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Abstract

We propose a general framework for support
vector machines (SVM) based on the prin-
ciple of multi-objective optimization. The
learning of SVMs is formulated as a multi-
objective program by setting two competing
goals to minimize the empirical risk and mini-
mize the model capacity. Distinct approaches
to solving the MOP introduce various SVM
formulations. The proposed framework en-
ables a more effective minimization of the
VC bound on the generalization risk. We de-
velop a feature selection approach based on
the MOP framework and demonstrate its ef-
fectiveness on hand-written digit data.

1. Introduction

We examine the learning process of finding a function
f E ~" that minimizes the generalization risk where
is a set of possible functions. For classification prob-
lems, which we will focus on in this paper, the general-
ization risk of a given decision boundary f is defined as
the probability that a data point is misclassified using
the decision model constructed on f. The empirical
risk is computed as the misclassification rate of f on
sample data. An upper bound on the generalization
risk R(f) in VC theory (Vapnik, 1998) typically takes
a form as

h
Remp(f) + ~(’~) (1)

where Remp(f) is the empirical risk for a given function
f chosen from Y’, h is a measure of the capacity of
~-, named as the VC dimension of Y, and ~ is the
amount of training data. The function q is basically a
monotonically increasing function in terms of the ratio
h/*.

The bounds suggest us that to achieve a small gen-
eralization risk, the learning process prefers a small
empirical risk and a small capacity of ~’. The VC di-
mension h is the best-known measure of the capacity

of ~. Better complexity measures exist, but are usu-
ally more difficult to evaluate. The VC dimension is
more applicable to manipulating under practical and
algorithmic circumstance~s. Therefore the small capac-
ity can be obtained by minimizing the VC dimension
of 9v. The goal of learning processes thus becomes to
minimize both the empirical risk and the VC dimen-
sion. However, they are conflicting goals in the sense
that when h is small, the empirical risk m%v be large
due to insufficient learning. In contrast, the learning
machine may require a large h to obtain a small empir-
ical risk, and may suffer the "overfitting" phenomenon.

Multi-objective programming is an optimization tech-
nique for solving problems with multiple conflicting
goals. Mathematically, objectives are said to be con-
flicting if optimal solutions corresponding to each in-
dividual objective are not the same within the feasi-
ble region. A multi-objective program (MOP) for the
learning process can be formulated in principle as fol-
lows:

min Remp(f)
min h(~’) (2)
s.t. fe~’.

Note that the function class 9v itself is an adjustable
variable in the MOP (2) because altering the VC di-
mension of 9v has impact on the choices of 9v. Usually
we define a type of possible functions beforehand, for
example, consider the linear functions. The function
class ~ is a subset of linear functions which presents
the desired VC dimension. The concrete formula-
tions of the multi-objective optimization can be de-
rived by specifying the type of the functions in ~,
the computation of the empirical risk and an asti-
mate of the VC dimension. Distinct specifications in-
troduce variants of multi-objective programs (MOP).
When a MOP is successfully formulated as desired,
the question arises as to how we can solve it. A lot
of research has been devoted to the study of vari-
ous approaches to solving MOPs. Depending on the
specific MOPs, appropriate techniques can be devel-
oped and used to solve them. Traditional methods
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for solving MOPs include the weighted sum method,
the eonslraint method, weighted metric methods, goal
programming methods, etc. Later around evolution-
ary algorithms become popular for finding solutions to
MOPs. The classic SVM with tile hyper parameter C,
derived using the weighted sum method, is just one
way to solve thc MOP. Under the MOP framework,
we propose a feature selection approach that allows
the learning proce~c~s to reduce tile dimensionality of
the problem without losing prediction accuracy.

