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Abstract

Bayesian classifiers such as Naive Bayes or
Tree Augmented Naive Bayes (TAN) have
shown excellent performance given their sim-
plicity and heavy underlying independence
assumptions. In this paper we introduce a
classifier taking as basis the TAN model and
taking into account uncertainty in model se-
lection. To do this we introduce decompos-
able distributions over TANs and show that
they allow the expression resulting from the
Bayesian model averaging of TAN models to
be integrated into closed form. With this re-
sult we construct a classifier with a shorter
learning time and a longer classification time
than TAN. Empirical results show that the
classifier is, most of the cases, more accurate
than TAN and approximates better the class
probabilities.

1. Introduction

Bayesian classifiers as Naive Bayes (Langley et al.,
1992) or Tree Augmented Naive Bayes (TAN) (Fried-
man et al., 1997) have shown excellent performance
in spite of their simplicity and heavy underlying inde-
pendence assumptions.

Furthermore, it has been shown (Cerquides & López
de Màntaras, 2003a; Kontkanen et al., 1998) that
Naive Bayes predictions and probability estimations
can benefit from incorporating uncertainty in model
selection by means of Bayesian model averaging. In
the case of TAN, a development inspired in this same
idea is presented in (Cerquides, 1999), where to over-
come the difficulty of exactly calculating the averaged
classifier the idea of local Bayesian model averaging is
introduced to calculate an approximation. In this case
predictions are also improved.

In this paper we show that, under suitable assump-
tions, the Bayesian model averaging of TAN can be
integrated in closed form and that it leads to improved
classification performance. The paper is organized as
follows. In section 2 we review Tree Augmented Naive

Bayes and the notation that we will use in the rest
of the paper. In section 3 we develop the closed ex-
pression for the Bayesian model averaging of TAN and
we construct a classifier based on this result which we
will name tbmatan (from Tractable Bayesian Model
Averaging of Tree Augmented Naive-Bayes). In sec-
tion 4 we notice that tbmatan has a major drawback
that makes difficult its usage for large datasets because
it depends on the calculation of an ill-conditioned de-
terminant that requires the floating point precision to
increase with the dataset size and hence increases the
computing time. To solve this drawback we introduce
sstbmatan, an approximation of tbmatan. In sec-
tion 5 we study the empirical characteristics of tb-

matan and show that it leads to improving classifi-
cation accuracy and to a better approximation of the
class probabilities with respect to TAN. We also show
that the empirical results for sstbmatan do not dif-
fer significantly from the ones obtained by tbmatan

while allowing to deal with large datasets. We end up
with some conclusions and future work in section 6.

2. Tree Augmented Naive Bayes

Tree Augmented Naive Bayes (TAN) appears as a nat-
ural extension to the Naive Bayes classifier (Kontka-
nen et al., 1998; Langley et al., 1992; Domingos &
Pazzani, 1997). TAN models are a restricted family
of Bayesian networks in which the class variable has
no parents and each attribute has as parents the class
variable and at most another attribute. An example
of TAN model can be seen in Figure 1(c).

In this section we start introducing the notation to be
used in the rest of the paper. After that we discuss
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the TAN induction algorithm presented in (Friedman
et al., 1997). Finally in this section we present also
the improvements introduced to TAN in (Cerquides,
1999).

2.1. Formalization and Notation

The notation used in the paper is an effort to put to-
gether the different notations used in (Cerquides, 1999;
Heckerman et al., 1995; Friedman et al., 1997; Meila
& Jaakkola, 2000) and some conventions in the ma-
chine learning literature.

