperation among self-interested agents.
No claim is hereby made regarding the uniqueness or
optimality of the proposed probability mechanism.

We will define S;x and Wi, as respectively the sav-
ings obtained from and extra cost incurred by agent i
from agent k over all of their previous exchanges. Also.
let B;x = Six — Wip be the balance of these exchanges
(Bir = —Bk;). We now present the probability that
agent k will carry out task ¢;; for agent i while it is
carrying out its task £5;. This probabilily is calculated
as: |

s e S O
l4+exp— >+ ——

where (:‘L‘ug is the average cost of tasks performed by
agent k (this can be computed on-line or preset), and
B and T are constants. This gives a sigmoidal prob-
ability distribution in which the probability of help-
ing increases as the balance increase and is more for
less costly tasks. We include the (Cyyy term berause
while calculating the probability of helping, relative
cost should be more important than absolute cost (if
the average cost of an agent is 1000, incurring an ex-
tra cost of 1000 is less likely than incurring an extra
cost of 10). Due to the stochastic nature of decision-
making some initial requests for cooperation will be
granted whereas others will be denied. This will break
the deadlock that prevented simple reciprocity from
providing the desired system behavior!,

Pr(i,k, jl) =

!Qur probabilistic scheme is different from a simple, de-
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ure 1. The constants B and T can be used to make
agents more or less inclined to cooperate. The factor
3 can be used to move the probability curve left (more
inclined to cooperate) or right (less inclined to cooper-
ate). At the onset of the experiments By; is 0 for all ¢
and k. At this point there is a 0.5 probability that an
agent will help another agent by incurring an extra cost
of 3% Cfug (we assume that the average cost incurred
is known; an approximate measure is sufficient for our
calculations). The factor T can be used to control the
steepness of the curve. For a very steep curve approx-
imating a step function, an agent will almost always
accept cooperation requests with extra cost less than
3 x C,’,‘,,g, but will rarely accept cooperation requests
with an extra cost greater than that value. Similar
analyses of the effects of # and 7 can be made for any
cooperation decision after agents have experienced a
number of exchanges. In essence, # and 7 can be used
to choose a cooperation level (Goldman & Rosenschein
1994) for the agents at the onset of the experiments.
The level of cooperation or the inclination to help an-
other agent dynamically changes with problem solving
experience.
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Figure 1: Probability distribution for accepting request
for cooperation.

A package delivery problem

In this section, we present a simple package delivery
problem which we will use to demonstrate the effec-
tiveness of our proposed mechanism to allow an agent
to adapt its environment. We assume N agents, each of
which is assigned to deliver T" packets. All the packets

terministic tit-for-tat strategy, e.g., agent k may decide to
help agent i even if the later had refused help in the previ-
ous time-step. The decision is based only on the balance,
not on when requests for help where accepted or denied.

tions are located on one of R different radial fins, and
at a distance between 1 and D from the depot. Agents
can only move towards or away from the depot follow-
ing one of the fins; they cannot move directly between
fins. On arriving at the depot, an agent is assigned the
next packet it is to deliver. At this point, it checks if
other agents currently located in the depot are going
to deliver along the same radial fin. If so, it asks the
other agent to deliver this packet.

The cost of an agent to deliver one of its packets in-
dividually is double the distance of the delivery point
from the depot. If it carries another package to help
another agent, it incurs one unit of extra cost per unit
distance traveled when it is carrying its own packet
and this extra packet. In addition, if it is overshooting
its own destination to help the other agent, an addi-
tional cost measured as double the distance between
the destination of its packet and the destination of the
other agent's packet is incurred. Suppose agent X is
carrying one of its deliveries to a location (1,2) (a lo-
cation (z,y) means a point at a distance y units from
the depot on radial fin number z). It is concurrently
carrying a packet for agent Y to be delivered at lo-
cation (1,3) and a packet for agent Z to be delivered
at location (1,4). Then the extra cost is 2 units for
the first, second and third unit distances traveled, and
1 unit for going from (1,3) to (1.4), and two units to
come back from (1,4) to (1,2) for a total of 9 units; 5.5
units are charged to agent Z and 3.5 units are charged
to agent Y.

We impose the following limitations on agents help-
ing other agents: 1) An agent will request for help only
if the cost incurred by the helping agent is less than
the savings obtained by the helped agent. 2) Though
an agent can help several agents at the same time, it
can carry at most one packet for each of these other
agents at the same time.