For a MOP with two conflicting objectives as given in
Problem (2), each objective corresponds to a different
optimal solution. We have to find a compromise in
the objectives. The flmdamental difference between
single- and nmlti-objective optimization is that for a
MOP, we can find a set. of optimal mlutions where
no single solution can be said to be better than any
other. Solving a MOP often implies to search for the
set of optimal solutions as opposed to a lone solution
for a single-objective program. For a learning process,
we do not. need to spread the entire set of optimal
solutions because VC bounds can provide information
to help us locate the best compromise.

In the next section, we briefly review the principle
of multi-objective optimization and traditional ap-
proaches to soMng a MOP. A concrete MOP formu-
lation bmsed on the above framework (2) is rigorously
derived and analyzed in Section 3. Employing dis-
tinct methods to solve the proposed MOP with proper
simplifications yields various learning algorithms, in-
cluding the classic SVM (C-S\~I) and rigorous 
(RSVM) as discussed in Section 4. In Section 5, 
develop an approximation scheme for solving the pro-
posed MOP without simplifications, aimed at produc-
ing acceptable solutions rather than Ol)timal solutions.
Based on the MOP framework, we propose a feature
selection approach in Section 6 and demonstrate that
it can reduce the dimensionality without loss of pre-
diction accuracy in Section 7.

2. Review of MOP

In this section, we state the MOP with two objectives
in its general form

minx Objl (x)
minx Obj2(x)
s.t. g(x) G 0, d(x) = 

Xl°w "~ X ~ Xup.

Tile bold face of a lower-case letler indicates that it
is a vector. Here g and d are vectors of functions
of appropriate dimension; and xt°~’, x~p are tile lower
and upper bounds on x E Rn. All constraints together

define the feasible region F = {x: g(x) _< 0, d(x) 
0, xt°" < x _< x"V}. We introduce tile concepts of
domination and Pareto-optimality.

2.1. Pareto-optimality

A solution x1 is said to dominate another solution

x2 (Esehenauer et al., 1986), if 1. the solution 1

is no wonse than x2 in all objectives, i.e., Objl(x 1) <
Objl(x 2) and Obj2(x1) < Obj2(x2); 2. the solution x1

is strictly better than x2 in at least one objective, i.e.,
3 i e {1, 2}, Obji(x 1) < Obji(x2).

A feasible point is a Pareto-optimal or non-dominated
solution if the point is not dominated by an5, other
point in the feasible set F. Typically the Pareto-
optimal set consists of all Pareto-optimal solutions.
We use a toy example to illustrate the definitions as
in Figure l(above). This problem has two quadratic
objective flmctions, and the Pareto-optimal set is the
interval [A,/3]. In general, the Pareto-optimal fron-
tier in tile objective function space ks used to illustrate
the optimality in the MOP context (Figure 1(below)).
Each point in the figure represents a pair of objective
values corresponding to a x E F. The filled circles
correspond to Pareto-optimal solutions and they fall
on the Pareto-optimal frontier.
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Figure 1. Above." The Pareto-optimal set of two quadratic
objective functions is [A,B]. Below: Tim Pareto-optimal
frontier of two objective functions in general.

The question arises as how we can find a Pareto-
optimal solution to a MOP. Traditional methods avoid
the inherent, complexity in a multi-objective program
and convert nmltiple objectives into a single objective
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by using certain schemes and user-specified parame-
ters. Many studies compare different methods of such
conversions, and provide reasons in favor of one conver-
sion over another. We describe two simple and widely-
used methods for such conversions. They will serve as
the basis of our approaches to solving the MOP arisen
in learning problems in the later sections.

2.2. Traditional methods

The weighted sum method transform two objectives
into a single objective by multiplying each objective
with a pre-defined weight and adding them together.
The weight of an objective is usually chosen in pro-
portion to the objective’s relative importance in the
problem. Determining an appropriate weight vector
also relies on the scaling of each objective function.
Usually the objectives are scaled appropriately so that
each has the same order of magnitude when choos-
ing the weights. The composite objective function can
thus be written as

min{clObjl(x) + c20bj2(x) : x E F} (4)

where the weights cl and c2 arc non-negative and at
least one of them is not zero.