2.1.1. The Discrete Classification Problem

A discrete attribute is a finite set. A discrete do-

main is a finite set of discrete attributes. We will
note Ω = {X1, . . . , Xm} for a discrete domain, where
X1, . . . , Xm are the attributes in the domain. A classi-

fied discrete domain is a discrete domain where one of
the attributes is distinguished as “class”. We will use
ΩC = {A1, . . . , An, C} for a classified discrete domain.
In the rest of the paper we will refer to an attribute
either as Xi (when it is considered part of a discrete
domain), Ai (when it is considered part of a classified
discrete domain and it is not the class) and C (when
it is the class of a classified discrete domain). We will
note as V = {A1, . . . , An} the set of attributes in a
classified discrete domain that are not the class.

Given an attribute A, we will note #A as the number

of different values of A. We define #Ω =
m∏

i=1

#Xi and

#ΩC = #C
n∏

i=1

#Ai.

An observation x in a classified discrete domain ΩC

is an ordered tuple x = (x1, . . . , xn, xC) ∈ A1 × . . . ×
An × C. An unclassified observation S in ΩC is an
ordered tuple S = (s1, . . . , sn) ∈ A1 × . . .×An. To be
homogeneous we will abuse this notation a bit noting
sC for a possible value of the class for S. A dataset D
in ΩC is a multiset of classified observations in ΩC .

We will note N for the number of observations in
the dataset. We will also note Ni(xi) for the num-
ber of observations in D where the value for Ai is xi,
Ni,j(xi, xj) the number of observations in D where the
value for Ai is xi and the value for Aj is xj and simi-
larly for Ni,j,k(xi, xj , xk) and so on. We note similarly
fi(xi), fi,j(xi, xj), . . . the frequencies in D. It is worth
noticing that f defines a probability distribution over
A1 × . . . × An × C.

A classifier in a classified discrete domain ΩC is a pro-
cedure that given a dataset D in ΩC and an unclassi-
fied observation S in ΩC assigns a class to S.

2.1.2. Bayesian Networks for Discrete

Classification

Bayesian networks offer a solution for the discrete clas-
sification problem. The approach is to define a ran-
dom variable for each attribute in Ω (the class is in-
cluded but not distinguished at this time). We will
note U = {X1, . . . ,Xm} where each Xi is a random
variable over its corresponding attribute Xi. We ex-
tend the meaning of this notation to Ai, C and V .
A Bayesian network over U is a pair B = 〈G, Θ〉.
The first component, G, is a directed acyclic graph
whose vertices correspond to the random variables
X1, . . . ,Xm and whose edges represent direct depen-
dencies between the variables. The graph G encodes
independence assumptions: each variable Xi is inde-
pendent of its non-descendants given its parents in G.
The second component of the pair, namely Θ, repre-
sents the set of parameters that quantifies the network.
It contains a parameter θi|Πi

(xi, Πxi
) = PB(xi|Πxi

) for
each xi ∈ Xi and Πxi

∈ ΠXi
, where ΠXi

denotes the
Cartesian product of every Xj such that Xj is a parent
of Xi in G. Πi is the list of parents of Xi in G. We
will note Πi = U − {Xi} − Πi. A Bayesian network
defines a unique joint probability distribution over U

given by

PB(x1, . . . , xm) =

m∏

i=1

PB(xi|Πxi
) =

m∏

i=1

θi|Πi
(xi|Πxi

)

(1)
The application of Bayesian networks for classification
can be very simple. For example suppose we have an
algorithm that given a classified discrete domain ΩC

and a dataset D over ΩC returns a Bayesian network
B over U = {A1, . . . ,An, C} where each Ai (resp. C)
is a random variable over Ai (resp. C). Then if we are
given a new unclassified observation S we can easily
classify S into class argmax

sC∈C

(PB(s1, . . . , sn, sC)). This

simple mechanism allows us to see any Bayesian net-
work learning algorithm as a classifier.