Experimental results

In this section, we present experimental results on the
package delivery problem with agents using the reci-
procity mechanism described in the ‘Probabilistic Reci-
procity’ section to decide whether or not to honor a re-
quest for cooperation from another agent. We vary the
number of agents and the number of packets to be de-
livered by each agent to show the effects of different en-
vironmental conditions. The other parameters for the
experiments are as follows: R =4, D = 3, r = 0.75,
and 8 = 0.5. Each of our experiments are run on 10
different randomly generated data sets, where a data
set consist of an ordered assignment of package deliv-
eries to agents. All the agents are assigned the same
number of deliveries. The evaluation metric is the av-
erage cost incurred by the agents to complete all the
deliveries.

We used this domain to also investigate the effects
of agent characteristics on overall system performance.
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Philanthropic agents: Agents who will always ac-
cept a request for cooperation. Philanthropic agents
will produce the best system performance. To aid
this process, we impose the restriction that if two
philanthropic agent are assigned deliveries on the
same fin, the one going further away from the de-
pot takes over the delivery of the agent who is going
a shorter distance. In this way, the system incurs
minimal extra cost.

Selfish agents: Agents who will request for coopera-
tion but never accept a cooperation request. Selfish
agents can benefit in the presence of philanthropic
agents by exploiting their benevolence.

Reciprocative agents: Agents that uses the balance
of cost and savings to stochastically decide whether
to accept a given request for cooperation.

Individual agents: Agents who deliver their as-
signed packets without looking for help from others.
They will also not accept any cooperation requests.

We expect the individual and the philanthropic
agents to provide the two extremes of system perfor-
mance. The individual agents should travel on the
average the longest distance to complete their deliv-
eries (because no one is helping them), whereas the
philanthropic agents should travel the least. We ex-
pect reciprocative agent behaviors to lie in between.
The frequency of occurrence of cooperation possibili-
ties should determine which of the two ends of the spec-
trum is occupied by the reciprocative agents. We want
to find out if selfish agents can profit at the expense of
reciprocative agents. It would seem that reciprocative
agents should perform better because with sufficient
interactions they become philanthropic towards cach
other, a possibility denied to the selfish agents.

For the first set of experiments we chose the number
of agents, N, as 100 and varied the nuimnber of deliveries
per agent from 100 to 500 in increments of 100. Differ-
ent experiments were performed on homogeneous sets
of individual, reciprocative, and philanthropic agents.
Results from these set of experiments are presented in
Figure 2. As expected, the performance of the individ-
ual agents was the worst, and the philanthropic agents
were the best. The interesting thing is that the per-
formance of the reciprocative agent is almost identical
to that of philanthropic agents. That is, when a recip-
rocative agent is placed in a group of other reciproca-
tive agents it adapts over time to behave like a philan-
thropic agent, and this adaptation benefits everybody.
This is a significant result because we have been able to
show that under proper environmental conditions (fre-
quent interactions with possibilities of cooperation),
self-motivated behavior based on reciprocity can pro-
duce mutually cooperative behavior that leads to near-
optimal system performance. In addition, with more
packages to deliver, the savings in distance traversed is
more with reciprocative and philanthropic agents over
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on the two curves should be the same, however, as it is
determined by the probability of another agent being
able to help one agent with its delivery. For the pack-
age delivery problem this probability is largely deter-
mined by the number of radial fins, R, the maximum
distance traversed from the depot, D, and the number
of agents, N.
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Figure 2: Average distance traversed by cach agent to
complete all deliveries.

We also performed a similar set of experiments by
fixing the number of deliveries per agent at 500 and
varying the number of agents from 25 1o 50 to 75 to
100. Results from these sct of experiments are pre-
sented in Figure 3. As above, the performance of
the individual agents was the worst, and the philan-
thropic agents was the best (approximately one-third
savings is obtained). The performance of the recip-
rocative agents was very close to that of the philan-
thropic agents, and it improved with more agents (with
more agents there is more scope of cooperation). Rela-
tional agents perform less efficiently than philanthropic
agents as occasionally they turn down globally benefi-
cial cooperation requests that will affect local problem
solving (involve incurring additional cost for an agent
with whom there is a already a large negative balance).