Solving Problem (4) yields Pareto-optimal solutions
if the weight is positive for both objectives. Differ-
ent weight vectors do not necessarily lead to different
Pareto-optimal solutions. It does not imply that any
Pareto-optimal solution can be obtained by using a
positive weight vector unless the MOP is convex. A
MOP (3) is convex if all objective functions are convex
as well as the feasible region is convex, (equivalently,
all inequality constraints are convex and equality con-
straints are linear). For any Pareto-optimal solution
to a convex MOP, there exists a positive weight vector
c such that. ~ is a solution to Problem (4).

If the MOP is not convex, the Pareto-optimal fron-
tier may have non-convex portions as shown in Figure
1 (below, the dotted line). The non-convex parts 
the Pareto-optimal set cannot be obtained by mini-
mizing the combinations of the objectives as formed
in Problem (4). To alleviate the difficulties faced 
the weighted sum approach in solving problems with
non-convex pattern, the constraint method was pro-
posed. The MOP is reformulated by keeping one of
the objectives and restricting the rest of the objec-
tives within user-specified values. For instance, if we
treat the second objective in MOP (3) by a constraint,
the modified problem becomes

min{Objl(x) : Obj2(x) < 5, x E F}. (5)

Any Pareto-optimal solution of a MOP can be ob-
tained by solving the constraint problem (5) for 

proper upper bound 5 regardless of the non-convexity
of the Pareto-optimal frontier. One disadvantage for
this method is that the solution to the problem (5)
largely depends on 5 which has to be chosen within
the minimal or maximal value of the objective.

Other approaches to solving MOPs include the
weighted metric methods, Benson’s method, goal pro-
gramming methods, and some interactive methods.
Evolutionary algorithms are popular tools for solving
multi-objective optimization. They all have advan-
tages and disadvantages in one way or another.

3. The Concrete MOP Formulation

A concrete formulation of the MOP (2) can be derived
by specifying how to calculate the R~mp(f) (the first
objective) and how to estimate the VC dimension h(~’)
(the second objective). These specifications depend 
the definition of the set of possible functions ~-.

SVMs construct decision models based on linear func-
tions. Nonlinear models can be obtained via the so-
called kernel substitution. By using a kernel, the origi-
nal input vector x~ is transformed to zi = O(x/) which
is in a usually high dimensional feature space denoted
as Z. A kernel function in the input space corresponds
to an inner product in the corresponding feature space.
The feature space is uniquely determined by the kernel
function and its parameters. For example, a common
type of kernels is polynomials, and the parameter for
this type of kernels is the order of the polynomial. Let
us generally denote a kernel by ks(-, .) with parame-
ter(s) s, and the corresponding mapping operator 
~s. Note that for a given type of kernels, the fea-
ture space or the mapping is solely dependent on the
choices of the parameter(s) 

To construct a decision model, we first describe
the smallest ball containing all transformed vectors
¯ s(x~). Assume that the transformed vectors are cen-
tered to have mean 0. This can always be done by
an appropriate transformation of the kernel. For an
arbitrary kernel k(x, ~) and the corresponding feature
space Z, the following kernel

k(x, ~) = k(x, ~) -  i=1 k(x, xi)
1 e ~E :I k(xi, x) + k(xi, xD.

maps the input vectors to vectors in Z with mean 0.
We then approximately look for the ball BR = {z E
Z : (z.z) < _R} with center at the origin and the
smallest possible radius x/~, which contains the im-
ages ¢Ps(xi), i = 1,..-,t. This implies that for any 

= < R
In the feature space Z determined by k,, consider
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tile set of hyperplanes {z E Z : (w.z) +b = 
that separate the transformed data (ffPs(xi),Yi) 
a margin: i.e., satisfy mini=l,...,t ](w. o)s(xi) ) + b[ = 1
with (w. w) _< W. The margin is calculated 
1/x/~ 7. For any hyperplane in the set of separating
hyperplanes, the decision model can be constructed as

.qw,b = sgn ((w. z) + b) where z E BR. The domain 
the decision model is BR. The VC dimension h of the
set {gw,b : (w. w) < IV} has an upper bound 

h <_ nw + 1 (6)
provided the dimension of the feature space is larger
than RW. This is often the case encountered in prac-
tice. This upper bound is tight when data vectors are
uniformly distributed right oil the surface of t.he ball.