2.1.3. Learning with Trees

Given a classified domain ΩC we will note E the set
of undirected graphs E over {A1, . . . ,An} such that
E is a tree (has no cycles). We will use u, v ∈ E

instead of (Au,Av) ∈ E for compactness. We will
note as E a directed tree for E. Every E uniquely
determines the structure of a Tree Augmented Naive
Bayes classifier, because from E we can construct E

∗
=

E ∪ {(C,Ai)|1 ≤ i ≤ n} as can be seen in an example
in Figure 1. We note the root of a directed tree E as
ρE (i.e. in Figure 1(b) we have that ρE = A1).

We will note as ΘE
∗ the set of parameters that quan-

tify the Bayesian network M = 〈E
∗
, ΘE

∗〉. More con-
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Figure 1. Notation for learning with trees

cretely:
ΘE

∗ = (θC , θρE |C , {θv|u,C |u, v ∈ E})
θC = {θC(c)|c ∈ C} where θC(c) = P (C = c|M)
θρ

E
|C = {θρ

E
|C(i, c)|i ∈ Aρ

E
, c ∈ C} where

θρ
E
|C(i, c) = P (Aρ

E
= i|C = c, M)

For each u, v ∈ E:
θv|u,C = {θv|u,C(j, i, c)|j ∈ Av , i ∈ Au, c ∈ C}

where θv|u,C(j, i, c) = P (Av = j|Au = i, C = c, M).

2.2. Learning Maximum Likelihood TAN

One of the measures used to learn Bayesian networks is
the log likelihood. An interesting property of the TAN
family is that we have an efficient procedure (Friedman
et al., 1997) for identifying the structure of the net-
work which maximizes likelihood. To learn the maxi-
mum likelihood TAN we should use the following equa-
tion to compute the parameters.

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

)
(2)

It has been shown (Friedman et al., 1997) that equa-
tion 2 leads to “overfitting” the model. Also in (Fried-
man et al., 1997) Friedman et al. propose to use the
parameters as given by

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
)

NΠi
(Πxi

) + N0
i|Πi

+

+
N0

i|Πi

NΠi
(Πxi

) + N0
i|Πi

Ni(xi)

N
(3)

and suggest setting N0
i|Πi

= 5 based on empirical re-

sults. Using equation 3 to fix the parameters improves
the accuracy of the classifier. In our opinion, no well
founded theoretical justification is given for the im-
provement. In the following section we revisit the re-
sults in (Cerquides, 1999) and show that we can get

an alternative parameter fixing equation with a well
founded theoretical justification and equivalent classi-
fication accuracy.

2.3. Learning Multinomial Sampling TAN

In (Cerquides, 1999) we introduced an alternative ap-
proach to learning Bayesian networks which we named
“multinomial sampling approach” based on assuming
that our dataset is a sample of a multinomial distribu-
tion over A1 × . . . × An × C.

This multinomial sampling approach was applied to
TAN with the result that we should estimate the pa-
rameters using:

θi|Πi
(xi, Πxi

) =
Ni,Πi

(xi, Πxi
) + λ#Πi

#Ω

NΠi
(Πxi

) + λ#Xi#Πi

#Ω

(4)

where #Πi =
∏

Xj∈Πi

#Xj and we remind that Πi

stands for the set of variables which are not parents
of Xi in the network excluding Xi.

In (Cerquides, 1999) the usage of λ = 10 was found to
be a good value after empirical tests, and the multi-
nomial sampling approach was compared to the max-
imum likelihood (equation 2) and softened maximum
likelihood (equation 3) parameter estimations. The re-
sults were that multinomial sampling is clearly better
than maximum likelihood. When compared to soft-
ened maximum likelihood, it was observed that multi-
nomial sampling provides an equivalent classification
accuracy but improves the quality of the probabilities
assigned to the class.

3. Development of the Averaged Tree

Augmented Naive Bayes

In the previous section we have reviewed different ways
of learning a single TAN model from data. In this
section we will develop a classifier based on the TAN
model that does also take into account the uncertainty
in model selection by means of decomposable distri-
butions over TANs. We start by introducing Bayesian
model averaging, then we explain decomposable dis-
tributions over tree structures and parameters built
upon the idea of decomposable priors as proposed by
Meila and Jaakola (Meila & Jaakkola, 2000) to end
up showing that given a decomposable distribution it
is possible to calculate the probability of an unseen
observation and that given a prior decomposable dis-
tribution, the posterior distribution after observing a
set of data is also a decomposable distribution. We
conclude the section by putting together these results
to create tbmatan.