The next set of experiments were designed to find
out the cffects of selfish agents in a group of reciproca-
tive agents. We expected that selfish agents should be
able to obtain some help from reciprocative agents, and
hence would perform better than individual agents.
But they would not be able to match the performance
of reciprocative agents. For these set of experiments,
we fixed the number of agents at 100 and the number
of deliveries at H00. We varied the percentage of selfish
agents in the group. Results are presented in Figure 4.
which also contains the results from individual and
philanthropic agent groups for comparison purposes.
Our intuitions regarding the relative performance of
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Effect of number of agents
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Figure 3: Average distance traversed by each agent to
complete all deliveries.

the agents are corroborated by the figure. The aver-
age performance of the group, obviously, lies in be-
tween the performance of the selfish and reciprocative
agents, and moves closer to the performance of the self-
ish agent as the percentage of the latter is increased.
It appears that the selfish agents are able to exploit
the reciprocative agents to improve their performance
significantly over individual agents. This is because
there are many reciprocative agents and they do not
share their balance information with other reciproca-
tive agents. If reciprocative agent would broadcast the
continuous denial of acceptance request by a selfish
agent, the latter would not be able to exploit other re-
ciprocative agents. But this scheme requires more “co-
operation” between reciprocative agents, and has not
been further studied. Since reciprocative agents incur
extra cost for selfish agents without being reciprocated,
their performance is noticeably worse than the perfor-
mance of philanthropic agents. On further analysis of
the experimental data we found that the use of reci-
procity allows the reciprocative agents to adopt their
behavior such that after sufficient number of interac-
tions they learn to reject requests for help from the
selfish agents, while at the same time acting “philan-
thropically” towards other reciprocative agents. The
presence of selfish agents, however, can lower the per-
formance of the whole group.

To find out more about the relative performance of
selfish and reciprocative agents, we ran a further set of
experiments in which we varied the number of deliver-
ies while keeping the number of agents fixed at 100 of
which 25 agents were selfish in nature. Results from
these set of experiments are presented in Figure 5. A
noteworthy result was that with few deliveries to make,
selfish agents outperformed reciprocative agents. This
can be explained by the fact that the number of re-
ciprocative agents were large enough compared to the

Effect of selfishness
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Figure 4: Average distance traversed by each agent
to complete all deliveries as the percentage of selfish
agent in a group of reciprocative agents is varied. The
individual and the philanthropic agent results do not
contain selfish agents and are presented for compari-
son.

number of deliveries, and this allowed selfish agents to
exploit reciprocative agents for most of its deliveries.
This in turn affected the performance of the reciproca-
tive agents, as they could not recover from the extra
cost incurred to help these selfish agents. With suffi-
cient deliveries to make, however, reciprocative agents
emerged to be clear winners. This lends further cre-
dence to our claim that in the long run it is beneficial
for an agent to be reciprocative rather than selfish.

Comparison of reciprocative and selfish behavior
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Figure 5: Average distance traversed by each agent to
complete all deliveries with different number of deliv-
eries.

In the last set of experiments, we investigated the
relative performance of tit-for-tat and reciprocative
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agents both in homogeneous groups and when pitted
against selfish agents. For each experiment there were
100 agents in a group, each of which were to deliver
500 packages. The percentage of selfish agents in the
group were varied from 0 to 50. The major findings
from these set of experiments were as follows:

e The average cost incurred by tit-for-tat agents was
slightly less (the difference is less than 5% of the cost
incurred) than that incurred by reciprocative agents.
For homogeneous groups, this is because in some
cases reciprocative agents will refuse to help because
of the outstanding balance with the agent requesting
for help. Tit-for-tat agents will continue to help in
this situations. If we modify the tit-for-tat strategy
to reciprocate one cooperative action with exactly
one cooperative action, then their performance will
deteriorate. For heterogeneous groups, reciprocative
agents may help selfish agents more than tit-for-tat
agents. For example, a tit-for-tat agent will stop
helping a selfish agent the first time it is refused help
by the latter. This may happen before the corre-
sponding selfish agent has requested help from that
tit-for-tat agent. A reciprocative agent in place of
the tit-for-tat agent will still help the selfish agent
according to its probability calculation (the balance
is still 0 and from the reciprocative agents’ point of
view it is as if they have not interacted at all; this
suggests a possible improvement of the reciproca-
tive strategy: each denial of request will be used to
decrement its balance with the other agent).

o Though tit-for-tat is a stable strategy given the cri-
terion for stability that we have used (i.e., selfish
agents perform worse than tit-for-tat agents), it may
not necessarily be attractive to all agents. This is
because the variance of the work performed by dif-
ferent agents in the group is high. For homogeneous
groups, the variance of the cost incurred by tit-for-
tat agents is much higher than the corresponding
measure for reciprocative agents (see Figure 6). This
means that though a group of tit-for-tat agents per-
form well on the average, some people work more
while the others reap the benefit. In real life, we
do not expect such a group to be stable! A group
of reciprocative agents, on the other hand, provide
a more equitable distribution of workload, even if
agents incur slightly more cost on the average. Iron-
ically, if the percentage of selfish agents increase in
the group, the variance of work of the tit-for-tat
agents decrease as they help fewer agents. At the
same time the variance of work of the reciprocative
agents increases as different agents have different, his-
tory of interactions with more selfish agents.