The decision model gw,b classifies the vectors in BR

with the margin 1/x/~ 7. In many practical applica-

tions, such a decision model does not exist. To al-
low for the poasibility of errors, the slack variables

~i >-_ 0, i - 1,...,~ are introduced (Cortes & Vap-
nik, 1995; Vapnik, 1998) such that

((w. + b)} _> 1 

Now we specify the set of functions ~ = {gw,b : (w.
w) _< IV} in the learning process. Then RW + 1 can
be regarded as an estimate of the VC dimension of ~c.
The empirical risk for this set of functions is computed
as Y~’~i=I ~i. We thus formulate the MOP in variables
w,b,~,s, WandRas

train Y~i=I ~i (7)
min RW (8)

s.t. Yi ((w. ~(xi)) + b) >_ 1 

(i _> 0, i = 1,.-.,t, (9)

(w. w) < w, (10)
k~(xl,x,) _< R, i = 1,...,t. (11)

We refer to this problem as the master MOP (MMOP).
Note that it is equivalent if we remove the constraint
(10) instead write the second objective as R(w ̄  
Then the problem has fewer constraints, but a more
complicated objective. The question of which way is
more computationally efficient is not examined here.
The above formulation MMOP was used in our experi-
ments. The MMOP serves ms a mechanism to minimize

the VC bound (1). Once a solution (~,/h s, i,~z/~, 
is determined, the MOP approach constructs the op-
timal decision model based on the separating hyper-
plane {z : (~ ¯ z) + D = O} in the feature space char-
aeterized by k~. In addition, the model is chosen from
the set 5r with VC dimension close to /~I,~" + 1. In

the next section, we investigate approache.s to solving
the MMOP. By exploiting these approaches, we obtain
distinct SVM formulations.

4. Deriving SVM Formulations

As we introduced in Sect.ion 2, solving a MOP of-
ten involves converting multiple objeetivc~ to a single
one. To derive the class of SVM algorithms (Boser
et al., 1992; Vapnik, 1998) based on the MOP frame-
work, the master MOP has been simplified. For
a given kernel with fLxed parameter s: the value of
k~(xi,x/) for any xi is correspondingly fixed, and
R = max(k~(xi,xi), i = 1,...,t} is a constant. The
constraint (11) can then be removed since it does not
take effect when optimizing the MMOP. Minimizing
the RW is equivalent to directly minimizing (w ¯ w)
and omitting the constraint (10). Now the MMOP 
simplified to the following MOP

tmin ~-~4=1 ~i
rain (w. w) (12)s.t. Yi ((w. rb~(xi)) + b) _> 1 

~i >_ 0, i = 1,...,t.

Note that the constraints here are linear in terms of w,
b and ~. This MOP has convex objectives and linear
constraints, so it has convex Pareto frontier.

4.1. Classic SVMs

The weighted sum method becomes a good choice for
finding the Pareto-optimal set of MOP (12). Any
Pareto-optimal solution to the problem (12) can 
obtained by minimizing the composite objective func-
tion

g
1

i=1

for an appropriate value of C. This actually pro-
rides a new perspective to explain the foundation
of SVMs besides the regularization theory (Evgeniou
et al., 2000). In practice, we do not need the entire
Pareto-optimal set. Instead we search for the particu-
lar Pareto-optimal solution that minimiT~-~s the bound
(1). In other words, C should be tuned in such a way
that the obtained model gw,b produces the smallest
value of the risk bound (1).