3.1. BMA Classification

We are faced with the problem of defining a good clas-
sifier for a classified dataset. If we accept that there is
a probabilistic model behind the dataset, we have two
alternatives:

1. We know the model M (both structure and pa-
rameters) that is generating the data in advance.
In this case it is a matter of probabilistic com-
putation. We should be able to calculate P (C =
sC |V = S, M) and to choose the class sC with
the highest probability. No learning is performed,
because we knew the model in advance.

2. We are given a set of possible models M. In this
situation probability theory tell us we should take
a weighted average where each model prediction
is weighted by the probability of the model given
the data. More formally, assuming ξ represents
the hypothesis that the model underlying the data
is known to be in M we have that:

P (V = S, C = sC |D, ξ) =

=

∫

M∈M

P (V = S, C = sC |M)P (M |D, ξ) (5)

Applying this equation is commonly known as
Bayesian model averaging (Hoeting et al., 1998).

In the following we prove that if we fix the set of mod-
els M to TAN models and assume a decomposable
distribution as prior probability distribution over the
set of models, the integral for P (V = S, C = sC |D, ξ)
in equation 5 can be integrated in closed form.

3.2. Decomposable Distributions over TANs

In order to apply Bayesian model averaging, it is nec-
essary to have a prior probability distribution over the
set of models M. Decomposable priors were intro-
duced by Meila and Jaakola in (Meila & Jaakkola,
2000) where it was demonstrated for tree belief net-
works that if we assume a decomposable prior, the
posterior probability is also decomposable and can
be completely determined analytically in polynomial
time.

In this section we introduce decomposable distribu-
tions over TANs, which are probability distributions
in the space M of TAN models and an adaptation
of decomposable priors, as they appear in (Meila &
Jaakkola, 2000), to the task of learning TAN.

Decomposable distributions are constructed in two
steps. In the first step, a distribution over the set

of different undirected tree structures is defined. Ev-
ery directed tree structure is defined to have the same
probability as its undirected equivalent. In the second
step, a distribution over the set of parameters is de-
fined so that it is also independent on the structure.
In the rest of the paper we will assume ξ implies a
decomposable distribution over M with hyperparam-
eters β,N′ (these hyperparameters will be explained
along the development). Under this assumption, the

probability for a model M = 〈E
∗
, ΘE

∗〉 (a TAN with

fixed tree structure E
∗

and fixed parameters ΘE
∗) is

determined by:

P (M |ξ) = P (E
∗
, ΘE

∗ |ξ) = P (E
∗
|ξ)P (ΘE

∗ |E
∗
, ξ)

(6)

In the following sections we specify the value of
P (E

∗
|ξ) (decomposable distribution over structures)

and P (ΘE
∗ |E

∗
, ξ) (decomposable distribution over pa-

rameters).

3.2.1. Decomposable Distribution over TAN

Structures

One of the hyperparameters of a decomposable dis-
tribution is an n × n matrix β = (βu,v) such that
∀u, v : 1 ≤ u, v ≤ n : βu,v = βv,u ≥ 0 ; βv,v = 0. We
can interpret βu,v as a measure of how possible is un-
der ξ that the edge (Au,Av) is contained in the TAN
model underlying the data.

Given ξ, the probability of a TAN structure E
∗

is de-
fined as:

P (E
∗
|ξ) =

1

Zβ

∏

u,v∈E

βu,v (7)

where Zβ is a normalization constant with value:

Zβ =
∑

E∈E

∏

u,v∈E

βu,v (8)

It is worth noting that P (E
∗
|ξ) depends only on the

underlying undirected tree structure E.