Analysis

We now provide a coarse analysis of why reciprocative
agents outperform selfish agents. The only work sav-
ings obtained by selfish agents come from exploiting
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Figure 6: Variance of workload of tit-for-tat and re-
ciprocative agents with different percentage of selfish
agents in the group.

reciprocative agents. Sooner or later a selfish agent
will have realized all such benefits, and no further
interactions will bring it any savings. After such a
point is reached, selfish agents will incur the same
cost as individual agents as they have to deliver all
their packages themselves. The reciprocative agents,
on the other hand, can benefit from prolonged interac-
tion with other reciprocative agents. Since cooperative
actions are reciprocated, they can continue to benefit
off each other.

Let us analyze the amount of savings a selfish agent
can reap from a reciprocative agent. From Equation |
this can be calculated as

~ 1
7 =/ T. x *Cay dr'
o ]+ exptian

where Cl,g is the average cost incurred in delivering a
packet by the reciprocative agent. The expected total
savings obtained by a selfish agent is then N(1 — f)y
where N is the total number of agents and f is the
fraction of selfish agents in the group. If the proba-
bility of interaction of any two agents at the depot is
p, and we assume that on the average half the time
one reciprocative agent will help another, then the to-
tal savings obtained by the reciprocative agents for I
deliveries is § = Mﬂ—c). where ¢ is the average cost
incurred in helping someone and » is the average cost
of delivering a package on its own (which is the same as
the savings obtained when another agent delivers this
packet). Therefore, when & > N (1 — f)v, reciproca-
tive agents are expected to perform better than selfish
agents. This happens when the number of deliveries
are large and the savings obtained by the helped agent
is large compared to the cost incurred by the helping
agent.
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tions that contribute to the success of the reciprocative
agents:

e The major assumption is that cooperation is always
beneficial for the group. In practical situations, if
agent A owes agent B a favor, agent B may delegate
one of its tasks to agent A even though it can itself
do it more efficiently than agent A, i.e., the savings
obtained by agent B is less than the cost incurred by
agent A.

e We assume all agents have the same capability and
evaluation metric. The latter in particular is a crit-
ical assumption. It means if agent A though it in-
curred a cost z while helping agent B, the latter
concurs. Though there is nothing in our model from
preventing the evaluation metrics differ from agent
to agent, we believe that large discrepancies in eval-
uation metric will prevent sustained cooperation.

Conclusions

In this paper, we have shown that self-motivated be-
havior can evolve cooperation among a group of au-
tonomous agents. Under appropriate environmental
conditions, such a group of agents can also achieve
near-optimal global performance. This can be achieved
by using reciprocity as an aid to adaptation to other
agents. This allows agents to realize scopes for coop-
eration while avoiding wasting efforts on helping un-
responsive agents. This is a significant result because
in an open, distributed environment, an autonomous
agent is likely to face a multitude of agents with dif-
ferent design philosophies and attitudes. Assuming
benevolent or cooperative agents is impractical in these
situations. Our analysis and experiments show that
agents can use reciprocal behavior to adapt to the en-
vironment, and improve individual performance. Since
reciprocating behavior produces better performance in
the long run over selfish or exploitative behavior, it
is to the best interest of all agents to be reciprocative.
Our results hold for domains where cooperation always
leads to aggregate gains for the group.

We have presented a coarse analysis explaining when
the reciprocative agents will outperform selfish agents.
We are currently working on a more detailed analysis
on this issue and we plan to present theoretical predic-
tions and experimental verifications from this analysis.

We plan to relax the requirements of all cooperation
being beneficial ffor the group. Currently, an agent re-
ceives help from the first person (from an ordered list)
that agrees to help. We plan to study the performance
of the mechanism when the agent considers all the of-
fers for help and chooses to take help from the agent
with which its got the most negative balance. We also
plan to investigate more complex and realistic domains
such as distributed monitoring, distributed informa-
tion gathering, etc. to further evaluate the strengths
and limitations of our proposed mechanism.

in part, by an NSF grant TRI-9410180.
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