4.2. Rigorous SVMs

Similarly, the constraint method can also be applied to
the MOP (12) to explore its Pareto frontier. Suppose
we minimize the empirical risk and restrict the VC
dimension by forming a constraint on the second ob-
jective as (w. w) < W. Here W is no longer a variable
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as in the MMOP, but a user-specified parameter. The
resulting optimization problem called "rigorous SVM"
(RSVM) (Vapnik, 1998)is stated as follows:

t
min ~i=1 ~i
s.t. (w. w) <: W, (13)((w. ¢.(xd) + > 1- a,

~i > O, i= l,...,L

Solutions to RSVM depend on the choices of W. W
should be selected within a reasonable range to achieve
small values of the risk bound. Basically, the VC di-
mension is an integer in [1, g]. A proper range for W
can be designated based on the analysis of the bound
(1) and the property of VC dimension (Vapnik, 1995).

4.3. More General Cases

In many practical situations, we also adjust the ker-
nel parameter s in the learning process. The radius of
the ball v/R may vary when reducing the dimensional-
ity or creating a composite kernel (Lanckriet et al.,
2002) where the above simplification may be unde-
sirable. We have to solve the non-convex MMOP it-
self. It may have non-convex frontier, so the constraint
method is more applicable to solving the MMOP than
the weighted sum method in order not to miss the
opportunity to identify a Pareto-optimal solution. In
general, to achieve a Pareto-optimal solution, we can
optimize one of the objectives (7) and (8) on all vari-
ables w, b, ~, s, R and W with a constraint con-
structed on the other objective. Unfortunately, the
resulting problems suffer the difficulties, such as the
unknown mapping (I) and the strong nonlinearity 
the problems, and thus may not be practically ap-
plicable. Proper approximation schemes are needed
to create acceptable solutions, not necessarily Pareto-
optimal solutions. We propose such an approximation
procedure to simplify the computation at expense of
potentially losing optimality.

5. Acceptable Approximation

The scheme is motivated by the constraint method
and can be viewed as an approximate way to solve
the problem formed by the constraint method. It is
an iterative procedure with each iteration consisting
of two consecutive steps. The first step is to optimize
the empirical risk subject to the constraint on the VC
dimension. The second step is to optimize RW with
a restriction on the empirical risk. We partition the
variables into two groups (w, b) and (s, R, W), and 
slackness ~ is included in both groups. The empirical
risk (7) is optimized on (w, b, ~) and the VC dimension
(8) is optimized on (s, R, W, 

In the first step, we fix s, so the radius parameter of the
ball R becomes a constant. Following the same argu-
ments in Section 4, the constraint (11) can be omitted.
We restrict (w ¯ w) within a fix value W. The prob-
lem is converted to the RSVM (13) in variables w, 

to minimize the empirical risk. After we obtain the
optimal solution (w, b, ~) with respect to the current
values of s and W, we proceed to the second step. In
the second step, we set the variables w and b to the
solution found in the first step. Now the problem op-
timizes the VC dimension over variables s, R, W and
~. Moreover, the objective (7) is restricted to be 
more than the optimal objective value obtained in the
first step. Then we use the optimal s and W obtained
in the second step in the next iteration.

The first step focuses on improving the performance
of the classification model by minimizing the empiri-
cal risk with a fixed VC dimension. The classification
model is constructed on a linear function in the fea-
ture space particularly defined by s found in last it-
eration. By optimizing on s, the second step seeks a
feature space, for which a smaller VC dimension can
be possibly achieved with the empirical risk preserved.
The second step is not aimed directly at enhancing the
learning performance because it does not search for a
classification model, instead for a kernel function.