3.2.2. Decomposable Distribution over TAN

Parameters

Applying equation 1 to the case of TAN we have that

P (ΘE
∗ |E

∗
, ξ) = P (θC |E

∗
, ξ)P (θρE |C |E

∗
, ξ)×

×
∏

u,v∈E

P (θv|u,C |E
∗
, ξ) (9)

A decomposable distribution has a hyperparameter set
N′ = {N ′

v,u,C(j, i, c)|1 ≤ u 6= v ≤ n ; j ∈ Av ; i ∈



Au ; c ∈ C} with the constraint that exist N ′
u,C(i, c),

N ′
C(c), N ′ such that for every u,v:

N ′
u,C(i, c) =

∑

j∈Av

N ′
v,u,C(j, i, c) (10)

N ′
C(c) =

∑

i∈Au

N ′
u,C(i, c) (11)

N ′ =
∑

c∈C

N ′
C(c) (12)

Given ξ, a decomposable probability distribution over
parameters with hyperparameter N′ is defined by
equation 9 and the following set of Dirichlet distri-
butions:

P (θC |E, ξ) = D(θC(.); N ′
C(.)) (13)

P (θρE |C |E, ξ) =
∏

c∈C

D(θρE |C(., c); N ′
ρ

E
,C(., c)) (14)

P (θv|u,C |E, ξ) =
∏

c∈C

∏

i∈Au

D(θv|u,C(., i, c); N ′
v,u,C(., i, c))

(15)

If the conditions in equations 6, 7, 8, 9, 10, 11, 12, 13,
14 and 15 hold, we will say that P (M |ξ) follows a de-
composable distribution with hyperparameters β,N′.

3.3. Calculating Probabilities with

Decomposable Distributions

Assume that the data is generated by a TAN model
and that P (M |ξ) follows a decomposable distribution
with hyperparameters β,N′. We can calculate the
probability of an observation S, sC given ξ by aver-
aging over the set of TAN models (equation 5).

Let Q : R
n×n → R

n−1×n−1. For any real n×n matrix
τ we define Q(τ ) as the first n − 1 lines and columns
of the matrix Q(τ ) where

Qu,v(τ ) = Qv,u(τ ) =




−τu,v 1 ≤ u < v ≤ n

n∑
v′=1

τv′,v 1 ≤ u = v ≤ n

(16)
The integral for P (V = S, C = sC |ξ) can be calculated
in closed form by applying the matrix tree theorem
and expressed in terms of the previously introduced Q

as:

P (V = S, C = sC |ξ) = h
S,sC

0 |Q(β hS,sC )| (17)

where

h
S,sC

0 =
1

Zβ

1

N ′

∏

Au∈V

N ′
u,C(su, sC) (18)

hS,sC =
(
hS,sC

u,v

)
where

hS,sC
u,v =

N ′
v,u,C(sv, su, sC)

N ′
u,C(su, sC)N ′

v,C(sv, sC)
(19)

The proof for this result appears in (Cerquides &
López de Màntaras, 2003b).

3.4. Learning with Decomposable

Distributions

Assume that the data is generated by a TAN model
and that P (M |ξ) follows a decomposable distribu-
tion with hyperparameters β, N′. Then, P (M |D, ξ),
the posterior probability distribution after observing a
dataset D is a decomposable distribution with param-
eters β∗, N′∗ given by:

β∗
u,v = βu,vWu,v (20)

N ′∗
u,v,C(j, i, c) = N ′

u,v,C(j, i, c) + Nu,v,C(j, i, c) (21)

where

Wu,v =
∏

c∈C

∏

i∈Au

Γ(N ′
u,C(i, c))

Γ(N ′
u,C(i, c) + Nu,C(i, c))

∏

c∈C

∏

j∈Av

Γ(N ′
v,C(j, c))

Γ(N ′
v,C(j, c) + Nv,C(j, c))

∏

c∈C

∏

i∈Au

∏

j∈Av

Γ(N ′
v,u,C(j, i, c) + Nv,u,C(j, i, c))

Γ(N ′
v,u,C(j, i, c))

(22)

The proof appears in (Cerquides & López de Màntaras,
2003b).

3.5. Putting it all Together

Putting together the results from sections 3.3 and 3.4
we can easily design a classifier based on decompos-
able distributions over TANs. The classifier works as
follows: when given a dataset D, it assumes that the
data is generated from a TAN model and assumes a
decomposable distribution as prior over the set of mod-
els. Applying the result from section 3.4, the posterior
distribution over the set of models is also a decompos-
able distribution and applying the result of section 3.3
this decomposable posterior distribution can be used
to calculate the probability of any observation S, sC .
When given an unclassified observation S, it can just
calculate the probability P (V = S, C = sC |D, ξ) for
each possible class sC ∈ C and classify S in the class
with highest probability.

We have mentioned that the classifier assumes a de-
composable distribution as prior. Ideally, this prior
will be fixed by an expert that knows the classification



domain. Otherwise, we have to provide the classifier
with a way for fixing the prior distribution hyperpa-
rameters without knowledge about the domain. In this
case the prior should be as “non-informative” as pos-
sible in order for the information coming from D to
dominate the posterior by the effects of equations 20
and 21. We have translated this requisite into equa-
tions 23 and 24:

∀u, v ; 1 ≤ u 6= v ≤ n ; βu,v = 1 (23)

∀u, v; 1 ≤ u 6= v ≤ n; ∀j ∈ Av ; ∀i ∈ Au; ∀c ∈ C

N ′
v,u,C(j, i, c) =

λ

#C#Au#Av

(24)

Defining β as in equation 23 means that we have the
same amount of belief for any edge being in the TAN
structure underlying the data. Fixed u, v, equation 24
assigns the same probability to any (j, i, c) such that
j ∈ Av , i ∈ Au and c ∈ C and the value assigned is
coherent with the multinomial sampling approach. λ

is an “equivalent sample size” for the prior in the sense
of Heckerman et al. in (Heckerman et al., 1995). In
our experiments we have fixed λ = 10. In the following
tbmatan will refer to the classifier described in this
section.

4. Approximating tbmatan

tbmatan can theoretically be implemented by an al-
gorithm with O(N · n2) learning time and O(#C · n3)
time for classifying a new observation. In spite of that,
a straightforward implementation of tbmatan, even
when accomplishing these complexity bounds, will not
yield accurate results, specially for large datasets. This
is due to the fact that the calculations that need to
be done in order to classify a new observation in-
clude the computation of a determinant (in equation
17) that happens to be ill-conditioned. Even worse,
the determinant gets more and more ill-conditioned as
the number of observations in the dataset increases.
This forces the floating point accuracy that we have
to use to calculate these determinants to depend on
the dataset size. We have calculated the determinants
by means of NTL (Shoup, 2003), a library that allows
us to calculate determinants with the desired precision
arithmetic. This solution makes the time for classify-
ing a new observation grow faster than O(#C · n3),
and hence makes the practical application of the al-
gorithm difficult in situations where it is required to
classify a large set of unclassified data.

We analyzed what makes the determinant being ill-
conditioned and concluded that it is due to the Wu,v

factors given by equation 22. The factor Wu,v could be

interpreted as “how much the dataset D has changed
the belief in that there is a link between u and v in the
TAN model generating the data”. The problems relies
in the fact that Wu,v are easily in the order of 10−200

for a dataset with 1500 observations. Furthermore, the

factors
Wu,v

Wu′,v′

for such a dataset can be around 10−20,

providing the ill-condition of the determinant. In order
to overcome this problem, we propose to postprocess
the factors Wu,v computed by equation 22 by means
of a transformation that limits them to lie in the in-
terval [10−K , 1] where K is a constant that has to be
fixed depending on the floating point accuracy of the
machine. In our implementation we have used K = 5.
The transformation works as depicted in figure 2 and