Algorithm 1:

1. Initialize so and W° with appropriate values. Set
t=l.

2. Solve the dual formulation of RSVM (13) (Vapnik,
1998) with the fixed t-1 and W~-1,

t t

rain W’-i yjk.,_, (x,, xj) Ol
i,j= l i=1

t
s.t. Ei=I ¢eiYi = O,

0<ai_< 1, i = 1,...,~,
(14)

tand compute the optimal b~, wt = ~i=1 ce~yi~s,-~ (xi)
where o~~ is constructed by dividing the optimal solu-
tion & to Problem (14) (Vapnik, 1998) 

Calculate the corresponding optimal objective value
Et of Primal (13).

3. Substitute the wt and bt into the MMOP, and
restrict the first objective to be no more than Et. Solve
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the resulting optimization problem

min
s,R,W,~

s.t.

RW

Yi c~}yjks(xj,xi) bt> 1- (i
\j=l

(i -> 0, i = 1,’",t,
t

~i=1 ~i _< Et,
f

E t t X" X"cqctjytyjks( ,, ~) < z,
i,j=l

k,(xi,xi) < R, i = 1,...,t,
(15)

to obtain st and Wt.

4. Determine if more iterations are needed, for
instance, if either Et or Ht = RtWt is decreased, set
t = t + 1, and go to Step 2; otherwise, stop.

This scheme does not guarantee to achieve a Pareto-
optimal solution to the MMOP due to the decompo-
sition of the variables into two sets, and the partial
optimization of each step on only a subset of vari-
ables. However Proposition 1 shows that it improves
the solution in the way that each iteration produces a
model f in $- whose empirical risk is no larger than
that at the previous iteration. The VC dimension of
Y is no larger than the one at the last iteration. If
the algorithm can strictly reduce both objectives to
some degree, it identifies acceptable solutions relying
on the users preference. Furthermore, this scheme is
compntationally tractable since it does not require the
mapping ~s, nor the explicit definition of a kernel as
long as the kernel matrix can be computed in terms of
s as a positive semi-definite matrix.

Proposition 1 (Approximation Performance)
Let Et-1 and Ht-1 be the optimal objective values re-
spectively of the first step and the second step at the
previous iteration. Let Et and Ht be the corresponding
optimal values at the current iteration. Then wc have
Et <_Et-1 andHt <Ht-1.

Proof. This proof is based on the fact that the
optimal objective value of a problem has to be no
worse than the objective vahm of any feasible point.
An iteration of Algorithm 1 starts with solving Prob-
lem (14) with fixed ~-1 and Wt-l. For t he sake of
simplicity, we consider the corresponding primal prob-
lem (13), Realize that s~-1 and W~-1 were obtained
by optimizing Problem (15) at last iteration. By ex-
amining the constraints of Problem (15), the solution
(W = ~ct~-lyigPs,-~ (xi), b = *-1) i s f easible to Prob-
lem (13) with ~ {i <_ Et-1. Since Et is the optimal ob-
jective value of Problem (13) at the current iteration,
Et < Et-1. Following the same line of arguments, we

can show that He < Ht-1 too..

6. Feature Selection

Based on the MOP framework, we propose a feature
selection approach aimed at reducing the dimensional-
iCy without impairing the model prediction accuracy.
The feature selection is performed by associating each
feature s:i with a scaling factor si. The larger values
of si indicate more useful variables, and the dimension
xi corresponding to a si = 0 is vanished in the model.
We define a kernel function as k(xi, xj) = x~Sxj where
S is a diagonal matrix with diagonal entries si >_ 0.
The mapping introduced by this kernel can be ex-
plicitly expr~.sed as x = (xl x2""xn)’ ~ v/-Sx 
(~/~xl v/’~x2... .v/~nxn)’ that defines a feature space.
Algorithm 1 constructs decision models based on a
function from the set {f(x) = w’Stx + b : w’Stw 
Wt} at. the t th iteration. Notice that there is no need
to center this kernel since the images of input data
have mean 0 already if input data are centered.