−K

0 1min max

10^−K

0−infinity

0

lmin lmax

Log

Linear transform

10

10^

Figure 2. Transformation of weights for sstbmatan

is described in detail by the following equations:

lmax = log10 max
u∈V
v∈V
u6=v

Wu,v (25)

lmin = log10 min
u∈V
v∈V
u6=v

Wu,v (26)

a =

{
K

lmax−lmin
lmax − lmin > K

1 otherwise
(27)

b = −K − a ∗ lmin (28)

W̃u,v = 10a log
10

(Wu,v)+b (29)

Using W̃u,v instead of Wu,v to calculate the posterior
hyperparameters β∗

u,v has the following properties:

1. It is harder to get get ill-conditioned determi-

nants, because for all u, v W̃u,v is bound to the
interval [10−K , 1].

2. It preserves the relative ordering of the Wu,v .

That is, if Wu,v > Wu′,v′ then W̃u,v > W̃u′,v′ .

3. It does not exaggerate relative differences in be-
lief. That is, for all u, v, u′, v′ we have that

• If
Wu,v

Wu′,v′

≥ 1 then
Wu,v

Wu′,v′

≥
W̃u,v

W̃u′,v′

.



• If
Wu,v

Wu′,v′

≤ 1 then
Wu,v

Wu′,v′

≤
W̃u,v

W̃u′,v′

.

The posterior hyperparameters β∗
u,v can be interpreted

as a representation of the a posteriori belief in the ex-
istence of an edge (u, v) in the TAN structure. Using

W̃u,v , given the properties stated, means being more
conservative in the structure learning process, because
the beliefs will be confined to the interval [10−K , 1]
which impedes the representation of extreme proba-
bility differences between edges. We can interpret the
transformation as applying some stubbornness to the
structure learning process. Applying this transforma-
tion allows us to implement an approximation of tb-

matan that does not require the use of special floating
point accuracy computations. We will refer to this ap-
proximation of tbmatan as sstbmatan (from Struc-
ture Stubborn tbmatan).

It is worth noting that the problem described in this
section does only affect the classification time. The
learning process for tbmatan does not need high pre-
cision arithmetics. The learning time complexity for
tbmatan, O(N · n2), is the same as the one for TAN.
In spite of that, in practice, TAN learning time would
be somewhat longer because the learning stage for tb-

matan (calculating every Nv,u,C(j, i, c)) is only the
first step of the TAN learning process.

5. Empirical Results

We tested four algorithms over 16 datasets from the
Irvine repository (Blake et al., 1998). The dataset
characteristics are described in Table 1. To discretize
continuous attributes we used equal frequency dis-
cretization with 5 intervals. For each dataset and
algorithm we tested both accuracy and LogScore.
LogScore is calculated by adding the minus logarithm
of the probability assigned by the classifier to the cor-
rect class and gives an idea of how well the classifier
is estimating probabilities (the smaller the score the
better the result). If we name the test set D′ we have

LogScore(M,D′) =

=
∑

(S,sC)∈D′

− log(P (C = sC |V = S, M)) (30)

For the evaluation of both error rate and LogScore we
used 10 fold cross validation. We tested the algorithm
with the 10%, 50% and 100% of the learning data for
each fold, in order to get an idea of the influence of the
amount of data in the behaviors of both error rate and
LogScore for the algorithm. In order to evaluate the
statistical significance of the differences we performed
a paired t-test at 5%.

Detailed experimental results can be found in
(Cerquides & López de Màntaras, 2003b).

The classifiers under comparison are:

• tan+ms: Single TAN induction using the multi-

nomial sampling approach (Cerquides, 1999).

• tbmatan: The method described in section 3.5.

• sstbmatan: The method presented in section 4.

tbmatan classification times are very large for
datasets with a large number of instances. For datasets
over 5000 instances we have skipped the execution of
tbmatan.

Table 1. Datasets information

Dataset Attributes Instances Classes Missing

adult 14 48842 2 some

breast 10 699 2 16

car 6 1728 4 no

chess 36 3196 2 no

cleve 13 303 2 some

crx 15 690 2 few

flare 10 323 4 no

glass 10 214 2 none

hep 19 155 2 some

iris 4 150 3 none

letter 16 20000 26 none

mushroom 22 8124 2 some

nursery 8 12960 5 no

pima 8 768 2 no

soybean 35 316 19 some

votes 16 435 2 few

5.1. Interpretation of the Results

Statistical significance results can be seen in tables
2 and 3 where each entry in the table contains the
number of datasets for which the error rate (resp.
LogScore) for the classifer in the left column was bet-
ter than the same measure for the classifier on the
top row in a statistically significant way. For example,
the improvement in LogScore provided by sstbmatan

with respect to tan+ms is statistically significant for
14 datasets when taking the 10% of the training data,
for 11 datasets when taking the 50% and for 6 datasets
when taking all of the learning data.

In many cases tbmatan improves both accuracy and
LogScore with respect to tan+ms. The average rel-
ative improvement is around 10% for error rate and
slightly higher for LogScore. The percentage of im-
provement is higher as we reduce the amount of learn-
ing data. This is understandable, because it is reason-
able to think that if we have enough data, the posterior
is likely to be concentrated around the tree learned by
tan+ms.

sstbmatan performs even slightly better than tb-

matan for many datasets, so we can accept that the



Table 2. Statistically significant differences in error rate

tbmatan sstbmatan tan+ms

.1 .5 1 .1 .5 1 .1 .5 1

tbmatan - 1 1 1 5 5 3

sstbmatan 2 2 1 - 8 8 4

tan+ms 0 0 1 1 2 2 -

Table 3. Statistically significant differences in LogScore

tbmatan sstbmatan tan+ms

.1 .5 1 .1 .5 1 .1 .5 1

tbmatan - 1 1 4 11 7 5

sstbmatan 7 7 6 - 14 11 6

tan+ms 0 0 2 2 3 4 -

approximation introduced in section 4 is good for
datasets of this size. Finally, if we compare sstb-

matan and tan+ms we can see that its relative be-
havior is very similar to the one of tbmatan with
tan+ms.

6. Conclusions and Future Work

We have introduced tbmatan a classifier based on
TAN, decomposable distributions and Bayesian model
averaging. We have seen that its implementation leads
to the calculation of ill-conditioned determinants and
have proposed to use an approximated implementa-
tion: sstbmatan .

sstbmatan is, to the best of our knowledge, the most
accurate classifier reported with a learning time lin-
ear on the number of observations of the dataset. The
accuracy increase comes at the price of increasing the
classification time, making it cubic on the number of
attributes. The algorithm is anytime and incremen-
tal: as long as the dataset observations are processed
randomly, we can stop the learning stage anytime we
need, perform some classifications and then continue
learning at the only (obvious) cost of the lower accu-
racy of the classifications performed in the middle of
the learning process. These characteristics make the
algorithm very suitable for datasets with a large num-
ber of instances.

Being able to calculate some measure of the con-
centration of the posterior distribution around the
TAN learned by tan+ms (that is, some sort of “vari-
ance”) will probably allow us to determine beforehand
whether tbmatan will provide significant improve-
ment over tan+ms in a dataset.

Finally, we think that all of the classifiers reviewed in
(Friedman et al., 1997) that are based on the Chow
and Liu algorithm (Chow & Liu, 1968) can benefit
from an improvement similar to the one seen here by
the use of decomposable distributions and Bayesian
model averaging. Formalizing the development for
these classifiers and performing the empirical tests re-
mains as future work.
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