The feature selection approach, which we call MOPFS,
can be regarded as a special case of Algorithm 1 with
k,(xi, xj) replaced by x~Sxj and s = (sl s2""sn)’.
Notice that all constraints in Problem (15) become lin-
ear in terms of s, so Problem (15) is merely a quadratic
program. Step 3 of Algorithm 1 has been slightly mod-
ified to fit our goal to reduce the number of features.
We minimize the objective RW + c~7.i=1 si where c
is chosen as a small number relative to RW so that
if two solutions s exist, the modification prefers the
sparse one with a few si non-zero. In order to take
into account the result obtained at previous iterations,
we transform input data by xi = S’,/~--~x/ in problem
(15), and solve problem (15) gives the optimal S. 
the actual scaling matrix at. the t th iteration becomes
St = SS~-1 in terms of original data. Suppose that
the algorithm runs T iterations. The final sealing ma-
trix ST = ~T... ~tS0 where the initial sealing matrix
So = I, an identity matrix of appropriate dimension.

7. Computational Results

The goals of our experimental study were to assess
the generalization performance and computational be-
haviors of the proposed MOPFS approach, and com-
pare the approach to other feature selection meth-
ods. Other methods include three filter methods and
a SVM-based feature elimination approach called VS-
SSVM (Biet al., 2003). The filter methods chose the
same ammmt of features as that in MOPFS accord-
ing to Pearson correlation coefficients, Fksher crite-
rion scores and Kolmogorov-Smirnov (KS) test (We-
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Figure 2. Left: results with varying W°. Dotted lines stand for ~ = 100, and solid lines for £ = 500. Middle: values of
RW, the training and test error rates at each iteration. The curve for RW actually represents the ratio RW/£. The
numbers of selected features are also included by rescalblg to fit in the figure with the numbers beside the curve. Right:
the selected 114 features obtained by MOPFS. Each feature is gray scaled according to its weight s~ (t = 500, ° =49).

ston et al., 2000). In the VS-SSVM method, sparse
linear SVMs were constructed to generate linear mod-
els based on 20 distinct partitions of training data.
The final set of selected features were the aggregate of
non-zero weighted features found by each of the 20 lin-
ear models. We conducted all the experiments on the
MNIST database of handwritten digits, downloaded
from h~tp://yann.lecun.com/exdb/mnist/. The digits
had been size-normalized and centered in a 28 x 28
image. We try to solve the classification problem of
distinguishing odd numbers from even numbers. The
database contains 60,000 digits. We took the first 100
and 500 digits respectively as two training sets. The
1000 digits after the 10,000th digit and the last 10,000
digits of the database were used as the validation set
and the test set, respectively. For fair comparison, all
methods were followed by RSVM training to construct
their final classifiers. The parameter W° in RSVM was
optimized based on the validation set for the reduced
data from each feature selection method. Then the
classifiers obtained with the best W° were evaluated
on the test set to calculate R~st shown in Table 1.

The data were preprocessed in the following way: ex-
amples were centered to have mean 0 by subtracting
the mean of the training examples; then each variable
(totally 28 x 28 = 784 variables) was scaled to have
standard deviation 1; after that, each example was
normalized to have ~2-norm equal 1. Note that the
test data should be blinded to the learning algorithm.
Hence the test data were preprocessed using the mean
and standard deviation of each variable computed on
training data. By performing this preprocessing, the
input data were transformed to the surface of the unit
ball (R° = 1) centered at the origin. Then W°+ 1 pro-
vided a firm estimate of h of the initial ~’. This step

of preprocessing also removed the variables that have
all values 0, thus only 571 variables were remained.

We used a preliminary solver written in C++ available
at www.cs.rpi.edu/’bij2/rsvm.html to .solve the dual
RSVM (14) and MINOS 5.5 optimization software 
solve Problem (15). Algorithm 1 can be viewed as 
constraint method for solving a MOP, so the initial W°

plays a crucial role in the trade-off of the training error
versus model capacity. We examined the performance
of MOPFS for a large range of choices of W°. W° was
chosen such that h/£ E [0.05, 0.5]. Figure 2(left) plots
the training and test risks versus W°/£. The empir-
ical risk decreases monotonically with W° increasing
whereas the test risk curves have minimum points at
about 0.1L As an example, Figure 2(middle) shows
the computational behaviors of MOPFS in each itera-
tion for l = 500 and W° = 49. We can see a decrease
of the test risk as the VC dimension and the empirical
risk decrease. Meanwhile, the number of features is
dramatically reduced from 571 to 114. In all MOPFS
experiments across various ~ and W°, the generaliza-
tion performance was either enhanced or preserved
with iteration running forth. Figure 2(right) visualizes
the selected 114 features in the original image setting.
The comparison as shown in Table 1 reveals that the
elimination of features hardly improved or even im-
paired the generalization ability for the three ranking
methods compared with the model constructed on all
variables. MOPFS and VS-SSVM performed similarly
on the larger dataset, but VS-SSVM exhibited poor
prediction accuracy for ~ = 100 though greatly reduc-
ing features. The sparsity of support vectors could also
be enforced with more features eliminated. We leave
extensive comparison with other feature selection ap-
proaches on more data to future research.
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Table 1. Comparison of our approach MOPFS with the filter methods mid the VS-SSVM approach for training sizes equal
to 100 (left) and 500 (right). The N_Feat, N_SV, Rtr, mid Rt~t represent the numbers of selected features and support
vectors, and the training and test risks. The ratio h/g was computed as (W° + 1)/t where W° was tuned based on the
validation set. The FULL models without feature selection are also included

METIIOD h/tooo) N_FEAT N_SV Rt~n l~tst h/t(5oo) N~’EAT N_SV Rt~n Rt~t

FULL

MOPFS
PEAILSON

FISIIER

KSTEST
VS-SSVM

0.25 571 65 0.04 0.1898
0.10 43 35 0.05 0.1687
0.16 43 42 0.06 0.1882
0.16 43 40 0.07 0.1890
0.16 43 39 0.05 0.1880
0.16 38 47 0.05 0.1910

0.15 571 214 0.070 0.1322
0.10 114 158 0.040 0.1227
0.13 114 163 0.088 0.1502
0.10 114 168 0.074 0.1415
0.10 114 175 0.092 0.1510
0.13 162 152 0.048 0.1205

8. Conclusion

This work basically addresses two issues. The first is-
sue concerns the fundamentals of constructing SVlVls.
A learning process needs to perform capacity control
while minimizing the empirical risk in order to min-
imize the generalization risk. VC dimension is often
used as an effective measure of the model capacity.
An upper bound shows that it relates to the margin
of separation and the radius of the smallest ball con-
taining empirical data. SVMs (Section 4.1 and 4.2)
usually seek the optimal decision model which pro-
duces the largest margin between the decision bound-
ary and each of the classes. They do not explicitly
regulate the radius of the ball. The MOP framework
proposed herein provides us an approach to controlling
the radius of the ball as well as the margin. It thus
enables more rigorous implementation of the learning
theory. Existing SVM formulations can be viewed as
special cases of the MOP with appropriate simplifi-
cations, and thus are incorporated in this framework.
The second issue is that we address the feature se-
lection problem by developing an approach raider this
MOP framework. It performed better on real-world
data sets of hand-written digits than some existing
methods, showing that the MOP framework can be
practically useful.

Open problems include the development of more effi-
cient approximation schemes for solving the lvIOP. A
major problem of our scheme is that it can get trapped
at a local minimizer. For example, if we fix s in Prob-
lem (14) to obtain the W and/~, solving Problem (15)
with ~¢ and /~ may not generate a new s because the
initial value of s is likely to be optimal to Problem
(15). The MOP framework may be more useflfl 
transductive inference where the labelling of empirical
data is incomplete since the information of unlabelled
data can be easily incorporated into the calculation of
the radius of the sphere containing data.
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